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Simple Summary: Immunotherapeutic approaches became a promising treatment option and an
intensive field of research in liver cancer. Despite promising results in preclinical studies, only moderate
response rates have been reported in phase III clinical trials and predictive biomarkers are still missing.
Therefore, translational considerations are important to overcome resistance to immunotherapy.
This article reviews potential predictors for response to immunotherapy in hepatocellular carcinoma
(HCC) as well as potential mechanisms for therapy resistance. Further, we will discuss translational
considerations to overcome therapy resistance in HCC and improve overall response rates.

Abstract: Over the last decade, progress in systemic therapies significantly improved the outcome
of primary liver cancer. More recently, precision oncological and immunotherapeutic approaches
became the focus of intense scientific and clinical research. Herein, preclinical studies showed
promising results with high response rates and improvement of overall survival. However, results of
phase III clinical trials revealed that only a subfraction of hepatocellular carcinoma (HCC) patients
respond to therapy and display only moderate objective response rates. Further, predictive molecular
characteristics are largely missing. In consequence, suitable trial design has emerged as a crucial
factor for the success of a novel compound. In addition, increasing knowledge from translational
studies indicate the importance of targeting the tumor immune environment to overcome resistance
to immunotherapy. Thus, combination of different immunotherapies with other treatment modalities
including antibodies, tyrosine kinase inhibitors, or local therapies is highly promising. However,
the mechanisms of failure to respond to immunotherapy in liver cancer are still not fully understood
and the modulation of the immune system and cellular tumor composition is particularly relevant in
this context. Altogether, it is increasingly clear that tailoring of immunotherapy and individualized
approaches are required to improve efficacy and patient outcome in liver cancer. This review provides
an overview of the current knowledge as well as translational considerations to overcome therapy
resistance in immunotherapy of primary liver cancer.
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1. Introduction

Primary liver cancer, in particular hepatocellular carcinoma (HCC) ranks among the most common
malignancies worldwide with a rising incidence in the Western world [1–4]. Between 80–90% of
HCC cases develop in an inflammation-associated milieu [5], i.e., on the background of a pre-existing
chronic liver disease and, most commonly, an advanced fibrosis or cirrhosis. Due to demographic
changes in the distribution of diabetes mellitus type II and obesity, non-alcoholic fatty liver disease,
or steatohepatitis (non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH))
show a sharp increase in HCC numbers [6] and are considered as metabolic predispositions to liver
cancer [7,8]. Numerous immune suppressor mechanisms that involve different immune cell types
lead to immune evasion of the tumor and have been shown to contribute to HCC initiation and
progression [9,10].

Despite well known risk factors, i.e., chronic viral hepatitis, alcohol consumption, and metabolic
syndrome, the majority of HCC patients are diagnosed in late, non-resectable, and non-curative stages of
the disease, when a considerable phenotypic and molecular heterogeneity renders HCC highly resistant
to conventional chemotherapy and/or irradiation [11]. Until 2016, only limited systemic treatment
options were available in advanced stages of HCC, namely sorafenib and regorafenib, tyrosine kinase
inhibitors (TKI) [12–14]. Since then, only Lenvatinib (first-line), regorafenib, cabozantinib, all TKIs,
and ramucirumab (second-line), a monoclonal antibody against VEGFR, have shown efficacy in phase
III clinical trials [13,15–17]. Despite the approval of new and targeted therapy, patients’ prognosis
remained limited to 12–13 months in first-line and 9–11 months in second-line therapy, and besides
alpha-fetoprotein (AFP), there is no biomarker available for patient stratification [18].

Given the inflammatory background of HCC, the hepatic tumor microenvironment (TME) plays a
pivotal role in tumor initiation, modulation of tumor invasiveness, metastatic spread as well as tumor
suppression and immune surveillance of cancer cells [19]. Therefore, modern therapeutic approaches
that focus on modulation of the TME are particularly promising.

The liver is an immune tolerant organ due to its prominent role in protection against inappropriate
immune responses. The inflammatory stimuli emerge as a consequence to exposition with major
inflammatory processes mediated by a large antigenic load from the gastrointestinal tract trough blood
from the portal vein [20]. In addition, the setting of a chronic liver inflammation or cirrhosis further
reinforces the hepatic immune tolerance [21]. On a single cell level, it has been demonstrated that
HCCs show a higher abundance of regulatory T cells (Tregs) as well as their local clonal expansion
within the tumor. Furthermore, a higher abundance of exhausted CD8 T cells is present in the tumor
tissue [22]. This has a significant influence on tumor surveillance. Decreased number of tumor
attacking immune cells such as T effector cells and more tumor supporting cells, e.g., MDSCs and Tregs

lead to a disruption of the cellular composition during chronic liver diseases and is associated with
patient outcome [23–28]. During hepatocarcinogenesis, several immunosuppressive effects have been
detected that are associated with patient survival. Immune cell composition leading to anti-tumor
immunity or tolerance is crucial for tumor growth or cell death. Tregs as well as myeloid derived
suppressor cells (MDSC) accumulate in the liver and suppress antitumor immunity in HCC [9,29].
Macrophages, in the liver called Kupffer cells, suppress early HCC development; however, undergo a
switch from M1 to M2 during tumor progression, which leads to a suppression of the adaptive immune
system and support of the tumor [10,30–33]. Tumor associated macrophages (TAM) represent the
predominant component of the innate immune system and promote tumor proliferation, angiogenesis
and invasion [34,35] Furthermore, parenchymal cells such as endothelial cells, hepatic stellate cells
(HSC), and hepatocytes influence effector functions of infiltrating lymphocytes [21]. This leads to an
intratumoral loss of cytotoxic T cells, which is associated with tumor progression [21,35,36]. Natural
killer (NK) cell, important players of innate immunity in the liver, show an impaired function in
HCCs [29,37]. This dysfunctional and imbalanced immune system is a hallmark of cancer progression
in HCC and is associated with patient prognosis. [38,39]
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After the approval of immune checkpoint inhibitors (ICI) in melanoma and non-small cell lung
cancer (NSCLC), immunotherapies have raised significant interest in other solid tumors including HCC.
In 2017 and 2018, the FDA granted accelerated approval for the first immunotherapy agents, nivolumab
and pembrolizumab or the combination of nivolumab and ipilimumab, for patients with advanced
HCC after progression under sorafenib after promising results from phase II clinical trials [40–42].
Other checkpoint inhibitors are currently being investigated in clinical trials as single agents as well as
in combination therapies [42–45]. A detailed list of currently approved immunotherapeutic agents can
be found in Table 1. Nevertheless, immunotherapy in liver cancer has been challenging. Objective
response rates are still low. Given the fact that only some patients respond to therapy, the various
degrees of side effects such as autoimmune reactions need to be taken into account [40,46,47]. Thus,
predictive biomarkers are urgently needed. Furthermore, there are no long-term data for those patients
responding to therapy and even though there are some studies addressing a neoadjuvant treatment
option, we do not have any strong data in curative settings yet. However, first results from combination
therapies show a significant improvement in all clinical endpoints including overall survival and
quality of life, which raises optimism for the future of this approach in primary liver cancer [48].
Even scenarios in adjuvant or neoadjuvant use are now under current discussion [49,50], but our
overall understanding of the treatment response remains limited.

Table 1. Currently approved immunotherapy in hepatocellular carcinoma (HCC)

Target Molecule Drug Name Company

PD-1 Nivolumab Bristol Meyer Squibb

PD-1 Pembrolizumab Merck

PD-L1 Atezolizumab
(in combination with bevacizumab) Roche

CTLA-4 Ipilimumab Bristol Meyer Squibb/Medarex

Abbreviations: PD-1 (programmed cell death protein 1), PD-L1 (programmed cell death ligand 1), CTLA-4 (cytotoxic
T-lymphcyte-associatet protein 4).

Given the success of immunotherapy in several tumor entities, we here review the potential
predictors for response to immunotherapy in HCC. In addition, we are addressing potential mechanisms
for therapy resistance. Finally, we discuss translational considerations to overcome therapy resistance
in HCC.

2. General Strategies for Immunomodulatory Treatments in Primary Liver Cancer

There are different strategies to induce antitumor immune response that are currently under
investigation in primary liver cancer involving both innate and adaptive immune systems. Specifically,
targeting of checkpoint molecules as well as the interaction of T cells and antigen-presenting cells
(APCs) have been of interest in recent years [51]. Neoantigens expressed on the tumor itself can
also be used as targets for immunotherapy [52]. Local therapies and oncolytic viruses can promote
neoantigen release even more, thereby further enhancing the antitumor immune response [53,54].
In addition, detailed information on tumor neoantigens can be explored to develop anti-tumor vaccines
and autologous T cells can be manipulated and/or stimulated ex vivo before retransfer, e.g., chimeric
antigen receptor (CAR) T cells or cytokine-induced killer cells (Figure 1) [55,56].
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Figure 1. Overview of therapeutic approaches in immunotherapy. Targeted antibody therapy
can block inhibitory signals, e.g., CTLA-4 or PD-1 and “unleash” anti-tumor immunity or block
immunosuppressive mechanisms of the adaptive as well as the innate immune system. Besides a direct
anti tumoral effect, irradiation leads to an antigen release that promotes antigen presentation by APCs
and enhances anti-tumoral T cell response. Cytokine therapy is an option to enhance a general T cell
response in the tumor. Ex-vivo engineered T cells or antibodies against tumor specific neoantigens
induce a targeted anti-tumor response. Abbreviations: Myeloid derived suppressor cell (MDSC),
antigen presenting cell (APC), regulatory T cell (Treg), cytotoxic T lymphocyte antigen 4 (CTLA4),
programmed death protein (PD1), programmed death ligand 1 (PDL1).

However, it is well known that immune escape and evasion of immune-mediated cytotoxicity
are among the hallmarks of cancers and are often mediated by induction of an immunosuppressive
microenvironment [57,58]. To overcome escape from immunosurveillance by cancer cells, therapeutic
approaches focus on boosting antitumor response either by activation of cytotoxic immune cells or
elimination of immune-suppressing cells. Furthermore, tumors also evade from the immune system
by upregulation of programmed cell death ligand 1 (PD-L1) on cancer cells. Tumor immune cell
interactions are based on two phases of T cell activation: an early priming phase in the lymph node
and an effector phase in the tumor tissue. Involved in this process are APCs, that bind cancer antigens,
migrate to the lymph node, and activate immature T cells. Activation of T cells in the priming phase
can be blocked by upregulation of the checkpoint molecule cytotoxic T lymphocyte antigen 4 (CTLA-4)
on T cells. CTLA-4 is also highly expressed on Tregs that inhibit antigen presentation on dendritic cells
(DC). This is a cycle, that leads to less cytotoxic, more exhausted T cells and, thus, impaired anti-tumor
response. Activation of T cells in the effector phase can be blocked by programmed death protein 1
(PD-1)/ programmed death ligand 1(PD-L1) that is expressed in tumor cell interaction. Both “breaks”
can be effectively released by anti-PD-1, anti PD-L1, or anti CTLA-4 therapy and enhance anti-tumor
immune response (Figure 2) [40,43,59,60].

In HCC, immunotherapy is an intensively studied field encompassing all the above mentioned
antibody-based, cell-based, and vaccine-based treatment options [61]. In addition, the combination of
different therapy regimes may provide a significant benefit (Figure 1) [43].
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synergistic effects of combined ICI therapy. potential molecular targets provide synergistic effects for ICI.

Figure 2. Translational consideration to overcome therapy resistance. Therapeutic approaches for
sensitization to immunotherapy. Left panel: Anti-CTLA-4 or anti-angiogenic therapy increases
recruitment and migration of activated T cells into the tumor. Anti-PD-1/anti PD-L1 therapy enhances
cytolytic activity of T cells. Right panel: Anti-CTLA-4 treatment induced IDO1 expression in dendritic
cells (DC). Indoleamine 2,3-dioxygenase 1 (IDO1) leads to activation of Tregs and causes resistance
to anti-CTLA-4 therapy, while blocking of IDO could interrupt this mechanism of resistance. PolyIC
inhibits tumor growth and leads to an accumulation and activation of immune cell subsets, whereas
anti-PD-L1 therapy could provide synergistic effects. Osteopontin induces M2 migration into the tumor
as well as PD-L1 induction. Targeted therapy of CSF1 in combination with anti-PD-L1 therapy might
provide synergistic effects. Epigenetic regulations as synergistic effect for ICI therapy.

3. Predictors for Response or Resistance to Current Immune-Modulatory Therapies

Immunotherapy as a modern approach for cancer treatment has become a key topic in translational
research over the last decade. After approval of the first PD-1/PD-L1 and CTLA-4 blocking antibodies for
melanoma, checkpoint inhibitors are under intense investigation in many tumor entities. Unleashing
of the immune system to attack the tumor seems to be an effective anti-tumor treatment. Many
immunotherapies have been shown to be effective as monotherapies but also in combination with other
immune-based and targeted approaches in preclinical and clinical studies [62–66]. However, despite
good clinical efficacy in other tumor entities, response rates in HCC as well as cholangiocarcinoma
are surprisingly low [40,67–70]. A common observation in HCC is the missing significance or lack of
surrogate markers of response utilized in other entities. Thus, improved strategies to estimate therapy
response would enable to stratify patients according to their clinical benefit and prevent unnecessary
side effects caused by the therapy [40,70–73].

Mechanisms of resistance to immunotherapy are still not fully understood. Especially in the
context of a possible pseudoprogression or even hyperprogression under immunotherapy, predictive
biomarkers are urgently needed [74].
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3.1. Tumor Characteristics and Tumor Infiltrating Lymphocytes as Predictors for Response

Multiple studies revealed potential molecular characteristics that are associated with
immunotherapy response. However, up to now, no biomarker for HCC has been prospectively
validated in authentic human patients. The most prominent biomarkers are PD-1 and PD-L1 expression
on tumor tissue as well as on infiltrating immune cells.

Expression of PD-1/PD-L1 in HCC have been described in 17% (PD-L1) and 27% (PD-1) on immune
and 10–20% (PD-L1) on tumor cells, using immunohistochemistry [40,41,75–77]. High PD-L1 expression
in tumors itself is associated with more aggressive HCCs independent of immunotherapy [76,78].

Several translational studies investigated numbers of immune cells and respective activation of
checkpoint molecules as possible biomarkers for immunotherapy response in HCC. In other entities
such as NSCLC, PD-1high T cells showed a higher capacity for tumor recognition, recruit other immune
cells, and are predictive for response and overall survival under PD-1 therapy, which demonstrates that
a distinct T cell subtype is needed for response to PD-1/PD-L1 therapy [79]. In HCC patients, high PD-1
expression in tumor tissue is connected to an exhausted immune cell phenotype with impaired effector
function of tumor infiltrating lymphocytes (TIL), which contributes to immune evasion [75,80–82].
A recent study further demonstrated that PD-1, LAG3 (lymphocyte activation gene 3), TIM3 (T cell
membrane protein 3), and CTLA-4 positive TILs are exhausted and functionally compromised, thus,
induce lower levels of effector cytokines. Conversely, this phenotype could be reversed back to an
effector phenotype with ICI [82].

Using sequencing and TCR analysis, another study investigated the distribution of mutational
and neoantigen burden in different tumor regions as a possible driver for immune cell heterogeneity.
Analysis of peptide binding affinity of these neoantigens revealed a correlation of the higher ones
with TIL heterogeneity. However, the region with the highest TIL heterogeneity showed the lowest
putatively immunogenic neoepitopes, suggesting that the adaptive immune response has edited the
tumor to be less immunogenic [83].

Another study stratified HCC patients into CD8+PD-1high and CD8+PD-1low. A gene
signature that effectively predicted anti-PD-1 therapy response in several tumor entities was
significantly enriched in corresponding PD-1high expressers [75]. Furthermore, high frequencies of
CD14+CD16−HLA-DRhighmonocytes was shown to predict therapy response in melanoma patients [84].
This phenotype was also elevated in PD-1high expressers [75]. Both findings might provide an indirect
surrogate of therapy response in PD-1high HCC patients. Consistently, the PD-1high HCCs also
expressed markers such as LAG3 and TIM3 confirming the exhausted phenotype of the cells and
delineating the rational of targeting these markers in liver cancer. In vitro experiments could further
show that blocking of PD-1 increased IFN production and effectively enhanced the immune response.
However, this effect was only present in PD-1high HCCs [75].

Recently, single cell sequencing approaches became affordable and promising tools for translational
science. These investigations are ideal to dissecting immune cell populations in the context of the
diseased hepatic microenvironment as well as immunotherapies. A recent single cell sequencing
analysis demonstrated a complex composition of highly diverse T cell subpopulations in HCC
tumors [22]. A subgroup expressing high levels of exhaustion markers such as CTLA4 and PDCD1
was identified that stratified patients according to the clinical outcome [22]. Furthermore, complex
composition of immune cells could be revealed and shown to be spatially different between intratumoral
regions, extra-tumoral regions, ascites, and the peripheral blood [85]. While modulation of this immune
cell contexture could be highly promising in a therapeutic setting, the clinical use of cellular compositions
as predictors for therapy response needs to be evaluated.

Only one single cell study focused on the malignant cells in HCC so far. Analysis of the tumor
and the TME identified VEGFAhigh tumors that drive the TME reprogramming [86]. Consequently,
further single cell analysis of T cells revealed different transcriptomic profiles in VEGFAhigh tumors.
These observations imply that a combination of vascular endothelial growth factor (VEGF) therapy
and immunotherapy might help to overcome some non-response mechanisms.
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Overall, results of these preclinical studies suggest that it is probably not enough to screen for
widely expressed markers in the tissue and underline the importance of detailed characterization of
the cellular compositions to shed light into cellular interactions to reveal context-dependent response
mechanisms to immunotherapy.

For objective comparison of PD-L1 expression in clinical trials, mainly two different scoring
systems have been established [87,88]. The tumor proportion score (TPS) calculates the percentage of
PD-L1 tumor cells of all viable tumor cells, whereas the combined positive score (CPS) calculates the
percentage of all PD-L1 positive cells (tumor cells, macrophages, lymphocytes) divided by all viable
tumor cells [87,88]. PD-1/PD-L1 expression in tissue is associated with therapy response in melanoma,
NSCLC, renal cancer and gastric cancer in large clinical trials [59,87,89–91].

Despite the promising results from the above-mentioned translational studies, explorative
investigations performed on patients in clinical trials have failed to identify robust predictive markers
that clearly identify patients likely to benefit from immunotherapy in HCC up to now.

Clinical trials for HCC using ICI included both of the mentioned scores to predict response.
The CHECKMATE-40 trial, investigating the anti-PD-1 antibody Nivolumab as a second line therapy
in HCC reported response rates regardless of PD-L1 expression rates. PD-L1 expression was calculated
using the TPS score (overall response rate (ORR) 26% in patients with PD-L1 expression >1% and ORR
19% of patients with PD-L1 expression <1%,). However, PD-L1 expression >1% could only be detected
in 20% of the patient population. The lack of robust association indicates that PD-L1 expression
on tumor cells cannot be used as a single binary marker for therapy decisions [40]. The phase II
clinical trial KEYNOTE-224 used the anti-PD-1 antibody pembrolizumab after progression under
sorafenib. Response to therapy was assessed using TPS as well as CPS score [41]. Only CPS score
showed significant association with response to therapy. The proportion of CPS score positive patients
in the KEYNOTE cohort has been reported as 42% [41]. Although the follow-up phase III study
KEYNOTE-240 did not reach its clinical endpoint of OS, knowledge of PD-L1 expression and CPS score
can be highly instrumental for future studies and are urgently awaited [70]. Noteworthily, different
cutoffs and definitions about PD-L1 positivity have been used in clinical trials, which might have
limited the comparability of the findings [92].

High tumor mutational burden (TMB), generally defined as over 10 mutations/mb, or microsatellite
instability (MSI) are hypothesized to be intrinsically immunogenic [93]. Hence, TMB or MSI status were
predictive for response to therapy with PD-1 checkpoint-inhibitors in several tumor entities [66,94–96].
However, compared to other tumor entities, HCC mainly has a low TMB of <10 mutations/Mblow and
MSI rates below 1% [75,96–99]. Given the low prevalence and only limited predictive ability of TMB,
it emphasizes the need for more comprehensive molecular biomarkers [97].

Circulating immune cells and corresponding expression of checkpoint molecules have been
intensively evaluated as predictive biomarker. Isolation and subsequent characterization would enable
a closer and non-invasive therapy monitoring, which is not possible using tissue samples. However,
only one study could identify an association of circulating immune cells and response to therapy so far.
A higher expression of CD4+PD1+ cells in circulating peripheral blood mononuclear cells (PBMC) at
baseline may predict a better response to tremelimumab treatment in HCC patients [100]. However,
more recently, results from several clinical trials suggest that induction of a CD8 T cell response
after CTLA-4 priming might enhance the anti-tumor efficacy of PD-1 inhibition [46]. This interesting
observation should be pursued in future studies.

Furthermore, high soluble PD-L1 levels are associated with a poor prognosis in HCC patients [101].
However, soluble PD-L1 could not be shown to be predictive under immunotherapy in HCC in contrast
to other tumor entities [102,103].

Finally, studies have shown that the microbiome influences the immune system. Mice with liver
tumors showed a better immune response and lower tumor burden when treated with antibiotics that
reduced the overall bacterial burden in the gut but favor Clostridium scindens. Reduction of bacteria
through antibiotics alters the composition of bile acids, which subsequently resulted in increased
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infiltration of NKT cells with anti-tumor function into the liver. On the other hand, gut microbiota
has been shown to promote obesity-associated liver cancer by driving prostaglandin E2 (PGE2)
production through higher expression of COX2. PGE2 eventually suppressed antitumor immunity
and resulted in higher tumor burden of obesity-driven HCC [104]. Several studies have shown that the
microbiome influences not only immune cells but also the efficiency of immunotherapy. Anti-PD1
therapy could be significantly improved by combing it with oral administration of Bifidobacterium,
which resulted in reduced tumor growth of B16.SIY melanoma tumors [105]. Another study found
the fecal transplantation of Akkermansia muciniphia can restore efficacy of anti-PD-1 immunotherapy,
which was mediated by increasing the recruitment of CCR9+ CXCR3+ CD4+ T lymphocytes [105].
In human melanoma, anti-CTLA-4 therapy was associated with outgrowth of Bacteroides fragilis. Oral
feeding of Bacteroides fragilis in germ-free mice resulted in restored therapeutic response to anti-CTLA-4
treatment [106]. Notably, a recent study focused on fecal samples from patients under immunotherapy
as a predictive parameter and revealed a higher species richness in responding patients than in
non-responders [107]. Furthermore, other studies suggest an association between commensal microbial
composition and therapy response to immune therapy treatment in melanoma as well as HCC, whereas
patient numbers were very limited (N = 8) [107,108]. Thus, data on the microbiome should be assessed
as adjuvant information in future studies to identify its potential as a biomarker [109]. Data is mixed
but it is clear that the composition of bacteria in the gut has influence and might predict response to
immunotherapy and cannot be neglected. Sample acquisition in a hospitalized setting seems easy so
that specifically response assessment and subsequent alteration of the treatment strategy based on the
microbiome status seems to be reasonable.

Overall, while not yet conclusive in HCC, these findings provide the first mechanistic explanations
of tumor cell biodiversity and why some patients may respond to therapy and others do not [86].

3.2. Molecular Subtyping of HCC

In the past, exome sequencing enabled a precise description of the mutational landscape in
HCC including the identification of the most relevant oncogenic drivers (TERT, TP53, CTNNB1,
AXIN1, ARID1A and ARID2) [18,110,111]. In 28% of all HCCs, potential targetable mutations were
identified [112]. However, despite strong efforts, none of these potential biomarkers showed a
significant survival benefit and could be implemented in clinical trials [18].

Analysis of the immune composition as well as the transcriptomic profile in HCC lead to the
classification of inflamed “hot” tumors and non-inflamed “cold” tumors based on the presence of
T cells, macrophages, B cells, PD1 signaling, and cytotoxic cytokines. Interestingly, “cold” tumors
co-occur with WNT/CTNNB1 as well as chromosomal alterations of the tumor [18,111,113].

A retrospective analysis of genomic alterations of HCC patients undergoing immunotherapy
revealed WNT1/CTNNB1 mutations to be associated with lower disease control rates (0% vs. 53%),
shorter median progression free survival (PFS) (2.0 vs. 7.4 months), and shorter median OS [18,114].
This possible CTNNB1 immune excluded class could recently be confirmed in a translational mouse
model [114,115]. Upregulation of β-catenin leads to an immune exclusion of the tumor and also
resistance to anti-PD-1 therapy. These results conclusively illustrate, that other therapy modalities
might be more suitable for cold or immune excluded and, potentially, other subclasses of HCC,
and challenges the design of recent clinical investigations. In this context, molecular stratification of
patients will become increasingly important and should be mandatory for future clinical trials.

4. Combination Treatments to Improve Therapy Response in HCC

4.1. Combination Therapies of Checkpoint Inhibitors

Given that the response to immunotherapy is restricted to 15–30% of the patients, the majority of
the patients are not objectively responding or show a primary resistance to ICI. After initial studies
on effectiveness of immunomodulatory drugs, new studies are focusing on mechanisms to increase
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therapy response [42]. The rationale behind combinations therapies is based on synergistic effects by
CTLA4 induction followed by PD-1/PD-L1 blockade (Figure 2). Combination of different ICI blocks
immune cell activation at different steps in their activation process. CTLA4 increases CD8 T cell
activation in the priming phase in the lymph node as well as CD8 cell infiltration into the tumor.
This enhances the effect of PD-1/PD-L1 blockade in the tumor microenvironment. The number of
pretreatment or treatment induced intratumoral T cell infiltration correlates with clinical response to
therapy, which emphasizes that the crucial factor for response to immunotherapy lies in releasing
tumor-specific T cells [116].

The combination of checkpoint inhibitors antiPD-1/anti-PD-L1 plus anti-CTLA-4 antibodies have
shown promising response rates of 40–60% in melanoma, NSCLC, and renal cancer [132–134]. Based on
this, combination therapies of CTLA-4 and PD-1/PD-L1 blockade are currently under investigation [42].

In HCC, these combinations are also being actively pursed in clinical trials [45,135]. ORR
rates for advanced non-resectable HCC in a phase II clinical trial (durvalumab (anti-PD-L1) and
tremelimumab (anti-CTLA-4)) have been reported recently as 22% with 35% of the patients showing
adverse events [136]. The phase III clinical trial (HIMALAYA) is currently underway [45]. However,
the CHECKMATE-040 trial investigating nivolumab and ipilimumab could show overall response
rates of 32% [42]. Further studies are required focusing on effectiveness versus increased adverse
events. For a detailed list see Table 2.

4.2. Combination Therapies of Checkpoint Inhibitors and Anti-Angiogenesis

Another approach to enhance response to therapy explores additive effect of MKIs and ICI. It is
well known that high VEGF levels in the TME modulate immunosuppressive Tregs, macrophages and
MDSCs, whereby promoting tumor growth [86]. Anti-angiogenic effects of MKIs mediated by VEGF
inhibition can synergistically enhance the anti-tumor effects of ICI. Furthermore, Sorafenib effectively
inhibits macrophage migration, macrophage induces epithelial-mesenchymal transition as well as
macrophage-NK cell crosstalk in the liver [34,137]. In line with this, combination of pembrolizumab
(anti PD-1) and Lenvatinib (MKI) reduced the secretion of immunosuppressive cytokines such as
TGF-β and IL-10 and inhibited expression of PD-1 and Tim3, which enhanced antitumor immune
response in a mouse model of hepatocarcinogenesis [138].

Further, the IMbrave150 phase III clinical trial confirmed the promising effects for the combination
of atezolizumab plus bevacizumab, a direct VEGF inhibitor, in a first line treatment in HCC patients [48].
The experimental arm showed an ORR 33% versus 13% for sorafenib arm and median OS at 12 months
was 67% versus 55%. These results have led to an FDA approval for the combination of bevacizumab
and atezolizumab for advanced HCC and will likely become the new standard of care in advanced
HCCs. Many other combination studies are currently underway (Table 2). Similar to the findings
from the IMbrave150 study, ORR for pembrolizumab plus Lenvatinib have been reported 36% in a
phase Ib clinical trial. Notably, 36% had serious treatment related adverse events [122]. Nevertheless,
combination of ICI and MKIs show promising anti-tumor response rates. Many other studies are
currently underway. For a detailed list see Table 2.
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Table 2. Summary of clinical trials for immunotherapy (mono- and combination therapies/completed and ongoing) in HCC.

Author (Year) Phase/Trial Name Target Therapy Regimen ORR PFS
(Months) pts DCR Additional

Information Status

Monotherapy

Sangro (2013) [44] II CTLA-4 Tremilimumab 17.6% (3 PR) 6.48 21 76.4% completed

El-Khoueiry (2017)
[40]

II
CHECKMATE-40

Second line
PD-1 Nivolumab 20% (3 CR, 39 PR) 4.0 214

64%
(37% over 6

months)

PD-1high ORR 26%,
PD-1low ORR 19%,

9 months OS 74%, KM
median not reached yet

completed

Zhu (2018) [41]
II

KEYNOTE-224
Second line

PD-1 Pembrolizumab 17% (1 CR, 17 PR) NR 104 64% Positive correlation of
ORR and TPS score completed

Finn (2020) [117]
III

KEYNOTE-240
Second line

PD-1 Pembrolizumab 18.3% (6 CR, 45
PR) 3.0 413 62.2%, (31%

over 6 months) OS 13.9 months negative trial

Yau (2019) [73]
III

CHECKMATE459
First line

PD-1 Nivolumab vs. Sorafenib 15% (14 CR, 43
PR) 3.7 743 - PD-L1high ORR 28%,

PD-L1low ORR 12%
negative trial

Qin (2019) [118]
III

Rationale 301
First line

PD-L1/PD-L2 Tislelizumab vs. Sorafenib - - - - ongoing

Exposito (2018)
[119]

III
CHECKMATE-9DX

Adjuvant
PD-1 Nivolumab - - 530 - ongoing

Combination of immunotherapies

Yau (2019) [42] I/II
CHECKMATE-40

PD-1 +
CTLA-4 Nivolumab + Ipilimumab 32% (4 CR, 12 PR) - 148 54%

12 months OS 61%
PD-1high and PD-1low:

no difference
ongoing

Kelley (2020) [46] I/II PD-L1,
CTLA-4

Durvalumab +
Tremelimumab 22% - 75 Median OS 18.7 months ongoing

Abou-Alfa
(2018) [45]

III
HIMALAYA

PD-L1,
CTLA-4

Durvalumab +
Tremelimumab vs.

Durvalumab vs. Sorafenib
- - - - ongoing

Kaseb (2019) [120]
II

Neoadjuvant +
adjuvant

PD-1, CTLA-4 Nivolumab + Ipilimumab 37.5% (3 CR) - 8 - ongoing
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Table 2. Cont.

Author (Year) Phase/Trial Name Target Therapy Regimen ORR PFS
(Months) pts DCR Additional

Information Status

Combination with MKI

Bang (2019) [121] Ib PD-L1 +
VEGF

Durvalumab +
Ramucirumab

11%
(3 CR+PR) 4.4 28 61% PD-L1high ORR 18%,

DCR 73%
ongoing

Zhu (2020) [122]
Ib

KEYNOTE 524
First line

PD-1 + MKI Pembrolizumab +
Lenvatinib

36%
(1 CR, 35 PR) 8.6 30 60% ongoing

Llovet (2019) [123]
III

LEAP002
First line

PD-1 + MKI
Lenvatinib +

Pembrolizumab vs.
Lenvatinib

- - 750 - ongoing

Xu (2019) [124]
I

Second line PD-1 + MKI Camrelizumab + Apatinib 50%
(8 PR) 5.8 39 (16

HCC) 93.8% OS NR ongoing

II
IMMUNIB
First line

PD-1 + MKI Nivolumab + Lenvatinib - - est. 50 - ongoing

Pishvaian (2018)
[125] Ib PD-L1 +

VEGF
Atezolizumab +

Bevacizumab
34%

(1 CR, 22 PR) 14.9 68 78% (50% over 6
months) ongoing

Finn (2018) [48]
III

IMbrave150
First line

PD-L1 +
VEGF

Atezolizumab +
Bevacizumab vs. Sorafenib

33%
(33 CR, 75 PR) 6.8 325 72.3% ongoing

Yau (2020) [47] II
CHECKMATE 40

PD-1 +
CTLA-4 +

MKI

Nivolumab + Cabozantinib
vs. Nivolumab +

Ipilimumab +
Cabozantinib

26% (9 PR) 6.8 71 83% 71% grade III-IV AEs,
discontinuation in 20% ongoing

Kudo (2019) [126]
Ib

VEGF Liver 100
First line

PD-L1 + MKI Avelumab + Axitinib 13.6% 5.5 22 68.2% OS 12.7 months ongoing

Kelley (2019) [127]
III

COSMIC-312
First line

PD-L1 + MKI Atezolizumab +
Cabozantinib vs. Sorafenib - - 640 - ongoing

Knox (2019) [128]
III

EMERALD 2
Adjuvant

PD-L1 +
VEGF

Durvalumab +
Bevacizumab - - - - ongoing
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Table 2. Cont.

Author (Year) Phase/Trial Name Target Therapy Regimen ORR PFS
(Months) pts DCR Additional

Information Status

Combination with locoregional therapy

Duffy (2017) [43] I/II CTLA-4 +
locoregional

Tremilimumab +
TACE/RFA 26.3% 7.4 32 - OS 12.3 months completed

Sangro (2020) [129]
III

EMERALD 1
adjuvant

PD-L1 +
VEGF +

locoregional

Durvalumab +
Bevacizumab + TACE - - 600 - ongoing

Charalampos (2019)
[130]

II
adjuvant

PD-L1 +
CTLA-4 +

locoregional

Durvalumab +
Tremilimumab +

TACE/RFA/cryoablation

20%
(2 PR) 7.8 22 (10

HCC) 60% OS 15.9 months ongoing

II
IMMULAB

PD-1 +
locoregional

Pembrolizumab +
RFA/MWA - - - - ongoing

II
PLTHCC

PD-1 + MKI+
locoregional

Immunotherapy +
Lenvatinib + TCAE - - - - ongoing

Popovic (2019) [131]

Ib
CaboNivo

Neoadjuvant in
locally advanced

HCC

PD-1 + MKI +
resection Nivolumab + Cabozantinib - - 15 - ongoing
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4.3. Combination of Immunotherapy and Locoregional Therapy

A different approach to improve the response is to modulate the immunogenicity of tumors or to
boost the immune system by combination of locoregional and/or radiotherapy with immunotherapy.
This approach is based on releasing tumor antigens through cell death induced by locoregional
therapy, which subsequently improves immunotherapy due to better antigen presentation. Thus, this
combination is also discussed for neoadjuvant settings, when tumor burden is still high. In particular,
antigen release and immunological response after irradiation has been extensively studied [139–141].

In 2004, de Broke et al. [142] could already show that RFA plus blocking CTLA-4 with tremelimumab
causes a strong and durable antitumor response in a mouse model of B16 OVA melanoma cells. The same
group showed that cryoablation and radiofrequency enables antigen loading of dendritic cells, which
induced antitumor immunity [143], indicating that locoregional therapies could have more effects
than just the local tumor elimination. The immunomodulatory effects caused by local therapies
are of particular interest in the era of immunotherapies [144]. Different types of cell death can
cause an immunogenic or non-immunogenic influence on the environment, whereas immunogenic
cell death includes the release of calreticulin and other proteins of the endoplasmatic reticulum,
which leads to activation of dendritic cells and improved tumor-antigen presentation for cytotoxic
T cells [144]. A classical immunogenic cell death inducing chemotherapeutic is doxorubicin, which
is most commonly used in TACE procedures in HCC patients [145]. MDSCs, which are increased in
HCC patients, stimulate Tregs and correlate with HCC progression, [146,147] are decreased after RFA.
However, patients with increased frequencies were more likely to recur after treatment. The effect of
TACE or RFA on T cells seems to be stronger than surgery alone. After locoregional therapy, patients
had a significant increase in GPC3 specific CTLs compared to patients undergoing surgery [140].
Radioembolization (Y90) on the other hand seems to have a sustained local as well as systemic immune
response, that could be shown by an increase in TNFα in CD4, CD8 T cells, and APCs. The group could
further demonstrate a prediction model based on peripheral blood samples before Y90 therapy [148].

However, response immunological response rates after locoregional therapy alone was not durable
enough to prevent recurrence, underlining the potential of combination with immunotherapy [54].
The first combination therapy of tremelimumab and TACE, RFA, or cryoablation showed a good
tolerability and an increase in intratumoral accumulation of CD8 T cells with good clinical response [43].
Remarkably, only lesions that were not directly treated were counted as tumor response, i.e.,
“abscopal effect” [43]. One combined clinical trial for HCC and CCA is investigating a combined
immune checkpoint inhibition with ablative therapies (Durvalumab, Tremelimumab, TACE, RFA OR
Cryoablation) (NCT02821754) [130]. For a detailed list of current clinical trials see Table 2.

While preclinical and early clinical data provides a clear rational for combination therapies,
several open questions remain. In the context of combination therapy, the timing and sequence
of corresponding therapies and identification of the best locoregional therapy in combination with
the best immunotherapy are of particular interest. Further translational studies are also needed to
improve the understanding of the exact molecular mechanisms involved in the response or failure of
these combinations.

5. Translational Studies to Overcome Resistance to Immunotherapies

To detect molecular and cellular predictors of positive response to immunotherapy, animal models
are widely employed in preclinical investigations, particularly syngeneic, genetically engineered, and
humanized mice [149]. All of them harbor certain advantages and disadvantages, which should be
carefully considered to accurately address the respective questions concerning immunotherapy.

5.1. Checkpoint Inhibitors

Investigation of immune checkpoint inhibitors using suitable models represents an important
aspect of translational cancer research and is required for transitioning of crucial findings from bench
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to bedside. Detailed investigations on factors that are assisting immune evasion and contributing
to the failure of classic chemotherapy are crucial [150]. Importance of CTLA-4 and PD-1/PD-L1 was
thoroughly investigated in pre-clinical and early clinical models. Results revealed interesting and
useful data for further translational implications and supported currently-used strategies in clinical
trials [151,152].

Study of Brown et al. [153] tried to address mechanism of adaptive resistance to immunotherapy
in the context of CTLA-4 checkpoint blockade. Results of this important study suggest that induction
of Indoleamine 2,3-dioxygenase 1 (IDO1) typically appears in HCCs that are resistant to anti-CTLA-4
treatment, and that it is regulated in an IFN-γ dependent manner. These observations emphasized
the importance of IDO1 as a regulator of adaptive resistance against anti-CTLA-4 treatment. Thus,
combined therapy of IDO1 inhibitor and anti-CTLA-4 treatment emerges as a rational approach to
improve the checkpoint-based treatments for the resistant types of HCC (Figure 2) [153]. In addition
to increasing numbers of studies related to CTLA-4 therapy resistance, many new investigations
aimed to delineate the fundamental mechanisms of PD-1/PD-L1-dependant immune tolerance in
HCC [71,154]. In a chemically-induced HCC mouse model, exhaustion of tumor-antigen-specific CD8+

T cells, accumulation of PD-1 CD8+ T cells as well as Tregs was reported at the time of late tumor
progression [71]. These findings encouraged authors to investigate a combination therapy of sunitinib
and anti-PD-1 antibodies. This approach not only repressed adverse tumor features like immune
evasion, but also directly reduced tumor burden and activated antitumor immunity [71].

To overcome immune tolerance, it is further important to explore more precise approaches
to identify molecular components involved in immune evasion in HCC [155–157]. Polyinosinic-
polycytidylic acid (polyIC), a double-stranded RNA, was firstly introduced as a molecule with potent
liver tumor-inhibitory role only at the pre-cancer stage [155]. However, the potency of polyIC to treat
advanced HCC was identified in a later study when it was combined with anti-PD-L1 antibody [156].
The mechanism of therapy response based on the ability of polyIC to enhance accumulation and
activation of innate immune cells in the liver, particularly natural killer (NK) cells and macrophages,
as well as to modulate adaptive immune functions by upregulation of PD-L1 in liver sinusoidal
endothelial cells. These conditions sensitized the hepatic response to PD-L1 blockade and induced
accumulation of active CD8+ T cells (Figure 2) [156]. These studies clearly imply that modulation
of specific pathways can lead to sensitization of the tumors to PD-L1 blockade and improve the
response in HCC mouse models. These interesting findings should be pursued in future pre-clinical
and clinical trials.

Further efficacy improvements of checkpoint inhibitors could be achieved through disruption of
pathways involved in epigenetic regulation. For example, combination of histone deacetylase inhibitor
belinostat with anti-CTLA-4, or combination of anti-CTLA-4 plus anti-PD-1 antibodies could lead to
complete tumor rejection in a mouse HCC model [158]. Moreover, another study suggests that PD-L1
blockade and SIRT7 inhibition could be a more efficient clinical option to target HCC (Figure 2) [159].
Overall, these results provide a rationale for testing epigenetic modulators in combination with
checkpoint inhibitors to enhance their therapeutic activity in patients with HCC.

All together, these animal studies clearly demonstrate the importance of the cellular composition
and balance of pro- and anti-tumor immune cells for effectiveness of immunotherapy. Results clearly
delineate capacity of epigenetic regulators to improve the immunotherapy response.

5.2. Application of Neoantigens and Oncolytic Viruses in Immunotherapy

One of the strategies to induce a positive immune response against cancer is the activation of
CD8+ T cells, either by antigen-presenting or by tumor cells. In this context, particularly interesting
are the neoantigens that arise as a result of tumor-specific mutations, which could be effectively
used for development of novel therapeutic approaches [52]. An effective way to increase neoantigen
presentation to CD8+ T cells in the tumor/-microenvironment is induction of cellular death by using
various approaches, such as local ablation therapy or oncolytic viruses (OV) [53,160].
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In a recent study, release of neoantigens was induced in an orthotopic mouse HCC model by
applying image-guided stereotactic radiation. The treatment generated insufficient CD8+ T cell
mediated immune response due to feedback inhibition of T cells by increased PD-L1 expression on
macrophages. Interestingly, antitumor effect was enhanced when combining stereotactic radiation with
anti-PD-1 treatment. This approach promoted adaptive immunity and infiltration of CD8+ cytotoxic
T cells in the tumor, but only in a transient manner [72].

Great potential of OVs for the cancer treatment has been recognized in preclinical animal models
as well as in human cancer patients [161,162]. Particularly interesting is application of oncolytic
viruses in immunotherapies, which are specifically designed to selectively lyse cancer cells and to
induce specific anti-tumor immunity. However, despite of a number of OVs that were examined in the
preclinical studies, a low number entered into the clinical trials [161,162]. The most advanced of them
is JX-594 (Pexa-Vec), which has entered a phase 3 randomized clinical study (PHOCUS). In this trial,
the main objective is to determine if treatment with JX-594 and sorafenib increases survival in patients
with advanced HCC who did not previously receive systemic therapy (NCT02562755). Therefore,
development of new preclinical models to evaluate the effects of oncolytic viruses in HCC will pave the
road for advanced clinical trials and speed up development of new cancer treatments. In line with that,
new generations of OVs have been developed with greater potential to specifically target tumor cells
and stimulate the immune response [163,164]. Recently, Nakatake et al. [163] examined the antitumor
activities and immune response of third-generation HSV T-01 in HCC cell lines and mouse xenograft
models. Application of the virus successfully led to increased expression of MHC class I molecules
on tumor cells, which further stimulated CD8+ T cell-mediated immune response. Importantly, viral
treatment induced only antitumor effects without affecting normal cells, demonstrating great potential
and specificity of this approach [163]. The capability of HSV-1 was further examined in a study where
a novel HSV-1 vector, Ld0-GFP, was developed. Administration of the vector clearly showed increased
tumor selectivity and oncolytic capacity against HCC by enhancing cell apoptosis in different mouse
models. Overall, viral-induced oncolysis provoked strong immunogenic cell death by activating the
immunogenic cell death pathway [165]. Despite the above mentioned OVs, several other viruses have
also been explored in the context of HCC.

Overall, both exploration of neoantigens and direct tumor lysis by OV, show great translational
value, as some of the investigated models and are currently investigated in clinical trials.

5.3. Targeting HCC Biomarkers–Vaccines, Antibodies, and Cytokines

Targeting a specific marker or a component of immune defense in HCC could be an effective way
to overcome resistance commonly observed with classic chemotherapies [111]. New opportunities
are emerging as specialized anti-cancer vaccines are developed and tested in animal models [166].
Most compelling are the vaccines that specifically target HCC-associated markers such as AFP and
GPC3 (approach known as “antigen-defined”) [167–169]. Many studies exploited the potential of
AFP for designing an effective HCC vaccine [170–173]. In order to induce immune response, different
approaches such as application of AFP plasmid DNA, dendritic cell (DC) transduction with viral vectors,
or a combination of AFP with heat shock proteins have been evaluated [170–173]. However, the most
promising results of AFP cancer immunization were achieved through production of epitope-optimized
AFP, which effectively activated CD8+ T cells and generated potent antitumor effects in HCC mouse
model [174]. Several studies tried to target the activation of GPC3, a glycoprotein overexpressed
in many HCC tissues, in order to design an effective vaccine [169]. Preclinical evidence suggests
that intravenous injection of the GPC3-coupled lymphocytes can induce a strong anti-HCC effect by
regulating systemic and local immune responses [169].

In addition to the above-mentioned vaccine-based approaches, a growing number of antibodies
are produced to eradicate or neutralize specific molecular or cellular targets [61]. Several antibodies
were also successfully targeted including GPC3, a member of the TNF receptor family CD137,
transmembrane four L6 family member 5 protein, and fibrinogen-like protein 1 [175–177]. These
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investigations also demonstrated various degrees of anti-tumor and immune-modulatory capacity.
In addition, immune modulation directed against liver cancer can be initiated by a release of cytokines
involved in cellular antitumor response [178,179]. For instance, IL-33 release in murine HCC showed to
markedly inhibit tumor growth via activated CD4+ and CD8+ T cells, in IL-33-expressing tumor-bearing
mice, while IL-18/IL-12 cytokine therapy was effective in tumor regression prompted by induction of
NK cells [178–180].

Taken together, development of different strategies to target specific HCC biomarkers and to
modulate cytokine release shows big potential in immunotherapy of HCC.

5.4. Adoptive Cell Transfer and CAR T Cells

The basic principle of adoptive cell transfer is to disrupt the immune tolerance of tumors
and, consequently, to suppress the growth and survival of tumor cells. This is achieved when
lymphocytes are extracted from the patients, with the purpose of modification and amplification
in vitro, and, subsequently, transferred back into the patient. This method enhances the overall specific
antitumor effect [181]. Most of the recent studies on adoptive cell transfer were focused on targeting
GPC3 [182]. In a seminal study, GPC3-specific CD8+ T cells were engineered and subsequent antitumor
capabilities in HCC xenograft mice were tested. This approach showed only partial response, as CD8+

T cells were only able to slow down tumor growth in whole-body irradiated mouse model. Further,
immunodeficient model displayed higher suppression of tumor growth. In this model, failure of
significant tumor response was consequence of a lack of CD8+ T cell infiltration into the tumor and by
mosaic-pattern of GPC3 expression which could be enhanced in future studies [182].

However, more recently, CAR T cell-based therapy gained increasing attention as a potentially more
efficient method to target tumor cells [183–186]. Earlier studies have already proven the potential of CAR
T cells to effectively target GPC3+ HCC cells in vivo. Anti-GPC3 CAR T cells successfully suppressed
tumorigenesis in subcutaneous tumors and significantly affected tumor growth in subcutaneous and
orthotopic xenografts [183]. Similar observation was noted in a patient-derived xenograft model. CAR
T cells directed against GPC3 eradicated tumors from patient derived xenografts that showed less
aggressive phenotype and lacked PD-L1 expression, while on the contrary, GPC3 CAR T cells were
less potent in aggressive tumors with high PD-L1 expression. This all emphasized the potential of
combination therapy with immune checkpoint inhibitors [185]. Except of combining GPC3-CAR T
cells with checkpoint inhibitors, Wu et al. investigated potential application of sorafenib to induce
additive effects. The authors reported that sorafenib enhanced the antitumor effects of CAR T cells,
partially by promoting IL12 secretion by TAMs as well as promotion of apoptosis in immunocompetent
and immunodeficient mouse models of HCC [186]. It is also important to mention that NK cells
were investigated in the context of chimeric antigen receptor with promising results. This makes NK
cell-based therapy as a novel treatment option for patients with GPC3+ HCC [184].

Major studies on CAR T cells in HCC have been conducted with the main focus on GPC3.
They shed more light on this complex topic and provided evidence for further investigations to define
new targets for CAR T treatments. However, heterogeneous intra- and inter-tumoral expression of
surface antigens as targets for CAR T-based approaches including GPC3 severely complicate this
approach in human HCC.

5.5. Targeting Cross-Communication between MDSCs and the TME

The chronically altered tumor microenvironment in HCC, particularly liver fibrosis, significantly
shapes and modulates the course of HCC development specifically by reprogramming an
immunosuppressive mechanism [187]. Accumulation of monocytic MDSCs (M-MDSC) in fibrotic
tumor microenvironment in orthotopic mouse model can significantly reduce the number of TILs
and increase tumorigenicity [187]. Recent investigations have revealed that contribution to immune
tolerance and higher tumorigenicity was closely connected to the interaction between HSC from the
fibrotic microenvironment and M-MDSC [187]. Namely, HSC could induce M-MDSC accumulation
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and immunosuppression through p38 MAPK-mediated enhancer reprogramming. Treatment with
BET bromodomain inhibitor significantly reduced the level of M-MDSC and increased the level of
tumor-infiltrating CD8+ T cell. When BET bromodomain inhibitor treatment was combined with
anti-PD-L1 therapy, synergistic effects of the treatments led to tumor eradication and prolonged survival
in this fibrotic-HCC mouse model. Therefore, targeting cross-communication (HSC-M-MDSC) in fibrotic
liver could be a novel therapeutic strategy that could improve the efficacy of anti-PD-L1 therapy [187].
More evidence on how the response to PD-1/PD-L1 therapy could be further improved is presented
by indirect modulation of IL-6 signaling, a major immune-modulatory cytokine in the liver [188].
Inhibition of Ccrk and CCRK/EZH2/NF-κB/IL-6 signaling cascade can bypass MDSC-mediated IFN-γ+

TNF-α+CD8+ T cell exhaustion and cause reduction in tumorigenicity. More importantly, inactivation
of this signaling cascade paralleled with administration of anti-PD-L1 therapy could improve efficacy
of checkpoint inhibitors in orthotopic HCC model and prevent immune evasion [188].

5.6. Targeting MDSC, TAMs, and Innate Immunity Interaction for HCC Prevention

Given the fact that macrophages promote HCC progression, therapeutic manipulation of this
interaction is of major interest. This includes the inhibition of monocyte recruitment into the liver,
polarization from M1 to M2 macrophages, inhibition of TAM associated cytokines, or direct inhibition
of macrophages present in the tumor [189–192]. Blocking of CCL2-CCR2, which inhibits monocyte
recruitment, was revealed to be effective in HCC mouse models. Namely, this approach increased
tumor infiltrating macrophage numbers, promoted polarization into a M2 phenotype as well as
enhanced a T cell antitumor response [193,194]. Moreover, treatment with Mi-RNA-26a effectively
suppressed tumor growth by downregulating colony stimulating factor-1 (CSF1 or M CSF), which
further inhibited macrophage recruitment [195]. Blocking of CSF1 and CSF1 receptor (CSF1R) has
also been demonstrated to enhance the effectiveness of immune checkpoint inhibitors [157]. A recent
study has reported that Osteopontin facilitates chemotactic migration and M2-like polarization of
macrophages and promotes the expression of PD-L1 in HCC. These events are mediated via activation of
CSF1-CSF1R pathway in macrophages, which leads to increase of immunosuppressive cytokine levels.
Therefore, blocking the CSF1/CSF1R pathway could effectively prevent macrophage recruitment and
M2 phenotype polarization, activate CD8+ T cells, and sensitize HCC to anti-PD-L1 immune checkpoint
blockade (Figure 2) [157]. PLX3397 also inhibits CSF-1R and could prevent tumor growth in a murine
HCC model by macrophage reprogramming [192]. Another agent, baicalin (a flanonoid), repolarized
macrophages into M1-like macrophages in an orthotopic mouse model of liver cancer [196]. All these
translational findings suggest potential combination therapies to reprogram the immunological TME.

From the perspective of innate immunity, NK cells are considered to be one of the key players in the
prevention of HCC [29,197]. They exert a critical role in the antitumor immunity by modulating both,
innate immunity as well as activation of adaptive immunity, by cross-talking with DCs and promoting
a T helper cell (Th)1-mediated immunity [29]. However, positive role of NK cells in fight against cancer
has often been impaired in HCC [198,199]. It was already shown that MDSCs in patients with HCC
suppress the innate immune system by diminishing autologous NK cell cytotoxicity and cytokine
secretion. These events activate immune suppressor network and allow the tumors to evade the host
immune response [200]. Earlier studies in mice determined that inhibition of NK cell cytotoxicity is
contact-dependent, where MDSCs inhibit IL-2-mediated NK cell activation, by dysregulating Stat5
signaling [201]. More evidence on the dysregulation of NK cells by MDSCs was obtained in the liver
cancer-bearing mouse model. Results showed that increased levels of MDSC directly influenced NK
cell function by inhibition of their cytotoxicity and IFN-γ production. The main mediator of NK cell
suppression was membrane-bound TGF-β1 on MDSC [29]. Taken together, disruption of interaction
between MDSC and components of innate immunity, particularly NK cells, represents an attractive
approach to confront development of HCC.
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6. Conclusions and Future Direction

Primary liver cancer develops in a fine-tuned and very complex microenvironment. Immune cell
composition and interactions with tumor as well as stromal cells play a crucial role in development and
progression of liver cancer. Modern immune-oncological approaches in HCC significantly expanded the
landscape of active compounds in HCC over the recent years. However, efficacy of targeting individual
aspects of immune response, including checkpoint molecules, remain decisively low. Furthermore,
predictive biomarkers for therapy response are still largely missing. Thus, implementation of results
and different approaches from preclinical, translational studies might be of utmost importance to
identify novel cellular or molecular targets that synergistically could improve currently used strategies.
Herein, an improved understanding of the landscape of immune-oncological alterations and rationale
for subsequent molecularly-guided combination therapies are urgently needed. Up till now, our current
understanding remains incomplete and precise dissection of intra- and inter-tumoral heterogeneity
using single cell sequencing approaches still is in its infancy for HCC. In addition, detailed knowledge
on the immune-cell contexture will add additional layers of complexity that requires detailed preclinical
models that closely resemble authentic human HCC. However, a better understanding of molecular
interaction and pathways on a cellular level is imperative to develop new treatment regimens or
combination of regimes. As the knowledge on molecular and immune-modulatory pathways evolve,
the corresponding context of application and genetic background will need to be tightly controlled
to ultimately implement the translational finding, overcome therapy resistance, and increase clinical
response rates. Nevertheless, recent findings form clinical trials on different combination therapies are
highly promising and will likely further shape the therapeutic landscape and enter the clinical practice
of HCC treatment.
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Abbreviations

Ab Antibody
AFP alpha-fetoprotein
APC antigen presenting cells
CCRK cell cycle-related kinase
CPS combined positive score
CSF1 colony stimulating factor 1
CSF1R colony stimulating factor receptor 1
CTLA-4 cytotoxic T lymphocyte antigen 4
CXCR-4 CXC receptor type 4
DC dendritic cell
GPC3 glypican-3
HCC hepatocellular carcinoma
HSC hepatic stellate cell
ICI immune checkpoint inhibitor
IDO1 indoleamine 2,3-dioxygenase 1
LAG3 lymphocyte activation gene 3
M-MDSC monocytic MDSC
MDSC myeloid-derived suppressor cells
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steato hepatitis
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NF-κB nuclear factor-κB
NK cells natural killer cells
NSCLC non-small cell lung cancer
OR overall response rate
OS overall survival
PBMC peripheral blood mononuclear cells
PD-1 programmed death protein 1
PD-L1 programmed death ligand 1
PFS progression free survival
PSC primary sclerosing cholangitis
TAM tumor-associated macrophages
Th T helper
TIL tumor infiltrating lymphocytes
TIM3 T cell membrane protein 3
TKI tyrosine kinase inhibitor
TME tumor microenvironment
TPS tumor proportion score
Treg regulatory T cells
VEGF vascular endothelial growth factor
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