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Abstract: Lung cancers contribute to the greatest number of cancer-related deaths worldwide and
still pose challenges in response to current treatment strategies. Non-small cell lung cancer (NSCLC)
accounts for over 85% of lung cancers diagnosed in the United States and novel therapeutics are
needed for the treatment of this disease. First and second generation targeted therapies against
specific mutated or rearranged oncogenes in NSCLCs show anti-tumor activity and also increase
survival. However, many NSCLC patients eventually develop resistance to these therapies or do
not properly respond if they have central nervous system metastases. Thus, this review summarizes
recent developments and findings related to the generation of novel targeted therapies recently or
currently being developed to tackle hurdles that prior therapies were not able to overcome.
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1. Introduction

Several signaling pathways and specific oncogenes are deregulated in non-small cell lung
cancer (NSCLC) and are known to influence changes linked to tumorigenesis, including apoptosis,
proliferation, cell-cycle progression, and gene expression [1]. These key pathways and oncogenes affect
the development and progression of NSCLC as well as prognosis and resistance. In fact, the majority of
NSCLC patients present advanced stages of the disease and many harbor mutations making them more
prone to resistance [2]. Therapies specifically targeting pathways and genes commonly deregulated
or mutated in NSCLC are attractive for developing treatments that are optimal in regressing or even
curing the disease.

It is crucial to identify novel strategies to combat lung cancers since they account for more
cancer-related deaths than breast, prostate, colon, and brain cancers combined, making almost a quarter
of all cancer deaths due to lung cancer [3]. More specifically, NSCLC accounts for over 85% of all lung
cancer cases in the United States [4]. Most NSCLC patients are not diagnosed until they reached locally
advanced or metastatic disease states. In addition, many NSCLC patients experience response failures
due to mechanisms of resistance [4].

Strategies focused on inhibiting oncogenic proteins in NSCLC, such as anaplastic lymphoma
kinase (ALK), epidermal growth factor receptor (EGFR), c-ros oncogene 1 (ROS1), and v-raf murine
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sarcoma viral oncogene homolog B1 (BRAF), have been generated and therapies against these proteins
have shown promise in combating NSCLC. Despite the development of first generation inhibitors
against these oncogenes that showed beneficial responses and effects on survival, these drugs still
face challenges related to treating metastasized tumors and avoiding mechanisms of resistance. Thus,
new therapies specifically targeting these oncogenes or other components involved in these oncogenic
pathways are continually being generated to overcome these hurdles. It is important to mention that
along with targeted therapies, immunotherapies, specifically checkpoint inhibitors, have recently
showed positive outcomes and strong safety profiles in the treatment of NSCLC [5]. However, in this
article, we mainly focus on the progress of targeted therapies for the treatment of NSCLC and the
current strategies being undertaken to tackle NSCLC cases with specific mutations or rearrangements
since the targeted therapy field has made a substantial progress over recent years. In addition,
targeted therapies will most likely be used along with traditional chemotherapeutic strategies and
immunotherapies to treat NSCLC in the future [6].

In this review, the rationale behind targeting ALK, EGFR, ROS1, BRAF, and other important
targets are summarized based on what has been recently uncovered. In addition, current targeted
therapies against these genes/proteins are discussed as well as an overview of how their targeting
profiles, ability to overcome resistance and safety have improved or are in the process of being modified
for more optimal therapeutic responses.

2. ALK Inhibitors

ALK, a component of the insulin receptor tyrosine kinase family, functions in fetal nervous system
development but the full extent of its functions are unclear and require further investigation [7,8].
ALK has been shown to combine with fusion partners that lead to its constitutive activation
in various cancers, resulting in oncogenic addiction. In NSCLC, ALK fuses with echinoderm
microtubule-associated protein-like 4 (EML4) and is also presented in the form of other rearrangements,
including fusions with a variety of other genes [9,10]. Altogether, ALK fusions and rearrangements are
observed in 2–9% of NSCLC cases and are also associated with specific clinical features, such as a mild
to no smoking history [9,10]. Crizotinib, originally developed as a MET inhibitor, is a first generation
ALK inhibitor effective in treating NSCLC. It is known to have a response rate of 60% and a median
progression-free survival time of 8–10 months [11]. However, despite the successful response rate,
many patients relapsed only a few years after starting treatment. In addition, brain metastases in
NSCLC patients receiving crizotinib therapy were observed as a consequence of crizotinib’s inability
to pass through the blood brain barrier (BBB) [11].

Thus, novel therapies overcoming the issues of resistance as well as potency were needed.
Both ceritinib and alectinib are second generation ALK inhibitors that were U.S. Food and Drug
Administration (FDA) approved and used to treat NSCLC patients who were previously administered
crizotinib [11]. These inhibitors not only proved to be more potent than crizotinib, they also showed
to overcome resistance mutations and were effective against brain metastases [11]. For example,
ceritinib showed to be effective in both crizotinib-sensitive and crizotinib-resistant ALK-positive
NSCLC patients [12]. However, ceritinib showed drawbacks in terms of safety that included thrombotic
diseases and respiratory failure [13]. In contrast, alectinib showed a more optimal safety profile than
ceritinib. One study investigated ALK mutation status before and after treatment with alectinib revealed
that the drug remained clinically active against ALK rearrangements and mutations as well as against
ALK variants that could ultimately increase the chances of resistance [14]. In 2018, a third generation
ALK inhibitor, lorlatinib, was approved by the FDAthat can pass through the BBB and also exert
broad-spectrum potency against resistant mutations that commonly develop during treatment with
crizotinib. In addition, lorlatinib is known to have a strong safety profile, with only mild to moderate
side effects that are mostly tolerable by patients [15]. A phase 3 CROWN study is currently being
performed to analyze whether lorlatinib shows greater efficacy compared to crizotinib as a first-line
therapy for the treatment of ALK-positive NSCLCs (Clinicaltrials.gov identifier: NCT03052608). So far,
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there is data suggesting that the study met its primary endpoint showing that lorlatinib improved
progression-free survival when compared to crizotinib (Clinicaltrials.gov identifier: NCT03052608).
However, with the risk of acquired mutations promoting resistance, the journey to uncover other novel
and effective treatments continues [16].

The second generation ALK inhibitor brigatinib was recently approved by the FDA for the
treatment of ALK-positive metastatic NSCLC. A randomized, phase 3 clinical trial ALTA-1L revealed
that brigatinib showed significantly longer progression-free survival in NSCLC patients who were not
previously treated with an ALK inhibitor compared to patients treated with crizotinib [17]. In addition,
increasing the dose of brigatinib shows positive outcomes in patients treated with crizotinib refractory
NSCLC [18].

Lastly, a new generation ALK inhibitor known as ensartinib, which is structurally similar to
crizotinib, is ten times more potent than crizotinib, shows activity against crizotinib-resistant ALK
mutations as well as brain metastasis and is well-tolerated by patients [19]. Patients treated with
ensartinib showed double progression-free survival time compared with crizotinib treated patients [20].
In addition, studies have shown that its anti-tumor activity was not influenced by the presence of
multidrug resistance transporters [21]. The higher potency, stronger activity overcoming mechanisms
of resistance and the tolerability noted in patients makes ensartinib a promising new candidate for
optimally treating ALK-positive NSCLCs.

The optimal line of therapy after failure of second-line therapy against ALK positive NSCLCs is
currently unknown. In addition to the administration of third generation ALK inhibitors, platinum/

pemetrexed-based chemotherapy is also an option. A recent, retrospective study investigated the
efficacy of platinum/pemetrexed-based chemotherapy in NSCLC cases refractory to second-generation
ALK inhibitors [22]. Findings revealed that platinum/pemetrexed-based therapy showed modest
efficacy in ALK-positive NSCLC cases after second-generation therapy failure. It was suggested
that platinum/pemetrexed-based therapy should be administered with an ALK inhibitor for a
synergistic effect.

There are ongoing clinical trials investigating how a combination of ALK inhibitors and other
therapies influence outcomes in treating ALK-positive NSCLC cases. One ongoing trial is studying
how alectinib combined with the anti-angiogenic therapy bevacizumab influences both treatment
naïve versus previously treated NSCLC patients. This phase III, single arm trial aims to search for
safe and effective therapeutic options to treatNSCLC. The study completion date is estimated to be in
January 2021 (Clinicaltrials.gov Identifier: NCT03779191).

3. EGFR Inhibitors

EGFR is a surface tyrosine kinase belonging to the HER/erbB family of tyrosine kinases that
functions in cell proliferation and apoptosis by modulating signaling pathways [23]. Deregulated EGFR
results in increased signaling activity that promotes tumor phenotypes, such as invasion, metastasis,
angiogenesis, and proliferation [23]. In NSCLC, EGFR is overexpressed in 40–89% of cases and is
mutated in 15–20% of patients [23–25]. Its high expression and mutation rate in NSCLCs makes EGFR
a strong oncogenic target for therapeutic purposes. Another HER/erbB family member, HER2/ERBB2,
has also been studied in NSCLC. In addition to actionable ERBB2 amplification (about 2% of NSCLCs),
overexpression, and oncogenic mutations (about 3% of NSCLCs), current studies are focusing on ERBB2
phosphorylation, ubiquitination, and internalization rate using novel drugs, such as the antibody–drug
conjugate (ADC) ado-trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) [26].

Both gefitinib and erlotinib are first generation reversible EGFR inhibitors that are standard of care
for NSCLC patients harboring EGFR mutations [27]. Both inhibitors improve lung and metastatic site
lesions in NSCLC patients. Individuals with EGFR mutated NSCLC respond well to these inhibitors,
which are considered as standard of care for the first year. However, after the first year these patients
unfortunately develop resistance that occurs due to the formation of EGFR mutations that increase the
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affinity for ATP binding (T790 mutation) and prevent inhibitor binding [27]. Thus, the development of
a second generation of inhibitors was necessary to overcome this challenge.

The goal of second generation EGFR inhibitors, including the irreversible tyrosine kinase inhibitors
afatinib and dacomitinib, was to tackle the issue of resistance. However, these inhibitors did not
show significant improvements in overall survival at tolerable doses in patients harboring T790
mutations [27]. They did, however, show significant improvements in progression-free survival when
compared to standard chemotherapy [28]. These second generation EGFR inhibitors also showed
improvements in progression-free survival relative to first generation EGFR inhibitors.

The third generation EGFR inhibitor osimertinib has shown promising results when treating
NSCLC patients with T790 mutations that have developed after first-line treatment. It shows superior
efficacy treating EGFR-mutant NSCLCs when compared with standard, first-line EGFR inhibitors [29].
In addition, it shows a similar safety profile and less adverse events compared to the older generation
inhibitors [29] even though it was administered to patients for a longer duration [30]. In general,
it exhibits favorable activity in patients with uncommon EGFR mutations [31]. It is also important
to mention that osimertinib exhibits excellent activity in treatment-naïve advanced NSCLC central
nervous system metastases [32]. However, various articles have emphasized that despite its strong
therapeutic effects, osimertinib treated patients are still prone to resistance [33,34].

Fortunately, gefitinib has shown to be effective against osimertinib-resistant mutations
(Clinicaltrials.gov identifier: NCT03122717). Thus, studies are being performed analyzing the effects of
combining osimertinib along with gefitinib in order to combat acquired resistance (Clinicaltrials.gov
identifier: NCT03122717). Combining both therapies showed to be tolerable and cleared the EGFR
mutation from the plasma. The overall survival rate was similar to what was observed in first-line
treatments. However, data regarding long-term survival outcomes as well as acquired resistance are
currently pending and will shed more light on whether this combination proves to be more beneficial
for EGFR-mutated NSCLC patients (Clinicaltrials.gov identifier: NCT03122717).

In addition to EGFR inhibitors, combination therapies, including anti-angiogenesis therapies
are being considered for the treatment of EGFR-mutant NSCLCs. Ramucirumab is a monoclonal
immunoglobulin G1 antibody that recognizes the vascular endothelial growth factor (VEGF), a key
regulator of tumor angiogenesis that contributes to the development and progression of NSCLC [28].
A randomized, double-blind phase Ib/III study investigating erlotinib combined with ramucirumab
for the treatment of previously untreated EGFR-mutant metastatic NSCLC was performed. No major
toxicities were noted when treating with this combination and encouraging clinical data allow the study
to go to phase III. In addition, this study will investigate the efficacy and safety of ramucirumab in
combination with gefitinib in previously untreated EGFR-mutant NSCLC patients. This study will be
completed in 2024 (Clinicaltrials.gov Identifier: NCT02411448). Similar to what was described for ALK
inhibitors, several trials have been performed investigating how a combination of bevacizumab with
EGFR inhibitors provides clinical benefit to patients with EGFR-mutant NSCLCs. Results combining
the EGFR inhibitors erlotinib and gefitinib with bevacizumab show promising and beneficial clinical
activity [35,36]. NSCLC patients treated with cetuximab, another EGFR inhibitor, exhibited greater
overall survival and a greater response in comparison to patients treated with bevacizumab [37].
An ongoing, randomized phase III trial is studying the effects of the chemotherapeutics carboplatin and
paclitaxel with or without bevacizumab and/or cetuximab in treating patients diagnosed with stage IV
or recurrent NSCLC (Clinicaltrials.gov Identifier: NCT00946712). Lastly, it is important to note that
dysregulated redox regulation can also contribute to the pathogenicity of NSCLC by altering EGFR
regulation and also contribute to therapy resistance [38]. Doxorubicin, which can generate oxidants,
is being tested along with other therapies to treat NSCLC (Clinicaltrials.gov Identifier: NCT03808480).

4. ROS1 Inhibitors

ROS1 is a type I integral membrane protein containing tyrosine kinase activity that stimulates
signaling pathways involved in cell growth, proliferation, and survival [39]. Rearrangements in ROS1
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promote its fusion with various other genes, leading to constitutive tyrosine kinase activation that in
turn triggers the MAPK/ERK, JAK/STAT, and PI3K/AKT/mTOR signaling pathways [39]. It is important
to note that rearrangements in ROS1 are mutually exclusive of other driver mutations known to
promote lung oncogenesis [39]. ROS1 rearrangements account for 1–2% of NSCLC cases and are mostly
observed in women, individuals younger than 50 years of age and those who do not have a history of
smoking [39].

Since both ROS1 and ALK share a similar homology, crizotinib, a therapy originally generated to
target ALK-positive NSCLC was repurposed for treating NSCLCs with ROS1 rearrangements. A 2014
study published in the New England Journal of Medicine (NEJM) revealed that crizotinib showed
significant improvement in antitumor activity in patients diagnosed with advanced ROS1-rearranged
NSCLC [12]. In an ongoing phase I PROFILE 1001 study, overall survival of ROS1-positive NSCLC
patients showed improvements and no adverse side effects were reported [40]. This study is still
ongoing with an estimated completion time in 2022 (Clinicaltrials.gov identifier: NCT00585195).
Based on the strong efficacy of crizotinib in clinical trials, the FDA approved this drug to be used
for the treatment against ROS1-positive NSCLCs. Despite these successful outcomes, resistance still
persists as a potential issue for NSCLC patients treated with crizotinib for a prolonged period of time.

Lorlatinib is another tyrosine kinase inhibitor recommended for use after treatment with crizotinib.
It is a third generation, potent, and brain penetrant tyrosine kinase inhibitor that shows activity despite
the presence of resistance mutations in both ALK and ROS1 [41]. This inhibitor has shown to have
strong activity in ROS1-positive NSCLC patients with central nervous system metastases and who
were previously treated with crizotinib [41]. This holds a great promise for ROS1-positive NSCLC
patients with advanced disease since their therapeutic options are usually very limited.

Similar to the challenges faced when targeting other driver mutations in NSCLC, optimal treatment
of ROS1-positive NSCLCs not only requires an inhibitor that can overcome mechanisms of resistance
but also one that penetrates through the BBB to treat brain metastases. The ROS1 inhibitor entrectinib
was developed to properly penetrate the BBB and remain in the central nervous system as a form
of prevention and treatment of metastatic tumors in patients with locally advanced or metastatic
ROS1-positive NSCLC [42]. The clinical trial termed ALKA-372-001 revealed that entrectinib effectively
controlled disease with a well-tolerated safety profile, suggesting that it can be administered to patients
long-term with less adverse side effects [42]. Based on successful clinical trial data, in the summer of
2019, the FDA approved the use of entrectinib for the treatment of metastatic ROS1-positive NSCLC.

With the goal of developing even more potent inhibitors that can cross the BBB and overcome
resistance mutations, a number of other drugs have shown activity against ROS1, including
brigatinib, cabozantinib, ceritinib, DS-6051b, entrectinib, repotrectinib, and taletrectinib [43]. In fact,
both repotrectinib and taletrectinib hold a great deal of promise in being the next generation of ROS1
inhibitors for the treatment of NSCLC. Repotrectinib is a novel next generation tyrosine kinase inhibitor
with high potency and selectivity against treatment-naïve and ROS1 resistance mutant NSCLC [44].
In addition, repotrectinib is able to penetrate the BBB [44]. Altogether, this suggests that it may be
used as a first-line treatment or after treatment with other drugs that no longer yield a response [44].
Similarly, taletrectinib was shown to have a high safety profile and exerted activity in patients with
crizotinib-refractory ROS1-positive NSCLC [45]. In addition to overcoming the challenges that current
ROS1 inhibitors face, studies need to be conducted to determine whether these drugs can be used as a
first-line treatment or whether they are better used after treatment with crizotinib. The generation
of novel drugs with strong safety profiles and ability to overcome resistance mutations will increase
treatment options for ROS1-positive NSCLC patients [43].

5. BRAF and MEK Inhibitors

BRAF is a serine/threonine kinase belonging to the RAS/RAF/MEK/ERK pathway and is involved
in regulating cell proliferation and growth [46]. Mutations in BRAF account for 3.5–5% of NSCLCs and
are known to significantly decrease disease-free survival as well as overall survival [46]. Lung cancers



Pharmaceuticals 2020, 13, 374 6 of 14

with mutant BRAF are known to be more aggressive and difficult to treat due to their ability to resist
chemotherapy treatment. Half of the mutations found in the BRAF gene are the V600E point mutation.
Mutations in BRAF are more frequent in women and these mutations are commonly found in former
or current smokers [46]. Various tyrosine kinase inhibitors have been generated to target this rare but
difficult oncogene in NSCLC.

An integrative analysis of BRAF nonV600E mutations was performed using genomic profiles of
BRAF-mutant NSCLCs and a total of 305 unique BRAF mutations were identified [47]. The majority of the
mutations were missense mutations. Some of these mutations responded to MEK and BRAF inhibitors,
whereas others did not show a significant response. This study underlines the importance of recognizing
the specific BRAF mutations present in NSCLC cases to identify an optimal treatment regimen.

Studies have shown a trend supporting that patients with BRAF V600E mutations are less likely to
respond to platinum-based chemotherapy treatment compared to NSCLC patients with BRAF non-V600E
mutations [46,48]. Dabrafenib is an oral selective inhibitor against BRAF. A phase 2, multicenter,
nonrandomized, open-label study of untreated and previously treated stage IV, metastatic NSCLC
patients harboring BRAF V600E mutations were treated with dabrafenib to determine its therapeutic
activity [49]. In this trial, patients who were previously administered less therapy better responded to
dabrafenib compared with patients who were previously administered multiple lines of therapy [49].
Some serious adverse events were observed using this drug but it showed promise for the treatment of
BRAF V600E mutant NSCLCs since patients showed a 33% response rate.

Trametinib is a MEK1/MEK2 inhibitor with anticancer activity. A clinical trial was performed
combining trametinib with dabrafenib to determine the anticancer effects of simultaneously
administering BRAF and MEK inhibitors. A total of 36 out of 57 patients (63%) exhibited a response to
the drug combination [50]. This suggested that the combination of trametinib with dabrafenib was
a new strategy to achieve high response rates and a manageable safety profile [50]. The activity of
the combination appeared to be greater than administration of dabrafenib alone as a monotherapy.
Another study was performed to determine how the combination of trametinib and dabrafenib
influenced BRAF V600E mutant NSCLC patients who were previously untreated [51]. Patients in this
clinical trial were given a combination of trametinib and dabrafenib as a first-line treatment. The overall
response rate was 64%, where 6% of patients achieved a complete response and 58% achieved a partial
response [51]. This trial concluded that the combined therapy showed strong anti-tumor activity and a
strong safety profile in BRAF V600E mutant NSCLC patients who have not received treatment prior to
this study.

Vemurafenib is another BRAF inhibitor thatrecently showed a response rate of 42% in a cohort
of NSCLC patients with BRAF V600E mutations [52]. Another study was performed to determine
whether vemurafenib was effective in both NSCLC patients with BRAF V600E mutations and NSCLC
patients with BRAF nonV600E mutations. Conclusions from this study revealed that vemurafenib
was only effective in treating NSCLC patients with BRAF V600E mutations and was not influential
in treating NSCLC patients with BRAF nonV600E mutations. This study suggested that this drug
could only be used in cases where BRAF showed the V600E point mutation and that routine biomarker
screener should contain an analysis for BRAF mutations [53].

Despite the promising results supporting these BRAF inhibitors in the fight against NSCLC, the
challenge of resistance still persists. One recent study investigated resistance mutations forming as a
result of prolonged treatment with trametinib, dabrafenib, and vemurafenib [54]. MEK, KRAS, NRAS,
and PTEN mutations were identified as molecular hits in patients treated with BRAF inhibitors and
were uncovered as potentially new molecular events promoting resistance. These data supported that
the MAPK pathway is reoccurring in BRAF mutant treated NSCLCs and these findings should guide
the development of novel strategies around tumor resistance. Another study focused on how the
development of epithelial-mesenchymal transition (EMT) results in a fluid landscape that may explain
rapid disease progression and the lack of response to treatment [55]. While new studies continue to
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uncover the mechanisms behind resistance, new investigational drugs need to be uncovered that can
be used in combination with current treatments or as second or third-line strategies

Lifirafenib is an investigational, reversible BRAF V600E inhibitor as well as an inhibitor of A-RAF,
B-RAF, C-RAF, and EGFR that was studied in a phase I, dose-escalation trial investigating the safety and
efficacy of the drug in BRAF mutant as well as RAS mutant sold tumor patients [56]. Responses were
observed in most patients tested and future studies may be performed identifying the effectiveness of
lifirafenib compared with first generation BRAF therapies and how this drug works in combination
with other BRAF or RAS inhibitors.

Additional, ongoing studies are being performed to investigate how some of these BRAF inhibitors
work in combination with other therapies to promote a synergistic, anti-tumor effect in NSCLC patients.
One study currently being performed by MD Anderson Cancer Center includes a combination of
trametinib and pembrolizumab, an immunotherapy, to identify the response in NSCLC patients with
recurrent, locally advanced or metastatic disease. This study is estimated to be completed Fall of 2020
(Clinicaltrials.gov identifier: NCT03225664). Other inhibitors targeting the RAS/RAF/MEK/ERK axis
are also being investigated as potential therapies to treat NSCLCs with BRAF mutations. A phase I
study of the RAF inhibitor LXH254 is currently being performed in patients with advanced solid tumors
that have alterations in the MAPK pathway (Clinicaltrial.gov Identifier: NCT02607813). This study is
aimed to be completed in Spring of 2021.

Since BRAF is a component of the MAPK pathway, it is important to note that there are other
therapeutics being generated to target other aspects of this pathway, such as inhibitors against the
proto-oncogene MET that encodes for the hepatocyte growth factor receptor and plays a major role in
embryogenesis [57]. Various drugs are being tested for clinical activity against MET-positive NSCLCs
since it is overexpressed in approximately 20% of NSCLCs and correlates with prognosis. For one,
crizotinib has shown strong activity in 30–40% of MET amplified or mutated NSCLC cases [58].
Some studies show a strong response to crizotinib while others also show strong survival benefit [59].
In addition, crizotinib appears to be effective in the treatment of EGFR-mutated NSCLCs consisting
of MET amplifications, which contribute acquired resistance in about 10% of EGFR-mutated NSCLC
cases [60–62].

The MET inhibitor capmatinib was shown to be highly selective and potent [63]. In addition
to showing an increased survival benefit, it also exerts activity on the central nervous system and
has been shown to be a promising therapeutic choice after the failure of crizotinib [64]. Capmatinib
has also shown to be effective in the treatment of NSCLC patients harboring MET Exon 14 skipping
mutations that occur in 4% of all NSCLC cases, as well as patients containing MET amplifications [63].
Another MET inhibitor known as tepotinib has been approved by the FDA for advanced NSCLCs
containing MET mutations. This inhibitor is highly potent, selective and exerts central nervous
system-penetrant activity [65]. It also showed a partial response in half of advanced NSCLC patients
containing MET Exon 14 skipping mutations [65]. Tepotinib along with the EGFR inhibitor osimertinib
are be tested in combination to determine whether these two drugs have synergistic anti-tumor activity
on MET-positive NSCLCs and the study is estimated to be completed in 2023 (Clinicaltrials.gov
identifier: NCT03940703). Other promising inhibitors against MET-positive NSCLCs also being
investigated in clinical trials include the experimental small molecular MET inhibitor savolitinib and
the small molecular MET inhibitor cabozantinib. In a clinical trial expected to be completed next year,
savolitinib is being administered to locally advanced or metastatic NSCLC patients with MET Exon
14 mutations (Clinicaltrials.gov identifier: NCT02897479). A multicenter, single arm, phase II study
planned to be completed Fall of 2020 is evaluating the efficacy of cabozantinib treatment in a NSCLC
cohort harboring MET amplifications or mutations (Clinicaltrials.gov identifier: NCT03911193).

6. Additional Oncogenic Targets

In recent years, new oncogenic drivers of NSCLC that can be targeted for therapeutic purposes
have been uncovered. Some of these novel drivers include neurotrophic receptor tyrosine kinases
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(NRTKs), neuregulin-1 (NRG1) gene fusions and rearranged during transfection (RET) gene fusions
that are commonly observed in NSCLC cases. First, the functions of these genes will be briefly
described. Then, a quick overview of some promising therapies targeting these drivers in NSCLC will
be summarized.

NRTKs are typically involved in neural development and are found to be deregulated in various
solid tumors, including NSCLCs. The frequency of NRTK fusions in NSCLCs is relatively low (less than
0.5%) [57]. When NRTKs fuse with other genes, they become constitutively active and stimulate various
signaling cascades, including the MAPK and PI3K pathways. In 2018 and 2019, both larotrectinib and
entrectinib received approval for the treatment of NRTK-fusion positive cancers. Larotrectinib exerted
marked and durable anti-tumor activity in most TRK-positive cancers despite differences in age or
tumor type [66]. Similarly, entrectinib was found to have a durable and clinically meaningful response
in TRK-positive solid tumors as well as a nicely tolerated safety profile [67].

NRG1 is a ligand member of the EGFR family that has been shown to be genetically rearranged
in about 0.5% of NSCLCs [57]. When rearranged and fused to specific fusion partner genes,
the HER2/HER3 signaling cascades and PI3K/AKT/mTOR as well as RAS/MAPK signaling pathways
are stimulated [57]. Inhibitors against HER2/HER3 are currently being tested to tackle NRG1-positive
NSCLCs. The irreversible pan-HER inhibitor afatinib has shown to have clinical activity in NSCLC
patients with NRG1-positive tumors [68]. Clinical trials are currently being performed to continue
investigating the potential of afatinib in tackling NRG1-positive NSCLCs (Clinicaltrials.gov identifier:
NCT02925234). Additionally, the HER3 inhibitor GSK2849330 has also shown a durable response and
greater activity when compared with afatinib in patients with NRG1-positive NSCLC cancer [57,69].

RET is a transmembrane receptor tyrosine kinase with oncogenic characteristics and the ability
to signal the PI3K/AKT, JNK, and RAS/MAPK pathways [57]. If genetic rearrangements occur in
RET, these pathways are continually activated and lead to tumorigenesis. Genetic rearrangements
and translocations in RET have been identified in about 1% of all lung cancers [70]. Interestingly,
the incidence of RET rearrangements is higher in never smokers, women and those with poorly
differentiated tumors [57].

Some studies are investigating how the use of drugs originally generated for other tyrosine
kinase inhibitors can be repurposed to tackle RET-positive NSCLCs. In one study, patients with
RET-positive NSCLC were recruited from 29 different centers around the world and they received one
or more different tyrosine kinase therapies [71]. This retrospective study found that already available
tyrosine kinase inhibitors only showed limited effectiveness in RET-rearranged NSCLC patients. Thus,
novel therapies are needed to tackle this subpopulation of NSCLC cases.

Fortunately, the selective RET inhibitors selpercatinib and pralsetinib have demonstrated
more substantial anti-tumor activity in NSCLC patients harboring RET rearrangements [57].
Selpercatinib showed durable efficacy, intracranial activity, and less toxic effects in RET-fusion positive
NSCLC patients [72]. Similarly, pralsetinib demonstrated durable, potent, and broad anti-tumor
activity in NSCLC patients with advanced RET-fusions (Clinicaltrials.gov identifier: NCT03037385).
Future studies and clinical trials will shed light onto what drug is most optimal for the treatment of
RET-rearranged NSCLC cases and what combinations of other tyrosine kinases or chemotherapies
should be used to ensure that a patient achieves an optimal response.

7. Conclusions and Future Directions

When specific oncogenes are mutated or rearranged, they can contribute to the formation or
progression of NSCLC. Over the last decade, much progress has been made in generating novel
therapeutics to target some of these oncogenes. This review provides a summary of targeted therapies
that were generated, tested, and are either still currently used for the treatment of NSCLC or set aside
to make room for better drugs with greater potency, safety, and activity against both the primary
and metastasized tumors. Some of these drugs have been recently in clinical trials (Table 1) and
are being tested as sole or combination therapies for the treatment of NSCLC. As briefly mentioned,
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it is important to emphasize that immunotherapies (including checkpoint inhibitors and vaccines)
as well as angiogenesis therapies (VEGF therapies) are also at the forefront of NSCLC treatment.
There are currently two immunotherapies used to treat NSCLC that target the cytotoxic T-lymphocyte
antigen-4 protein (CTLA-4), including ipilimumab and tremelimumab. In addition, the checkpoint
PD-1 inhibitors nivolumab and pembrolizumab as well as the PD-L1 inhibitor atezolizumab are used
as second-line treatments for NSCLC [73]. In addition, there are a variety of studies interrogating
the beneficial effects of combining immunotherapies with other inhibitors, such as gefitinib [74] and
cyclo-oxygenase inhibitors [75]. However, here we focus on targeted therapies since the road for these
therapies has been long and much improvement has been made in their development over the years.
It will be interesting to observe how systemic therapy continues to alter based on the identification and
understanding of specific biomarkers over the next few years [76].

Table 1. Summary of selected targeted therapies that have been in clinical trials recently for the
treatment of NSCLC.

Trial Identifier Target(s) Trial Title

NCT03052608 ALK, ROS1 A Study Of Lorlatinib Versus Crizotinib In First Line Treatment Of
Patients With ALK-Positive NSCLC

NCT03779191 ALK Alectinib in Combination With Bevacizumab in ALK
Positive NSCLC

NCT03122717 EGFR Osimertinib and Gefitinib in EGFR Inhibitor naïve Advanced
EGFR Mutant Lung Cancer

NCT02411448 VEGFR2, EGFR
A Study of Ramucirumab (LY3009806) in Combination With

Erlotinib in Previously Untreated Participants With EGFR
Mutation-Positive Metastatic NSCLC (RELAY)

NCT00585195 MET, ALK, ROS1
A Study Of Oral PF-02341066, A C-Met/Hepatocyte Growth Factor

Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer
(PROFILE 1001)

NCT03225664 MEK
Trametinib and Pembrolizumab in Treating Patients With
Recurrent Non-small Cell Lung Cancer That Is Metastatic,

Unresectable, or Locally Advanced

NCT02607813 RAF Phase I Study of LXH254 in Patients With Advanced Solid Tumors
Harboring MAPK Pathway Alterations

NCT03940703 MET
A Study of Tepotinib Plus Osimertinib in Osimertinib Relapsed

Mesenchymal-epithelial Transition Factor (MET) Amplified
Non-small Cell Lung Cancer (NSCLC) (INSIGHT 2)

NCT02897479 MET A Phase II Study of HMPL-504 in Lung Sarcomatoid Carcinoma
and Other Non-small Cell Lung Cancer

NCT03911193 MET CABozantinib in Non-Small Cell Lung Cancer (NSCLC) Patients
With MET Deregulation (CABinMET)

NCT02925234 multiple, NRG1 The Drug Rediscovery Protocol (DRUP Trial) (DRUP)

NCT03037385 RET
Phase 1/2 Study of the Highly-selective RET Inhibitor, Pralsetinib
(BLU-667), in Patients With Thyroid Cancer, Non-Small Cell Lung

Cancer, and Other Advanced Solid Tumors (ARROW)

Even though several candidate oncogenes targeted to treat NSCLC have been uncovered and
extensively studied, we are still in search of others that can generate stronger therapeutic responses.
Similar to a dart board, we have been throwing darts to tackle targets already uncovered by developing
newer and better therapies against those specific target genes. However, identifying additional targets,
perhaps unknown oncogenes that, if targeted, will provide a strong therapeutic response, will bring us
many steps closer to treating this disease. Many of the treatment strategies discussed in this article are
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very promising, indicating that we are on the right path to unlocking the best therapies that can be
used in the future.

Author Contributions: L.M.M. and J.R. wrote the review. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brambilla, E.; Gazdar, A. Pathogenesis of Lung Cancer Signalling Pathways: Roadmap for Therapies.
Eur. Respir. J. 2009, 33, 1485–1497. [CrossRef] [PubMed]

2. Yuan, M.; Huang, L.; Chen, J.; Wu, J.; Xu, Q. The Emerging Treatment Landscape of Targeted Therapy in
Non−Small−Cell Lung Cancer. Signal. Transduct Target. Ther. 2019, 4, 61. [CrossRef] [PubMed]

3. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [CrossRef]
[PubMed]

4. Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non−Small Cell Lung Cancer: Epidemiology,
Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [CrossRef]

5. Berghmans, T.; Dingemans., A.-M.; Hendriks, L.E.L.; Cadranel, J. Immunotherapy for Nonsmall Cell Lung
Cancer: A New Therapeutic Algorithm. Eur. Respir. J. 2020, 55, 1901907. [CrossRef]

6. Karachaliou, N.; Gonzalez-Cao, M.; Sosa, A.; Berenguer, J.; Bracht, J.W.P.; Ito, M.; Rosell, R. The Combination
of Checkpoint Immunotherapy and Targeted Therapy in Cancer. Ann. Transl. Med. 2017, 5, 388. [CrossRef]

7. Kramer, M.; Ribeiro, D.; Arsenian-Henriksson, M.; Deller, T.; Rohrer, H. Proliferation and Survival of
Embryonic Sympathetic Neuroblasts by MYCN and Activated ALK Signaling. J. Neurosci. 2016, 36,
10425–10439. [CrossRef] [PubMed]

8. Janoueix−Lerosey, I.; Lopez-Delisle, L.; Delattre, O.; Rohrer, H. The ALK Receptor in Sympathetic Neuron
Development and Neuroblastoma. Cell Tissue Res. 2018, 372, 325–337. [CrossRef]

9. Golding, B.; Luu, A.; Jones, R.; Viloria-Petit, A.M. The Function and Therapeutic Targeting of Anaplastic
Lymphoma Kinase (ALK) in Non−Small Cell Lung Cancer (NSCLC). Mol. Cancer 2018, 17, 1–15. [CrossRef]
[PubMed]

10. Sabir, S.R.; Yeoh, S.; Jackson, G.; Bayliss, R. EML4-ALK Variants: Biological and Molecular Properties, and the
Implications for Patients. Cancers 2017, 9, 118. [CrossRef]

11. Lin, J.J.; Riely, G.J.; Shaw, A.T. Targeting ALK: Precision Medicine Takes on Drug Resistance. Cancer Discov.
2017, 7, 137–155. [CrossRef]

12. Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.;
Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non-Small-Cell Lung Cancer. N. Engl. J. Med.
2014, 371, 1963–1971. [CrossRef]

13. Hou, H.; Sun, D.; Liu, K.; Jiang, M.; Liu, D.; Zhu, J.; Zhou, N.; Cong, J.; Zhang, X. The Safety and Serious
Adverse Events of Approved ALK Inhibitors in Malignancies: A Meta-Analysis. Cancer Manag. Res. 2019,
11, 4109–4118. [CrossRef]

14. Noe, J.; Lovejoy, A.; Ou, S.I.; Yaung, S.J.; Bordogna, W.; Klass, D.M.; Cummings, C.A.; Shaw, A.T. ALK Mutation
Status Before and After Alectinib Treatment in Locally Advanced or Metastatic ALK-Positive NSCLC: Pooled
Analysis of Two Prospective Trials. J. Thorac. Oncol. 2020, 15, 601–608. [CrossRef]

15. Reed, M.; Rosales, A.S.; Chioda, M.D.; Parker, L.; Devgan, G.; Kettle, J. Consensus Recommendations
for Management and Counseling of Adverse Events Associated with Lorlatinib: A Guide for Healthcare
Practitioners. Adv. Ther. 2020, 37, 3019–3030. [CrossRef] [PubMed]

16. Hu, J.; Zhang, B.; Yao, F.; Fu, Y.; Chen, D.; Li, D.; Du, N.; Lizaso, A.; Song, J.; Zhang, L.; et al. Acquired Multiple
Mutations ALK I1171N, L1196M and G1202R Mediate Lorlatinib Resistance in EML4−ALK−Rearranged
Malignant Pleural Mesothelioma: A Case Report. Ther. Adv. Respir. Dis. 2020, 14, 1753466620935770.
[CrossRef] [PubMed]

17. Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.; Han, J.Y.; Lee, J.S.; Hochmair, M.J.; Li, J.Y.; Chang, G.C.;
Lee, J.Y.; et al. Brigatinib Versus Crizotinib in ALK-Positive Non−Small−Cell Lung Cancer. N. Engl. J. Med.
2018, 379, 2027–2039. [CrossRef]

http://dx.doi.org/10.1183/09031936.00014009
http://www.ncbi.nlm.nih.gov/pubmed/19483050
http://dx.doi.org/10.1038/s41392-019-0099-9
http://www.ncbi.nlm.nih.gov/pubmed/31871778
http://dx.doi.org/10.3322/caac.21590
http://www.ncbi.nlm.nih.gov/pubmed/31912902
http://dx.doi.org/10.1016/S0025-6196(11)60735-0
http://dx.doi.org/10.1183/13993003.01907-2019
http://dx.doi.org/10.21037/atm.2017.06.47
http://dx.doi.org/10.1523/JNEUROSCI.0183-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27707976
http://dx.doi.org/10.1007/s00441-017-2784-8
http://dx.doi.org/10.1186/s12943-018-0810-4
http://www.ncbi.nlm.nih.gov/pubmed/29455675
http://dx.doi.org/10.3390/cancers9090118
http://dx.doi.org/10.1158/2159-8290.CD-16-1123
http://dx.doi.org/10.1056/NEJMoa1406766
http://dx.doi.org/10.2147/CMAR.S190098
http://dx.doi.org/10.1016/j.jtho.2019.10.015
http://dx.doi.org/10.1007/s12325-020-01365-3
http://www.ncbi.nlm.nih.gov/pubmed/32399810
http://dx.doi.org/10.1177/1753466620935770
http://www.ncbi.nlm.nih.gov/pubmed/32600123
http://dx.doi.org/10.1056/NEJMoa1810171


Pharmaceuticals 2020, 13, 374 11 of 14

18. Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.;
Garcia Campelo, M.R.; Kim, D.W.; et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor−Naive
ALK−Positive Non−Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA−1L Trial.
J. Clin. Oncol. 2020, 38. [CrossRef]

19. Yang, Y.; Zhou, J.; Zhou, J.; Feng, J.; Zhuang, W.; Chen, J.; Zhao, J.; Zhong, W.; Zhao, Y.; Zhang, Y.; et al. Efficacy,
Safety, and Biomarker Analysis of Ensartinib in Crizotinib−Resistant, ALK−Positive Non−Small−Cell Lung
Cancer: A Multicentre, Phase 2 Trial. Lancet Respir. Med. 2020, 8, 45–53. [CrossRef]

20. Horn, L.; Infante, J.R.; Reckamp, K.L.; Blumenschein, G.R.; Leal, T.A.; Waqar, S.N.; Gitlitz, B.J.; Sanborn, R.E.;
Whisenant, J.G.; Du, L.; et al. Ensartinib (X−396) in ALK−Positive Non-Small Cell Lung Cancer: Results from
a First−in−Human Phase I/II, Multicenter Study. Clin. Cancer Res. 2018, 24, 2771–2779. [CrossRef] [PubMed]

21. Vagiannis, D.; Novotna, E.; Skarka, A.; Kammerer, S.; Kupper, J.H.; Chen, S.; Guo, L.; Staud, F.; Hofman, J.
Ensartinib (X−396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2
Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers 2020, 12, 813. [CrossRef]

22. Lin, J.J.; Schoenfeld, A.J.; Zhu, V.W.; Yeap, B.Y.; Chin, E.; Rooney, M.; Plodkowski, A.J.; Digumarthy, S.R.;
Dagogo-Jack, I.; Gainoir, J.F.; et al. Efficacy of Platinum/Pemetrexed Combination Chemotherapy in
ALK−Positive NSCLC Refractory to Second−Generation ALK Inhibitors. J. Thorac. Oncol. 2020, 15, 258–265.
[CrossRef]

23. Prabhakar, C.N. Epidermal Growth Factor Receptor in Non−Small Cell Lung Cancer. Transl. Lung Cancer Res.
2015, 4, 110–118.

24. Al Olayan, A.; Al Hussaini, H.; Jazieh, A.R. The Roles of Epidermal Growth Factor Receptor (EGFR) Inhibitors
in the Management of Lung Cancer. J. Infect. Public Health 2012, 5 (Suppl. S1), S50–S60. [CrossRef]

25. Shigematsu, H.; Lin, L.; Takahashi, T.; Nomura, M.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; Lee, H.; Toyooka, S.;
Shimizu, N.; et al. Clinical and Biological Features Associated with Epidermal Growth Factor Receptor Gene
Mutations in Lung Cancers. J. Natl. Cancer Inst. 2005, 97, 339–346. [CrossRef]

26. Rolfo, C.; Russo, A. HER2 Mutations in Non−Small Cell Lung Cancer: A Herculean Effort to Hit the Target.
Cancer Discov. 2020, 10, 643–645. [CrossRef]

27. Grigoriu, B.; Berghmans, T.; Meert, A.P. Management of EGFR Mutated Nonsmall Cell Lung Carcinoma
Patients. Eur. Respir. J. 2015, 45, 1132–1141. [CrossRef]

28. Takeda, M.; Nakagawa, K. First- and Second−Generation EGFR-TKIs Are All Replaced to Osimertinib in
Chemo−Naive EGFR Mutation−Positive Non−Small Cell Lung Cancer? Int. J. Mol. Sci. 2019, 20, 146.
[CrossRef] [PubMed]

29. Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.;
Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced
Non−Small−Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [CrossRef] [PubMed]

30. Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.;
Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated,
EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [CrossRef]

31. Cho, J.H.; Lim, S.H.; An, H.J.; Kim, K.H.; Park, K.U.; Kang, E.J.; Choi, Y.H.; Ahn, M.S.; Lee, M.H.;
Sun, J.M.; et al. Osimertinib for Patients with Non−Small−Cell Lung Cancer Harboring Uncommon EGFR
Mutations: A Multicenter, Open−Label., Phase II Trial (KCSG−LU15−09). J. Clin. Oncol. 2020, 38, 488–495.
[CrossRef]

32. Wang, N.; Zhang, Y.; Mi, Y.; Deng, H.; Chen, G.; Tang, Z.; Mao, J.; Cui, S.; Zhang, Y.; Wang, L. Osimertinib for
EGFR−Mutant Lung Cancer with Central Nervous System Metastases: A Meta−Analysis and Systematic
Review. Ann. Palliat. Med. 2020, 9, 3038–3047. [CrossRef] [PubMed]

33. Hsu, C.C.; Liao, B.C.; Liao, W.Y.; Markovets, A.; Stetson, D.; Thress, K.; Yang, J.C. Exon 16−Skipping HER2
as a Novel Mechanism of Osimertinib Resistance in EGFR L858R/T790M−Positive Non−Small Cell Lung
Cancer. J. Thorac. Oncol. 2020, 15, 50–61. [CrossRef]

34. Zhao, J.; Lin, G.; Zhuo, M.; Fan, Z.; Miao, L.; Chen, L.; Zeng, A.; Yin, R.; Ou, Y.; Shi, Z.; et al. Next-Generation
Sequencing Based Mutation Profiling Reveals Heterogeneity of Clinical Response and Resistance to
Osimertinib. Lung Cancer 2020, 141, 114–118. [CrossRef]

http://dx.doi.org/10.1200/JCO.20.00505
http://dx.doi.org/10.1016/S2213-2600(19)30252-8
http://dx.doi.org/10.1158/1078-0432.CCR-17-2398
http://www.ncbi.nlm.nih.gov/pubmed/29563138
http://dx.doi.org/10.3390/cancers12040813
http://dx.doi.org/10.1016/j.jtho.2019.10.014
http://dx.doi.org/10.1016/j.jiph.2012.09.004
http://dx.doi.org/10.1093/jnci/dji055
http://dx.doi.org/10.1158/2159-8290.CD-20-0225
http://dx.doi.org/10.1183/09031936.00156614
http://dx.doi.org/10.3390/ijms20010146
http://www.ncbi.nlm.nih.gov/pubmed/30609789
http://dx.doi.org/10.1056/NEJMoa1713137
http://www.ncbi.nlm.nih.gov/pubmed/29151359
http://dx.doi.org/10.1056/NEJMoa1913662
http://dx.doi.org/10.1200/JCO.19.00931
http://dx.doi.org/10.21037/apm-20-605
http://www.ncbi.nlm.nih.gov/pubmed/32954743
http://dx.doi.org/10.1016/j.jtho.2019.09.006
http://dx.doi.org/10.1016/j.lungcan.2019.10.021


Pharmaceuticals 2020, 13, 374 12 of 14

35. Seto, T.; Kato, T.; Nishio, M.; Goto, K.; Atagi, S.; Hosomi, Y.; Yamamoto, N.; Hida, T.; Maemondo, M.;
Nakagawa, K.; et al. Erlotinib Alone or with Bevacizumab as First-Line Therapy in Patients with Advanced
Non−Squamous Non−Small−Cell Lung Cancer Harbouring EGFR Mutations (JO25567): An. Open−Label,
Randomised, Multicentre, Phase 2 Study. Lancet Oncol. 2014, 15, 1236–1244. [CrossRef]

36. Ichihara, E.; Hotta, K.; Nogami, N.; Kuyama, S.; Kishino, D.; Fujii, M.; Kozuki, T.; Tabata, M.; Harada, D.;
Chikamori, K.; et al. Phase II Trial of Gefitinib in Combination with Bevacizumab as First−Line Therapy for
Advanced Non−Small Cell Lung Cancer with Activating EGFR Gene Mutations: The Okayama Lung Cancer
Study Group Trial 1001. J. Thorac. Oncol. 2015, 10, 486–491. [CrossRef]

37. Zheng, B.; Wang, X.; Wei, M.; Wang, Q.; Li, J.; Bi, L.; Deng, X.; Wang, Z. First−Line Cetuximab versus
Bevacizumab for RAS and BRAF Wild−Type Metastatic Colorectal Cancer: A Systematic Review and
Meta−Analysis. BMC Cancer 2019, 19, 280. [CrossRef] [PubMed]

38. Little, A.C.; Hristova, M.; van Lith, L.; Schiffers, C.; Dustin, C.M.; Habibovic, A.; Danyal, K.; Heppner, D.E.;
Lin, M.J.; van der Velden, J.; et al. Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization
and Pathogenicity in Lung Cancer. Sci. Rep. 2019, 9, 4844. [CrossRef] [PubMed]

39. Bebb, D.G.; Agulnik, J.; Albadine, R.; Banerji, S.; Bigras, G.; Butts, C.; Cutz, J.C.; Desmeules, P.; Ionescu, D.N.;
Leighl, N.B.; et al. Crizotinib Inhibition of ROS1−Positive Tumours in Advanced Non−Small−Cell Lung
Cancer: A Canadian Perspective. Curr. Oncol. 2019, 26, e551–e557. [CrossRef]

40. Shaw, A.T.; Riely, G.J.; Bang, Y.J.; Kim, D.W.; Camidge, D.R.; Solomon, B.J.; Varella-Garcia, M.; Iafrate, A.J.;
Shapiro, G.I.; Usari, T.; et al. Crizotinib in ROS1−Rearranged Advanced Non-Small-Cell Lung Cancer
(NSCLC): Updated Results, Including Overall Survival, from PROFILE 1001. Ann. Oncol. 2019, 30, 1121–1126.
[CrossRef]

41. Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.C.; Bauer, T.M.; Clancy, J.S.;
et al. Lorlatinib in Advanced ROS1−Positive Non−Small−Cell Lung Cancer: A Multicentre, Open−Label,
Single−Arm, Phase 1−2 Trial. Lancet Oncol. 2019, 20, 1691–1701. [CrossRef]

42. Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Braud, F.; Rolfo, C.; Ahn, M.J.;
Wolf, J.; et al. Entrectinib in ROS1 Fusion−Positive Non−Small−Cell Lung Cancer: Integrated Analysis of
Three Phase 1−2 trials. Lancet Oncol. 2020, 21, 261–270. [CrossRef]

43. Facchinetti, F.; Friboulet, L. Profile of Entrectinib and its Potential in the Treatment of ROS1−Positive NSCLC:
Evidence to Date. Lung Cancer. 2019, 10, 87–94. [CrossRef]

44. Yun, M.R.; Kim, D.H.; Kim, S.Y.; Joo, H.S.; Lee, Y.W.; Choi, H.M.; Park, C.W.; Heo, S.G.;
Kang, H.N.; Lee, S.S.; et al. Repotrectinib Exhibits Potent Antitumor Activity in Treatment−Naive and
Solvent−Front−Mutant ROS1−Rearranged Non−Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26,
3287–3295. [CrossRef]

45. Papadopoulos, K.P.; Borazanci, E.; Shaw, A.T.; Katayama, R.; Shimizu, Y.; Zhu, V.W.; Sun, T.Y.; Wakelee, H.A.;
Madison, R.; Schrock, A.B.; et al. U.S. Phase I First-in-human Study of Taletrectinib (DS-6051b/AB−106),
a ROS1/TRK Inhibitor, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020, 26, 4785–4794.
[CrossRef] [PubMed]

46. Alvarez, J.G.B.; Otterson, G.A. Agents to Treat BRAF−Mutant Lung Cancer. Drugs Context 2019, 8, 212566.
47. Negrao, M.V.; Raymond, V.M.; Lanman, R.B.; Robichaux, J.P.; He, J.; Nilsson, M.B.; Ng, P.K.S.; Amador, B.E.;

Roarty, E.B.; Nagy, R.J.; et al. Molecular Landscape of BRAF−Mutant NSCLC Reveals an Association Between
Clonality and Driver Mutations and Identifies Targetable Non−V600 Driver Mutations. J. Thorac. Oncol.
2020, 15, 1611–1623. [CrossRef]

48. Cardarella, S.; Ogino, A.; Nishino, M.; Butaney, M.; Shen, J.; Lydon, C.; Yeap, B.Y.; Sholl, L.M.; Johnson, B.E.;
Janne, P.A. Clinical, Pathologic, and Biologic Features Associated with BRAF Mutations in Non−Small Cell
Lung Cancer. Clin. Cancer Res. 2013, 19, 4532–4540. [CrossRef] [PubMed]

49. Planchard, D.; Kim, T.M.; Mazieres, J.; Quoix, E.; Riely, G.; Barlesi, F.; Souquet, P.J.; Smit, E.F.; Groen, H.J.;
Kelly, R.J.; et al. Dabrafenib in Patients with BRAF(V600E)−Positive Advanced Non−Small−Cell Lung
Cancer: A Single−Arm, Multicentre, Open−Label, Phase 2 Trial. Lancet Oncol. 2016, 17, 642–650. [CrossRef]

50. Planchard, D.; Besse, B.; Groen, J.J.M.; Souquet, P.J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, J.;
Novello, S.; et al. Dabrafenib Plus Trametinib in Patients with Previously Treated BRAF(V600E)−Mutant
Metastatic Non−Small Cell Lung Cancer: An. Open−Label, Multicentre Phase 2 Trial. Lancet Oncol. 2016, 17,
984–993. [CrossRef]

http://dx.doi.org/10.1016/S1470-2045(14)70381-X
http://dx.doi.org/10.1097/JTO.0000000000000434
http://dx.doi.org/10.1186/s12885-019-5481-z
http://www.ncbi.nlm.nih.gov/pubmed/30922269
http://dx.doi.org/10.1038/s41598-019-41395-8
http://www.ncbi.nlm.nih.gov/pubmed/30890751
http://dx.doi.org/10.3747/co.26.5137
http://dx.doi.org/10.1093/annonc/mdz131
http://dx.doi.org/10.1016/S1470-2045(19)30655-2
http://dx.doi.org/10.1016/S1470-2045(19)30690-4
http://dx.doi.org/10.2147/LCTT.S190786
http://dx.doi.org/10.1158/1078-0432.CCR-19-2777
http://dx.doi.org/10.1158/1078-0432.CCR-20-1630
http://www.ncbi.nlm.nih.gov/pubmed/32591465
http://dx.doi.org/10.1016/j.jtho.2020.05.021
http://dx.doi.org/10.1158/1078-0432.CCR-13-0657
http://www.ncbi.nlm.nih.gov/pubmed/23833300
http://dx.doi.org/10.1016/S1470-2045(16)00077-2
http://dx.doi.org/10.1016/S1470-2045(16)30146-2


Pharmaceuticals 2020, 13, 374 13 of 14

51. Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, A.; Giannone, V.; D’Amelio, A.M., Jr.;
Zhang, P.; Mookerjee, B.; et al. Dabrafenib Plus Trametinib in Patients with Previously Untreated
BRAF(V600E)−Mutant Metastatic Non−Small−Cell Lung Cancer: An. Open−Label, Phase 2 Trial.
Lancet Oncol. 2017, 18, 1307–1316. [CrossRef]

52. Subbiah, V.; Puzanov, I.; Blay, J.Y.; Chau, I.; Lockhart, A.C.; Raje, N.S.; Wolf, J.; Baselga, J.; Meric-Bernstam, F.;
Roszik, J.; et al. Pan−Cancer Efficacy of Vemurafenib in BRAF(V600)−Mutant Non−Melanoma Cancers.
Cancer Discov. 2020, 10, 657–663. [CrossRef]

53. Mazieres, J.; Cropet, C.; Montane, L.; Barlesi, F.; Souquet, P.J.; Quantin, X.; Dubos-Arvis, C.; Otto, J.;
Favier, L.; Avrillon, V.; et al. Vemurafenib in Non−Small−Cell Lung Cancer Patients with BRAF(V600) and
BRAF(NonV600) Mutations. Ann. Oncol. 2020, 31, 289–294. [CrossRef]

54. Facchinetti, F.; Lacroix, L.; Mezquita, L.; Scoazec, J.Y.; Loriot, Y.; Tselikas, L.; Gazzah, A.; Rouleau, E.; Adam, J.;
Michiels, S.; et al. Molecular Mechanisms of Resistance to BRAF and MEK Inhibitors in BRAF(V600E)
Non−Small Cell Lung Cancer. Eur. J. Cancer 2020, 132, 211–223. [CrossRef] [PubMed]

55. Urbanska, E.M.; Sorensen, J.B.; Melchior, L.C.; Costa, J.C.; Santoni-Rugiu, E. Changing ALK−TKI−Resistance
Mechanisms in Rebiopsies of ALK−Rearranged NSCLC: ALK− and BRAF−Mutations Followed by
Epithelial−Mesenchymal Transition. Int. J. Mol. Sci. 2020, 21, 2847. [CrossRef]

56. Desai, J.; Gan, H.; Barrow, C.; Jameson, M.; Atkinson, V.; Haydon, A.; Milward, M.; Begbie, S.; Brown, M.;
Markman, B.; et al. Phase I, Open−Label., Dose−Escalation/Dose-Expansion Study of Lifirafenib (BGB−283),
an RAF Family Kinase Inhibitor, in Patients with Solid Tumors. J. Clin. Oncol. 2020, 38, 2140–2150. [CrossRef]

57. Russo, A.; Lopes, A.R.; McCusker, M.G.; Garrigues, S.G.; Ricciardi, G.R.; Arensmeyer, K.E.; Scilla, K.A.;
Mehra, R.; Rolfo, C. New Targets in Lung Cancer (Excluding EGFR, ALK, ROS1). Curr. Oncol. Rep. 2020,
22, 48. [CrossRef] [PubMed]

58. Landi, L.; Chiari, R.; Tiseo, M.; D’Inca, F.; Dazzi, C.; Chella, A.; Delmonte, A.; Bonanno, L.; Giannarelli, D.;
Cortinovis, D.L.; et al. Crizotinib in MET−Deregulated or ROS1-Rearranged Pretreated Non−Small Cell
Lung Cancer (METROS): A Phase II, Prospective, Multicenter, Two−Arms Trial. Clin. Cancer Res. 2019, 25,
7312–7319. [CrossRef] [PubMed]

59. Awad, M.M.; Leonardi, G.C.; Kravets, S.; Dahlberg, S.E.; Drilon, A.; Noonan, S.A.; Camidge, D.R.; Ou, S.I.;
Costa, D.B.; Gadgeel, S.M.; et al. Impact of MET Inhibitors on Survival Among Patients with Non−Small
Cell Lung Cancer Harboring MET Exon 14 Mutations: A Retrospective Analysis. Lung Cancer 2019, 133,
96–102. [CrossRef]

60. Nagano, T.; Tachihara, M.; Nishimura, Y. Mechanism of Resistance to Epidermal Growth Factor
Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy. Cells 2018, 7, 212. [CrossRef]

61. Gainor, J.F.; Niederst, M.J.; Lennerz, J.K.; Dagogo-Jack, I.; Stevens, S.; Shaw, A.T.; Sequist, L.V.; Engelman, J.A.
Dramatic Response to Combination Erlotinib and Crizotinib in a Patient with Advanced, EGFR−Mutant
Lung Cancer Harboring De Novo MET Amplification. J. Thorac. Oncol. 2016, 11, e83–e85. [CrossRef]

62. York, E.R.; Varella-Garcia, M.; Bang, T.J.; Aisner, D.L.; Camidge, D.R. Tolerable and Effective Combination
of Full-Dose Crizotinib and Osimertinib Targeting MET Amplification Sequentially Emerging after T790M
Positivity in EGFR-Mutant Non−Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, e85–e88. [CrossRef]
[PubMed]

63. Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.;
Orlov, S.V.; et al. Capmatinib in MET Exon 14−Mutated or MET−Amplified Non−Small−Cell Lung Cancer.
N. Engl. J. Med. 2020, 383, 944–957. [CrossRef]

64. Russo, A.; Franchina, T.; Ricciardi, G.R.; Ferraro, G.; Scimone, A.; Bronte, G.; Russo, A.; Rolfo, C.; Adamo, V.
Central Nervous System Involvement in ALK-Rearranged NSCLC: Promising Strategies to Overcome
Crizotinib Resistance. Expert Rev. Anticancer Ther. 2016, 16, 615–623. [CrossRef]

65. Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.;
Van Meerbeeck, J.; et al. Tepotinib in Non−Small−Cell Lung Cancer with MET Exon 14 Skipping Mutations.
N. Engl. J. Med. 2020, 383, 931–943. [CrossRef]

66. Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.;
Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion−Positive Cancers in Adults and
Children. N. Engl. J. Med. 2018, 378, 731–739. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S1470-2045(17)30679-4
http://dx.doi.org/10.1158/2159-8290.CD-19-1265
http://dx.doi.org/10.1016/j.annonc.2019.10.022
http://dx.doi.org/10.1016/j.ejca.2020.03.025
http://www.ncbi.nlm.nih.gov/pubmed/32388065
http://dx.doi.org/10.3390/ijms21082847
http://dx.doi.org/10.1200/JCO.19.02654
http://dx.doi.org/10.1007/s11912-020-00909-8
http://www.ncbi.nlm.nih.gov/pubmed/32296961
http://dx.doi.org/10.1158/1078-0432.CCR-19-0994
http://www.ncbi.nlm.nih.gov/pubmed/31416808
http://dx.doi.org/10.1016/j.lungcan.2019.05.011
http://dx.doi.org/10.3390/cells7110212
http://dx.doi.org/10.1016/j.jtho.2016.02.021
http://dx.doi.org/10.1016/j.jtho.2017.02.020
http://www.ncbi.nlm.nih.gov/pubmed/28274743
http://dx.doi.org/10.1056/NEJMoa2002787
http://dx.doi.org/10.1080/14737140.2016.1182427
http://dx.doi.org/10.1056/NEJMoa2004407
http://dx.doi.org/10.1056/NEJMoa1714448
http://www.ncbi.nlm.nih.gov/pubmed/29466156


Pharmaceuticals 2020, 13, 374 14 of 14

67. Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.;
Tosi, D.; et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion−Positive Solid Tumours:
Integrated Analysis of Three Phase 1−2 Trials. Lancet Oncol. 2020, 21, 271–282. [CrossRef]

68. Gay, N.D.; Wang, Y.; Beadling, C.; Warrick, A.; Neff, T.; Corless, C.L.; Tolba, K. Durable Response to Afatinib
in Lung Adenocarcinoma Harboring NRG1 Gene Fusions. J. Thorac. Oncol. 2017, 12, e107–e110. [CrossRef]

69. Drilon, A.; Somwar, R.; Mangatt, B.P.; Edgren, H.; Desmeules, P.; Ruusulehto, A.; Smith, R.S.; Delasos, L.;
Vojnic, M.; Plodkowski, A.J.; et al. Response to ERBB3−Directed Targeted Therapy in NRG1−Rearranged
Cancers. Cancer Discov. 2018, 8, 686–695. [CrossRef]

70. Qiu, Z.; Ye, B.; Wang, K.; Zhou, P.; Zhao, S.; Li, W.; Tian, P. Unique Genetic Characteristics and Clinical
Prognosis of Female Patients with Lung Cancer Harboring RET Fusion Gene. Sci. Rep. 2020, 10, 10387.
[CrossRef]

71. Gautschi, O.; Milia, J.; Filleron, T.; Wolf, J.; Carbone, D.P.; Owen, D.; Camidge, R.; Narayanan, V.; Doebele, R.C.;
Besse, B.; et al. Targeting RET in Patients With RET−Rearranged Lung Cancers: Results from the Global,
Multicenter RET Registry. J. Clin. Oncol. 2017, 35, 1403–1410. [CrossRef]

72. Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.;
Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion−Positive Non−Small−Cell Lung Cancer.
N. Engl. J. Med. 2020, 383, 813–824. [CrossRef]

73. Rossi, A. New Options for Combination Therapy for Advanced Non−Squamous NSCLC. Expert Rev.
Respir. Med. 2019, 13, 1095–1107. [CrossRef]

74. Creelan, B.C.; Yeh, T.C.; Kim, S.W.; Nogami, N.; Kim, D.W.; Chow, L.Q.M.; Kanda, S.; Taylor, R.; Tang, W.;
Tang, M.; et al. A Phase 1 Study of Gefitinib Combined with Durvalumab in EGFR TKI−Naive Patients
with EGFR Mutation−Positive Locally Advanced/Metastatic Non−Small−Cell Lung Cancer. Br. J. Cancer
2020, 1–8. [CrossRef] [PubMed]

75. Wang, S.J.; Khullar, K.; Kim, S.; Yegya-Raman, N.; Malhotra, J.; Groisberg, R.; Crayton, S.H.; Silk, A.W.;
Nosher, J.L.; Gentile, M.A.; et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade
immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. J. Immunother. Cancer
2020, 8, e000889. [CrossRef]

76. Arbour, K.C.; Riely, G.J. Systemic Therapy for Locally Advanced and Metastatic Non−Small Cell Lung
Cancer: A Review. JAMA 2019, 322, 764–774. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1470-2045(19)30691-6
http://dx.doi.org/10.1016/j.jtho.2017.04.025
http://dx.doi.org/10.1158/2159-8290.CD-17-1004
http://dx.doi.org/10.1038/s41598-020-66883-0
http://dx.doi.org/10.1200/JCO.2016.70.9352
http://dx.doi.org/10.1056/NEJMoa2005653
http://dx.doi.org/10.1080/17476348.2019.1667233
http://dx.doi.org/10.1038/s41416-020-01099-7
http://www.ncbi.nlm.nih.gov/pubmed/33012782
http://dx.doi.org/10.1136/jitc-2020-000889
http://dx.doi.org/10.1001/jama.2019.11058
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	ALK Inhibitors 
	EGFR Inhibitors 
	ROS1 Inhibitors 
	BRAF and MEK Inhibitors 
	Additional Oncogenic Targets 
	Conclusions and Future Directions 
	References

