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Summary

Circulating extracellular RNAs (exRNAs) are potential biomarkers of disease. We thus

hypothesized that age-related changes in exRNAs can identify age-related processes.

We profiled both large and small RNAs in human serum to investigate changes asso-

ciated with normal aging. exRNA was sequenced in 13 young (30–32 years) and 10

old (80–85 years) African American women to identify all RNA transcripts present in

serum. We identified age-related differences in several RNA biotypes, including mito-

chondrial transfer RNAs, mitochondrial ribosomal RNA, and unprocessed pseudo-

genes. Age-related differences in unique RNA transcripts were further validated in an

expanded cohort. Pathway analysis revealed that EIF2 signaling, oxidative phosphory-

lation, and mitochondrial dysfunction were among the top pathways shared between

young and old. Protein interaction networks revealed distinct clusters of functionally-

related protein-coding genes in both age groups. These data provide timely and rele-

vant insight into the exRNA repertoire in serum and its change with aging.
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1 | INTRODUCTION

Aging is the predominant risk factor for a myriad of conditions

including neurodegenerative, cerebrovascular, cardiovascular, and

neoplastic diseases. Significant expansion of the older population

highlights the pressing need to discover circulating factors that may

serve as potential biomarkers of or therapeutic targets for age-

related diseases, as well as factors associated with resilience and

healthy aging. Accumulating evidence suggests that circulating fac-

tors play important roles in regulating tissue function and aging.

Studies demonstrate that old mice exposed to blood from young

mice improved cognitive and muscle function and had less-evident

brain atrophy (Conboy et al., 2005; Katsimpardi et al., 2014; Villeda

et al., 2014). The circulating molecules that mediate this effect are

yet to be elucidated. The discovery of circulating cell-free DNA (ex-

tracellular DNA; exDNA) and RNA (extracellular RNA; exRNA) in

human body fluids, including serum, has sparked great interest in

whether these molecules are functional, have regulatory effects, or

can be used as markers of disease. For example, exDNA found in

maternal serum has led to significant advancements in prenatal test-

ing and diagnosis (Chiu & Lo, 2013; Fan, Blumenfeld, Chitkara,

Hudgins & Quake, 2008; Fan et al., 2012; Lo et al., 1997), and for

prediction of heart transplant rejection in adults (De Vlaminck et al.,

2014; Snyder, Khush, Valantine & Quake, 2011).

ExRNAs have been identified in most bodily fluids including

plasma, serum, urine, saliva, and cerebrospinal fluid [for review see
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(Dluzen, Noren Hooten & Evans, 2017)]. In general, the most well-

studied biotype of exRNA has been microRNAs (miRNAs), but other

noncoding RNAs (ncRNAs) are also present in extracellular fluids

including Piwi-interacting RNAs (piRNAs), long noncoding RNAs

(lncRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoR-

NAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), Y-RNAs, and

circular RNAs (circRNAs) (Amorim et al., 2017; Wei et al., 2017; Yeri

et al., 2017). Although not as well-characterized, fragments or tran-

scripts of messenger RNA (mRNA) have also been identified in extra-

cellular fluid (Amorim et al., 2017; Wei et al., 2017).

Thus far, the majority of exRNA research has used small RNA

next generation sequencing approaches to identify only small

ncRNAs (Freedman et al., 2016), with the most insightful and

provocative findings coming from extracellular, circulating miRNAs.

miRNAs are resistant to nucleases due to their small size and the

fact that in body fluids, they are likely protected in extracellular eve-

sicles (EVs) or bound to protein or high-density lipoprotein (HDL)

binding partners (Brase, Wuttig, Kuner & Sultmann, 2010; Cortez

et al., 2012; Reid, Kirschner & van Zandwijk, 2011; Wagner et al.,

2013). This reservoir of miRNAs may transit to other cells and tis-

sues where in some cases they influence gene regulation and may

play a role in physiology and pathology (Hergenreider et al., 2012;

Wei et al., 2017; Zhang et al., 2010, 2015). Earlier, we found that

several circulating miRNAs are lower in abundance as humans age

(Noren Hooten et al., 2010, 2013). Furthermore, circulating miRNAs

are useful diagnostic markers for the prognosis and response to

treatments for a plethora of diseases including cardiovascular dis-

ease, diabetes, and cancer (Melman et al., 2015; Schwarzenbach,

Nishida, Calin & Pantel, 2014; Willeit et al., 2017).

Here, we sought to identify exRNAs from serum and assess

their association with aging. We developed a comprehensive

sequencing protocol and analysis strategy to sequence and profile

total extracellular RNA (both small and large together) in serum

samples as a function of human aging. Our approach not only cata-

loged and classified the various RNA species in serum from com-

munity-dwelling individuals, but also identified age-related

differences in different types of RNA species. Unlike other studies,

we also followed up our sequencing results using real-time quanti-

tative PCR (RT-qPCR) to further validate significant age-related dif-

ferences. We found significant age-related differences in several

different RNA types, including mRNAs, transcripts expressed from

pseudogenes, snoRNAs, miRNAs, and circRNAs. This analysis pro-

vides insight into the potential functional roles that exRNAs play in

human health, signaling, and disease, and may uncover important

diagnostic or therapeutic targets for future studies and interven-

tions in aging and age-related diseases.

2 | RESULTS

2.1 | Summary of the sequencing alignments

Total, cell-free extracellular RNA (exRNA) was isolated from human

serum from 23 African American females; 13 young participants

(30.9 years) from the HANDLS study and 10 old participants from

the BLSA study (81.8 years; see Supporting Information Table S1 for

complete demographics). Next generation RNA-seq was performed

to capture both long and short RNA transcripts in one comprehen-

sive protocol. There was an average filtered read count of ~7.57 mil-

lion and ~8.28 million for the young and old individuals, respectively

(Supporting Information Table S1). We aligned the sequenced reads

to the human genome v19 (hg19) using an analysis pipeline to sepa-

rately identify linear RNAs, mature miRNAs, or circular RNAs (cir-

cRNAs) using available software tools and custom scripts (Figure 1).

There was an average of 4.32 million and 4.98 million aligned reads

in young and old, respectively.

Analysis of aligned read counts identified over 53 and 57 million

aligned reads in young and old persons, respectively, classified into

38 Ensembl RNA biotypes (Supporting Information Table S2). We

observed variability in the total aligned reads of each biotype

between young and old individuals and significant changes with age

in the sequenced read counts of mitochondrial rRNAs, mitochondrial

tRNAs, and unprocessed pseudogene-encoded transcripts (Figure 2a,

b). Age-related differences in the levels of snoRNAs and misc_RNAs

were also observed but these did not achieve significance (p < 0.09;

Figure 2a,b). rRNAs accounted for the majority of exRNA (57.9%

young and 64.5% old) (Supporting Information Table S2).

We summarized the number of linear transcripts that were

detected in at least one individual through 100% of the individuals

in each age group (Supporting Information Table S3). Many unique

transcripts were identified in only one individual (115,996 in young

and 112,031 in old). Examination of transcripts identified in 90% of

each age group found that there were 826 unique to young, 1,135

unique to old individuals and 525 transcripts that were overlapping

in both young and old (Figure 2c; Supporting Information Table S3).

These patterns suggest that exRNA profiles may be unique to each

age group, but also shows the validity of our approach that many

exRNA transcripts were identified in the majority of individuals.

We then analyzed the normalized read count (FPKM) for the

linear transcripts. We excluded transcripts with ≤1 FPKM, predicted

transcripts, and miRNAs from this analysis. We categorized the

number of linear transcripts that were detected in at least one indi-

vidual to 100% of the individuals (Table 1). We also report the

number of transcripts that were not only unique to young or old

and but also overlapping between the groups and transcripts that

showed a significant age-related change (Table 1). To get a better

idea about each individual’s exRNA biotypes distribution, we visual-

ized this using a donut graph where each layer represents the dis-

tribution of RNA biotype for each individual (Figure 2d). As

multiple transcripts (having unique ENSEMBL IDs) can come from

the same gene, we wanted to address the number of unique genes

in our exRNA profiles. Unique genes were defined by having a sin-

gle gene symbol. In 90% of our samples, 102 unique genes were

identified in young, 214 in old and 266 were shared among the

two groups (Figure 2e).

Recent analysis of exRNA secreted in extracellular vesicles (EVs)

from glioblastoma cells in vitro indicates that ncRNA composes the
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majority of exRNA species compared with mRNA (Wei et al., 2017).

To establish whether this trend is similar for exRNA in serum, we

categorized the transcript biotypes into either ncRNA or protein-

coding RNA using ENSEMBL classifications (Supporting Information

Table S2). We removed Mt_rRNA, rRNA and to be experimentally

confirmed (TEC) biotypes. The total aligned reads for each biotype

were used for our comparison. ncRNAs were the most abundant

RNA class in both young and old individuals compared with mRNA

(Figure 2f).

We initially compared FPKM differences in linear transcripts and

found several different transcripts that were differentially expressed

with age (Figure 3a). Given the large dynamic range in our dataset,

we chose to use the DESeq2 algorithm in BRB-Arraytools (Love,

Huber & Anders, 2014) as this is a more suitable computational tool

for comparative analysis in our dataset, particularly because it can

assess differential-gene expression in datasets with large ranges.

DESeq2 identified 1,154 genes significantly different between young

and old (Supporting Information Table S4). We imputed our DESeq2

gene set into PAGE analysis to identify enriched gene ontology (GO)

gene sets. GO analysis between young and old identified significant

enrichment in older individuals in genes related to the mitochon-

drion, response to oxidative stress, and chromatin remodeling,

among others. Top GO terms with significantly decreased enrich-

ment in old include various signaling pathways including signal trans-

ducer activity, receptor activity, and others (Figure 3b). A complete

list of all GO terms and those broken down by biological process,

molecular function, and cellular component can be found in Support-

ing Information Table S5.

2.2 | Validation of age-related changes in exRNA

To assess the quality of our sequencing analysis, we set out to vali-

date various transcripts in serum by RT-qPCR analysis using an

expanded young (n = 39; 31.09 � 0.97 years) and old (n = 20;

81.8 � 1.26 years) cohort from HANDLS and BLSA, respectively.

We chose to validate the expression of different RNA biotypes and

selected several transcripts that showed the strongest age-depen-

dent changes in our sequencing analysis in either the FPKM or

DESeq2 analyses, including SNORD69 which was found along with

MT-TL1 and MT-ND1 to be significantly changed with age in both

analyses. In addition, we examined the sequencing coverage for each

transcript chosen for validation (Supporting Information Figures S1–

S4). Although the coverage varied per individual and per gene, in

some genes, we detected sequences across the majority of the

exons, but in others, we did not (Supporting Information Figures S1–

S4). The coverage information was used for gene-specific primer

design (sequences in Supporting Information Table S2). We found

significant age-related changes in a coding transcript (HBB mRNA), a

small nucleolar RNA (SNORD69), a pseudogene transcript (RNY4P8),

and a small nuclear pseudogene transcript (RNU2-59P) (Figure 4a).

These data indicate we can identify and validate age-related changes

in exRNAs.

Sequencing workflow

Serum from 
HANDLS & BLSA participants

Total RNA isolation 
using double

Trizol LS-chloroform extraction
from 200 µl serum

Fragmentation of RNA
to approx. 200 bp in length

Library preparation 
using Ion Total RNA-Seq kit v2

Template preparation 
using One Touch 2

Sequencing 
using Ion Proton sequencer

(a)

FASTQ files 
from sequencer

Align to human genome v19 
using STAR aligner from 

ENCODE with parameters 
optimized for long transcripts

Align to human genome v19 
using STAR aligner optimized for 

short transcripts

Find circRNA junctions 
using custom scripts based on 

circExplorer

Assemble into transcripts 
using Cufflinks

Result: 
Known and novel transcripts

Result: 
Annotated circular RNA

Annotation of circRNA 
using custom scripts

Align miRNAs using miRDeep2

Result: 
Known and novel miRNA 

with structure

miRNA structure using RNAfold 

Analysis workflow(b)

Filtered FASTQ files

Annotation of linear RNA 
using custom scripts

F IGURE 1 Schematic of sequencing and analysis pipelines. Overview of the study design for sample RNA sequencing (a) and for alignment
and identification of linear RNA, miRNA, and circRNA reads (b)
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F IGURE 2 Age-dependent changes in transcript biotype. (a) Percentage of total aligned reads for RNA from young and old participants by
ENSEMBL biotype. Numerical values for each biotype are found in Supporting Information Table S2 (b) Changes in biotype with age are
shown. Histograms show the sum of total aligned reads in each age group � SEM. *p < 0.05, **p < 0.01, or #p < 0.09 by Student’s t test. (c)
Venn diagram showing the number of transcripts in 90% of samples in each age group. (d) Variation in transcript biotype is visualized using a
donut graph where each layer corresponds to an individual and biotypes of interest are highlighted. (e) Venn diagram showing unique genes in
90% of young/old samples. (f) Comparison of ncRNA vs. protein-coding RNA composition in exRNA from young and old individuals.
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In our sequencing pipeline (Figure 1b), we identified a total of 545

circulating miRNAs. We used DESeq2 to analyze differentially

expressed miRNAs between young and old and identified 12 miRNAs

that were significantly different between age groups. Recently, we ana-

lyzed existing studies in the literature to identify a number of circulating

miRNAs that change with age in multiple studies (Dluzen et al., 2017).

Here, we chose these miRNAs to further validate in this independent

cohort (miR-25-3p, miR-92a-3p, miR-93-5p, miR-101-3p, miR-106b-5p,

miR-142-5p, miR-151a-3p, and miR-181a-5p). With the exception of

miR-106b-5p and miR-142-5p, all the other miRNAs we validated were

found to be significantly downregulated with age, including miR-151a-

5p, miR-181a-5p, and miR-1248, which we previously found to be

decreased in older individuals in a different aging cohort (Noren Hooten

et al., 2013). We also validated new age-related miRNAs identified in

our current sequencing analysis and identified several new aging-related

miRNAs including miR-30e-5p, miR-145-5p, miR-191-5p, miR-320a,

miR-3607-5p, miR-425-5p, and miR-6087 (Figure 4b,c).

2.3 | ExRNA pathway analysis

We wanted to better understand the biological pathways that are

represented by the genes we identified. We used the STRING data-

base to generate a protein–protein interaction network of the genes

detected in the circulation of young and old individuals. STRING

assembles associations of either known or predicted protein–protein

interactions to build a genome-wide functional network (Szklarczyk

et al., 2017). Each node represents a different exRNA, the colors

identify clusters, and the lines signify the different functional (direct

or indirect) relationship. Several different clusters were identified

containing genes encoding mitochondrial proteins, ribosomal pro-

teins, and histones/transcription factors (Supporting Information Fig-

ures S5 and S6). Similar clusters were observed in both young and

old individuals, yet the clusters were not as well-organized in the old

as in the young (Supporting Information Figures S5 and S6). These

networks suggest that the exRNAs we identified are related func-

tionally and not just a random assortment of RNAs.

To gain additional information about the pathways that may be

regulated by these genes, we used Ingenuity Pathway Analysis to

assess the Top Canonical Pathways and Molecular and Cellular func-

tions that are regulated by these exRNAs (Table 2). Overlapping

pathways were identified in both young and old including EIF2 sig-

naling, oxidative phosphorylation, mTOR signaling, and mitochondrial

dysfunction (Table 2). Some pathways were unique to an age group.

For example, Systemic Lupus Erythematosus Signaling was only iden-

tified in old, which is interesting considering that Lupus is an autoim-

mune disease that is more prevalent in African American women.

We also analyzed the top molecular and cellular functions predicted

to be regulated by these exRNAs (Table 2). Several of these pathways

are considered as various hallmarks of aging including protein synthesis,

cell cycle, DNA replication, recombination and repair, and cell-to-cell

signaling and interaction, which were among the top functions repre-

sented in our younger cohort (Lopez-Otin, Blasco, Partridge, Serrano &

Kroemer, 2013). In old individuals, free radical signaling and carbohy-

drate metabolism, which are also dysregulated during the aging process,

were also among the top functions (Lopez-Otin et al., 2013).

2.4 | circRNAs are present in serum and change
with age

In addition to examining linear transcripts and miRNAs, we used

scripts to identify exon-junction anomalies indicative of circRNAs.

We next ascertained and annotated the potential circRNAs using

custom scripts based on circExplorer and found 133 circRNAs with

>3 reads total in serum (Figure 5a,b; Supporting Information

Table S6). Of these 133 circRNAs, 122 of them were present in the

circRNA database, circBase (Figure 5c) (Hudson, Stark, Fast, Russell

& Rader, 2015). The 11 circRNAs we identified that are not anno-

tated in circBase are hg19_circ_chr12_46764960_46765162_R,

hg19_circ_chr5_131034609_131055110_R, hg19_circ_chr9_100823063_

100840629_F, hg19_circ_chr7_65945380_65953025_R, hg19_circ_

chr10_12272946_12280484_F, hg19_circ_chr8_82583173_82593819_R,

hg19_circ_chr16_69718789_69728142_F, hg19_circ_chr9_139341423_

TABLE 1 Number of linear RNA transcripts by FPKM detected in each age range

Sequenced transcripts >1 FPKM in young >1 FPKM in old
# overlapping between
young and old

# with significant,
age-related changes

Detected in at least 1 sample 21,696 17,049 8,746 –

Detected in 10% of samples 6,640 17,049 4,549 –

Detected in 20% of samples 3,100 4,668 1,968 –

Detected in 30% of samples 1,833 2,094 1,145 –

Detected in 40% of samples 857 1,174 603 –

Detected in 50% of samples 629 772 449 28

Detected in 60% of samples 461 541 331 24

Detected in 70% of samples 203 382 170 17

Detected in 80% of samples 135 249 101 12

Detected in 90% of samples 79 142 55 9

Detected in 100% of samples 36 50 21 2
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139341678_R, hg19_circ_chr17_29164223_29167799_F, hg19_circ_

chr21_30434648_30434736_R, and hg19_circ_chr5_169108747_16912

2942_F (Supporting Information Table S6).

The majority of circRNAs were low in abundance; however, sev-

eral were detected at a higher number of reads (Figure 5a,b). cir-

cRNAs were derived from all chromosomes with chromosomes 1, 2,
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3, 7, and 10 containing the greatest number of unique circRNA tran-

scripts (Figure 5d). The most abundant circRNAs were from chromo-

somes 3, 10, and 12 (Figure 5e).

As circRNAs have not been extensively investigated from serum

or plasma, we chose to further enhance our computational approach

by validating the presence of circRNAs using RT-qPCR analysis. We

chose several circRNAs to validate in our larger cohort of young and

old individuals. These circRNAs were the most abundant and/or

were also present in ≥2 individuals in our sequencing. Divergent pri-

mers for each circRNA were designed using CircInteractome (Dude-

kula et al., 2016). Each primer set was validated initially by

examining RNA isolated from PBMCs, HUVECs, and serum. Amplifi-

cation plots, dissociation curves, and analysis of RT-qPCR products

showed that each primer set amplified a single RT-qPCR product

indicative of amplification of a single circRNA (Supporting Informa-

tion Figures S7 and S8). Products from the RT-qPCR reactions were

analyzed by gel electrophoresis to further visualize that a single RT-

qPCR product was amplified (Supporting Information Figures S7 and

S8). Intriguingly, the highly abundant hsa-circ_0001305 (circ_1305)

and hsa-circ_0001445 (circ_1445) were present in serum, but were

not detectable in PBMCs or HUVECs (Supporting Information Fig-

ure S7). hsa-circ_0000722 (circ_722) was present in serum and

PBMCs but at lower levels in HUVECs (Supporting Information Fig-

ure S7). We designed multiple primer sets to analyze hsa-

circ_0005870 expression, but we were unable to amplify this cir-

cRNA from PBMCs, HUVECs, or serum (data not shown). Therefore,

we did not analyze this circRNA in our expanded cohort of individu-

als.

Examination of circRNAs in our expanded young and old cohort

revealed that circRNAs circ_1305 and circ_722 were significantly

higher and circ_1445 was significantly lower in old individuals com-

pared with young (Figure 5g; Supporting Information Figure S8). Anal-

ysis of RT-qPCR products also showed a single band indicative of

amplification of a single circRNA (Supporting Information Figure S8).

circRNAs contain binding sites for both miRNAs and RNA-binding pro-

teins, and here, we found that these extracellular circRNAs (ex-
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circRNAs) contain predicted binding sites for both miRNA and RBPs

(Figure 5f). Several of the predicted miRNAs (highlighted in red in Fig-

ure 5f) were also present in serum in our sequencing analysis. The

transcripts encoding the RBPs that were predicted to bind were not

present in serum in our cohort. Together, not only did our sequencing

analysis detect the presence of circRNAs in serum, but we also vali-

dated that three circRNAs are significantly changed with age.

3 | DISCUSSION

Here, we have cataloged and classified the various serum exRNA

species in young and old individuals. Our unique approach also iden-

tified age-related differences in different types of RNA species. It is

interesting that we found higher serum levels of both mitochondrial

tRNAs and mitochondrial rRNAs with age. This is consistent with

data in the literature that mitochondrial function is progressively

impaired with aging in animal models as well as in humans and is a

hallmark of aging (Lopez-Otin et al., 2013). Our network analysis

identified a cluster of mRNAs encoding mitochondrial proteins (Sup-

porting Information Figures S5 and S6). Furthermore, our pathway

analysis identified mitochondrial dysfunction and oxidative

phosphorylation among the top canonical pathways. Cells have been

found to shed lysosome-like vesicles and entire mitochondria into

EVs through a mitophagy-dependent mechanism (Phinney et al.,

2015). In fact, mesenchymal stem cells use this mechanism to release

mitochondria in EVs in response to oxidative stress (Phinney et al.,

2015). Here, perhaps the higher levels of mitochondrial RNAs in

serum with age may be a consequence of mitochondrial dysfunction

and higher levels of oxidative stress that occur with age.

We also observed that many different RNA biotypes were

equally distributed among exRNA from young and old individuals,

and many transcripts were detected in both young and old individu-

als. These data show the validity of our sequencing approach and

suggest that a relative consistency among age groups in the exRNA

profiles. In both young and old women, ncRNAs were more abun-

dant than mRNAs (Figure 2). These data are consistent with a recent

report comparing RNA isolated from cells and EVs from glioma stem

cells (Wei et al., 2017). However, we also observed age-related dif-

ferences among snoRNAs. Although the difference was not signifi-

cant overall for this biotype, we did follow up in our validation

studies and found significant differences in a specific snoRNA,

SNORD69, which was found to be differentially expressed using

either FPKM or DESeq2 analysis (Figures 3 and 4). A recent study

has also identified snoRNAs in plasma (Freedman et al., 2016); how-

ever, differences in nomenclature impair the ability to cross-compare

the studies. Nevertheless, in this study, several snoRNAs were found

to be decreased in plasma of individuals >66 years (Freedman et al.,

2016), which is consistent with our snoRNA data.

A limited number of papers have examined whether circRNAs

may be present in serum, mostly using computational methods

(Amorim et al., 2017; Gu et al., 2017; Wei et al., 2017). Here, we

have used a combination approach and identified 133 extracellular

circRNAs (ex-circRNAs) and further validated age-related changes in

three different ex-circRNAs: circ_1305, circ_722, and circ_1445.

Emerging data suggest that circRNAs can function to sponge miR-

NAs and RBPs (Panda, Grammatikakis, Munk, Gorospe & Abdel-

mohsen, 2017). Here, we have identified several serum miRNAs that

are predicted to bind to the ex-circRNAs and also with several RBPs.

It is interesting to speculate that these ex-circRNAs may be acting

as decoys to bind to various miRNAs, RBPs, or perhaps other

ncRNAs in the circulation or may act to illicit an immune response

to potential infections (Chen et al., 2017). Future work lies in further

delineating the spectrum of functions of ex-circRNAs.

In addition to validating circRNAs by RT-qPCR, we also validated

the levels of various serum miRNAs. We chose to validate miRNAs

that we identified in our DESeq2 analysis to be differentially

expressed with age. For a cross-study comparison, we chose many

miRNAs that previously our group and others found to be changed

with age (Dluzen et al., 2017; Noren Hooten et al., 2013). Many of

these miRNAs significantly changed with age in serum in our study.

These data will be valuable to the field as many serum miRNAs have

potential use as clinical tools.

In this study, we developed a protocol to sequence both small

and large RNAs in one sequencing reaction, which will enable

TABLE 2 Pathway analysis for exRNA from young and old

Young Old

Top canonical pathways Top canonical pathways

EIF2 signaling EIF2 signaling

Oxidative phosphorylation Systemic lupus erythematosus

signaling

Mitochondrial dysfunction mTOR signaling

mTOR signaling Oxidative phosphorylation

Protein kinase A signaling Regulation of eIF4 and p70S6K

signaling

Regulation of eIF4 and

p70S6K signaling

Mitochondrial dysfunction

Top diseases and
biological functions

Top diseases and biological functions

Cancer Cancer

Hematological disease Hematological disease

Immunological disease Organismal Injury and abnormalities

Organismal Injury and

abnormalities

Immunological disease

Tumor morphology Tumor morphology

Molecular and
cellular functions

Molecular and cellular functions

Cell death and survival Cell death and survival

Protein synthesis Free radical scavenging

Cell cycle Cellular movement

DNA replication,

recombination,

and repair

Protein synthesis

Cell-to-cell signaling

and interaction

Carbohydrate metabolism
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researchers to save on cost and time. We used this protocol to

examine exRNA species from a readily available biofluid, serum, to

identify exRNA species that are altered with age. Therefore, this

approach is readily amenable for biomedical researchers to use as a

platform for the development of clinical tools based on circulating

exRNA. At present, there are limited studies examining exRNA, both

small and large RNAs, in the context of aging. Our findings are a

start at building a bridge over this knowledge gap. In addition, our

study validates a recently published approach that incorporates RNA

fractionation as a method to capture both short and long RNAs in

one sequencing reaction (Amorim et al., 2017), with small differences

in the method to fractionate RNA.

Of note, the approach we have used does not distinguish

between exRNA associated with EVs, RBPs, HDL or those which

are nonvesicular. A recent cross-comparison analysis of the differ-

ent fractions suggests that exRNA species and abundance do vary

between exosomes, microvesicles, and the nonvesicular fractions

(Wei et al., 2017). This extensive study was performed from glioma

stem cells grown in vitro, which allows for large scale experiments.

Here, we are limited by sample volume and availability. Neverthe-

less, as larger datasets of exRNAs emerge, we can gain important

knowledge about the landscape of exRNA in a variety of different

biofluids and from cells. In summary, our comprehensive protocol

to sequence small and large RNA species in one reaction will

enable the systematic identification of exRNAs associated with

functional decline and diseases of aging. Furthermore, our data pro-

vide important steps to classifying and cataloging the repertoire of

exRNAs in the circulation. This insight will aid in identifying

whether exRNAs are suitable candidates for future diagnostics or

therapeutics.

4 | EXPERIMENTAL PROCEDURES

4.1 | Study participants

Participants were chosen from either the Healthy Aging in Neighbor-

hoods of Diversity across the Life Span (HANDLS) study or the Balti-

more Longitudinal Study of Aging (BLSA), both conducted by the

National Institute on Aging Intramural Research Program (NIA IRP),

National Institutes of Health (NIH; Supporting Information Table S1).

HANDLS is a longitudinal, epidemiological study based in Baltimore,

MD that examines the relationship between race and socioeconomic

status on aging and age-associated health disparities. HANDLS par-

ticipants are African American (AA) and white men and women resi-

dents of Baltimore, Maryland who were between the ages of 30 and

64 at baseline (Evans et al., 2010). The BLSA focuses on healthy

aging, as well as age-associated health issues, by examining a longi-

tudinal cohort of adults (Shock, 1984). HANDLS and BLSA are ongo-

ing studies that have been approved by the Institutional Review

Board of the National Institute of Environmental Health Sciences

(NIEHS), NIH. All participants provided written informed consent.

For this study, we chose young AA females (30–32 years) from

HANDLS and older AA females (80–85 years) from BLSA. (see

Supporting Information Table S1). The expanded cohort for valida-

tion studies consisted of young (n = 39; 31.09 � 0.97 years) and old

(n = 20; 81.8 � 1.26 years) AA females. Fasting blood samples were

obtained from individuals in vials with no additives, centrifuged, and

serum was collected, aliquoted, and immediately stored at �80°C.

Samples from both studies were processed in the same core labora-

tory at the NIA IRP and individuals were chosen from similar time

frames of visits. We excluded participants with documented Hepati-

tis B, Hepatitis C, or HIV infection, or with a history of cancer, lupus,

or irritable bowel disease.

4.2 | Isolation and preparation of RNA from serum

Total RNA was isolated from 200 ll of serum from 13 young

(30.9 � 0.60 years) HANDLS participants and 10 old

(81.8 � 1.87 years) BLSA participants using TRIzol LS (Life Technolo-

gies, Waltham, MA) according to the manufacturer’s instructions and

with the addition of a second phenol/chloroform extraction prior to

RNA precipitation as previously described (Noren Hooten et al.,

2013). RNA samples were resuspended in 20 ll of RNAse-free water

and frozen at �80°C until further use. RNA quality was assessed

using an Agilent BioAnalyzer (Agilent Technologies, Santa Clara, CA).

Total RNA was fragmented to <200 bp using the Bioruptor NGS

(Diagenode, Denville, NJ). In brief, RNA was diluted in RNase-free

water to a final volume of 100 ll and subjected to bioruption for

30 min (Power: H position) in an ice-cold DI water bath using 30”/

30” ON/OFF cycles with cold water bath replacement every 7.5 min.

Sample RNA was then dry vacuumed to 20 ll and tested for frag-

mentation using the Agilent BioAnalyzer Small RNA chip.

4.3 | Library preparation and next generation
sequencing

Total RNA isolated as described above was prepared for sequencing

using the Ion Total RNA-seq Kit v2 (Life Technologies) with multi-

plexing according to the manufacturer’s instructions. The Life Tech-

nologies Ion RNA Adaptors were added to the fragmented RNA at

65°C for 10 min and then allowed to hybridize at 30°C for 5 min. A

ligation reaction was carried out at 30°C for 1 hr. The Life Tech-

nologies reverse transcription primer was incubated with the ligated

samples at 70°C followed by snap-cooling on ice for hybridization. A

reverse transcription reaction was performed using Superscript III at

42°C for 30 min. Clean-up of the cDNA was performed using the

supplied magnetic bead clean-up module and 100% ethanol. Samples

were eluted from the beads using 37°C nuclease-free water. Amplifi-

cation and addition of sample-specific indexes were performed using

16 cycles of PCR to enrich the samples for fragments that contained

adaptors on both ends, followed by another magnetic bead clean-

up. These enriched samples were tested using the Agilent BioAna-

lyzer High Sensitivity DNA chips. Barcoded samples were pooled,

and each library template was clonally amplified on Ion SphereTM

Particles in the Ion One Touch II for sequencing on the Ion ProtonTM

System.
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4.4 | Sequence analysis and database comparisons

Total RNA-seq analysis was performed to identify long linear RNA,

circular RNA, and microRNA using different software tools and in-

house custom scripts (see Figure 1). In short, raw fastq files were

obtained using Life Technologies Torrent Software Suite and cleaned

using the cutadapt program. Samples with sequenced read counts

<1,000,000 were excluded from the analysis.

The sequences were aligned against the human genome version

19 using STAR from ENCODE and assembled using Cufflinks against

the Ensembl human transcript annotation v72. Transcript and gene

read counts were obtained using subread featureCounts software. The

“fusion reads” were parsed and circRNAs were identified from these

“fusion reads” using CircExplorer (v1.1). For circRNA analysis, any cir-

cRNA detected that contained <3 reads in all individuals was excluded.

miRNAs were identified using mirDeep2 software (Friedlander et al.,

2008). Differential miRNA and gene expression between young and

old was determined using DESeq2 (Love et al., 2014) algorithm in

BRB-Arraytools. BRB-ArrayTools was developed by Dr. Richard Simon

and the BRB-ArrayTools Development Team (https://brb.nci.nih.gov/

BRB-ArrayTools/). All data were annotated using custom scripts. Data

are available at GEO (Accession Number: GSE112289).

4.5 | Transcript validation

Total RNA was isolated from 50 ll of human serum using the same

protocol described above and RNA was resuspended in 20 ll

RNAse-free water. For linear RNA transcripts, 10 ll of RNA was

transcribed into cDNA using random hexamers and Superscript II

Reverse Transcriptase (Invitrogen). For miRNA, the remaining 10 ll

was transcribed into cDNA using the QuantiMiR RT Kit (Systems

Biosciences, Mountain View, CA). Reactions were performed with

29 SYBR Green Master Mix and gene-specific primers (Supporting

Information Table S7). Reverse transcription and quantitative real-

time PCR (RT-qPCR) reactions were performed on a 7900HT Fast

Real-Time PCR System or 7500 Real-Time PCR System according to

the manufacturer’s protocols (Life Technologies). Linear RNA tran-

scripts were normalized to the average of RNA5SP226, RN7SL5P,

RNA5SP348, and RNY4P10 and miRNAs were normalized to the

average of miR-21-5p, miR-451a, and miR-126-5p. Normalization

transcripts were chosen as they had the least interindividual variabil-

ity in expression in our sequencing and validation cohorts. Transcript

expression levels were examined for Gaussian distribution by mea-

suring kurtosis and skewness and outliers for each transcript were

excluded from the analysis using Grubb’s test with an alpha of 0.05.

Divergent primers for circRNAs were designed using the

CircInteractome web tool (https://circinteractome.nia.nih.gov/Dive

rgent_Primers/divergent_primers.html) (Dudekula et al., 2016). cDNA

used to validate linear transcripts (see above) was used for RT-qPCR

reactions. Primer pairs are included in Supporting Information

Table S7 and were validated using RNA isolated from PBMCs,

human umbilical vein endothelial cells (HUVECs), or control serum.

circRNAs were normalized as described above for linear transcripts.

4.6 | Pathways analysis

exRNAs identified from young and old individuals were imported

into Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Redwood

City, CA) to identify top canonical pathways, top diseases, biological

functions, and molecular and cellular functions. Function or Path-

way significance is determined using the Fisher’s exact test.

exRNAs were also imported into the STRING db (Szklarczyk et al.,

2017). Disconnected nodes were removed and clustering was per-

formed using k-means clustering with default settings throughout.

PAGE analysis of GO terms using the genes from the DESeq2 anal-

ysis was performed as previously described (Noren Hooten et al.,

2013).

4.7 | Statistics

The two-tailed Student’s t test was used when comparing two

groups, unless otherwise noted. A p-value < 0.05 was considered

statistically significant.
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