Historic Assessment and Analysis of the Mass Production of *Laricobius* spp. (Coleoptera: Derodontidae), Biological Control Agents for the Hemlock Woolly Adelgid, at Virginia Tech

Jeremiah R. Foley, 1,*, Carrie S. Jubb, D. Austin Cole, David Mausel, Ashley Lamb Galloway, Rachel Brooks, and Scott M. Salom

¹Department of Entomology, Virginia Tech, 170 Drillfield Drive, Blacksburg, VA 24060, USA, ²Department of Statistics, Virginia Tech, 250 Drillfield Drive, Blacksburg, VA 24061, USA, ³US Forest Service, Forest Health Protection, 626 East Wisconsin Avenue, Milwaukee, WI 53202, USA, ⁴Math and Science Department, Roane State Community College, 276 Patton Lane, Harriman, TN 37748, USA, ⁵Washington Department of Natural Resources, Forest Health and Resiliency Division, MS 47014, Olympia, WA 98504-7016, USA, and *Corresponding author, e-mail: folejr@vt.edu

Subject Editor: Muhammad Chaudhurv

Received 16 November 2020: Editorial decision 29 December 2020

Abstract

Laricobius nigrinus (Coleoptera: Derodontidae) Fender and Laricobius osakensis (Coleoptera: Derodontidae) Montgomery and Shiyake have been mass produced by Virginia Tech as biological control agents for the hemlock woolly adelgid (HWA), Adelges tsugae (Hemiptera: Adelgidae) Annand, for the past 15 and 9 yr, respectively. Herein, we describe modifications of our rearing procedures, trends and analyses in the overall production of these agents, and the redistribution of these agents for release to local and federal land managers. Based on these data, we have highlighted three major challenges to the rearing program: 1) high mortality during the subterranean portion of its life cycle (averaging 63% annually) reducing beetle production, 2) asynchrony in estivation emergence relative to the availability of their host HWA minimizing food availability, and 3) unintended field collections of Laricobius spp. larvae on HWA provided to lab-reared larvae complicating rearing procedures. We further highlight corresponding avenues of research aimed at addressing each of these challenges to further improve Laricobius spp. production.

Key words: insect rearing, biological control, natural enemies, predators

The hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae) is a non-native pest to eastern hemlocks, Tsuga canadensis L. (Pinales: Pinaceae), and Carolina hemlocks Tsuga caroliniana Engelmann (Pinales: Pinaceae). HWA was first observed in Richmond, Virginia in 1951 (Gouger 1971, Stoetzel 2002), and was presumably imported previously from Japan on ornamental hemlock nursery stock (Havill et al. 2006, 2016). HWA is native to Mainland China, Japan, Taiwan and western North America (Havill et al. 2006). Adelges spp. have a relatively complicated lifecycle that depends on the availability of a primary and secondary hosts to maintain sexual and asexual reproduction, respectively (Havill and Foottit 2007). Within the introduced range of eastern North America, HWA's primary host, tiger-tail spruce, Picea torano Voss (Siebold ex K. Koch) (Pinales: Pinaceae), is not present. The absence of tiger-tail spruce and the presence of HWA's secondary host, hemlock, has resulted in anholocyclic populations of HWA in its adventive range of eastern North America. HWA has two generations per year: 1) sistens and 2) progrediens. The sistens, or overwintering generation, is temporally the longest of the two. Sistens nymphs are present as estivating first instars at the base of hemlock needles throughout summer and following the onset of cooler temperatures, start to develop through three more instars (McClure 1989, Salom et al. 2002, Zilahi-Balogh et al. 2003a). Starting around February, HWA oviposition begins and the eggs of the next generation, the progredientes are laid. The shorter progrediens generation is present from March to late June.

Since its introduction, HWA has spread throughout much of the range of eastern and Carolina hemlocks and is currently established in 22 eastern states in the United States and in Nova Scotia, Canada (Kantola et al. 2019, Virginia Tech 2019). Hemlock mortality caused by HWA feeding can result in whole tree mortality, with larger trees succumbing to infestations more quickly (McClure 1991). Treatment options for managing HWA infestations vary in effectiveness, unwanted secondary environmental effects, and the

temporal and spatial scales at which they can be applied (Steward et al. 1998, Silcox 2002, Havill et al. 2016, Mayfield et al. 2020). Of these, the principal tactics readily used are: 1) biological control agents, 2) chemical applications, 3) silvicultural applications, and 4) a combination of tactics through an integrated pest management (IPM) strategy (Mayfield et al. 2020). The emphasis of this manuscript will be on the use of biological control agents.

The Mass Production of *Laricobius* spp. as Biological Control Agents for HWA

Laricobius spp. have received the most attention as biological control agents for HWA and are known to prey only on Adelgidae (Lawrence and Hlavac 1979, Zilahi-Balogh et al. 2002, Havill and Foottit 2007). They have a univoltine life cycle, in which both the adults and larvae feed on adelgids (Zilahi-Balogh et al. 2002, Vieira et al. 2011, Salom et al. 2012), exhibit significant rates of predation (Jubb et al. 2020), and are associated with their host in both forested and urban environments (Mausel et al. 2010, Toland et al. 2018, Foley et al. 2019, Jubb et al. 2021.

The only *Laricobius* species endemic to eastern North America is *Laricobius rubidus* LeConte (Coleoptera: Derodontidae). The primary and preferred host of *L. rubidus* is the also endemic pine bark adelgid (PBA), *Pineus strobi* Hartig (Hemiptera: Adelgidae). The host of PBA is eastern white pine, *Pinus strobus* L. (Pinales: Pinaceae), which often occurs sympatrically with hemlock in both natural and urban landscapes.

Laricobius nigrinus Fender (Coleoptera: Derodontidae) was the first Laricobius species recognized for its potential as a biological control agent following field observations in the coastal rainforests of western North America (Humble 1994, Montgomery and Lyon 1996). They were first collected and imported to a United States Department of Agriculture (USDA) approved Beneficial Insects Containment Facility (BICF) at Virginia Tech in 1997. Following biological evaluation studies (Zilahi-Balogh et al. 2002), L. nigrinus was approved for release in 2000. Over the years, multiple universities and governmental agencies have initiated Laricobius spp. mass rearing programs, with varying degrees of success and production. Currently, Virginia Tech, University of Tennessee, and University of Georgia are the only entities with colonies of Laricobius spp. agents produced for field release. Following the release and establishment of Laricobius nigrinus as a biological control agent in eastern North America, hybridization between the native congener L. rubidus and imported L. nigrinus was observed at a proportion of 11-15% (Havill et al. 2012, Fischer et al. 2015, Mayfield et al. 2015, Wiggins et al. 2016).

In 2006, an additional Laricobius spp., Laricobius osakensis Montgomery and Shiyake (Coleoptera: Derodontidae), was collected in Japan and was also brought to the BICF at Virginia Tech for biological evaluations (Montgomery et al. 2011, Vieira et al. 2011, Story et al. 2012). The goal was to have a complementary agent to L. nigrinus that co-evolved with the pest, HWA, in its native range of Japan (Havill et al. 2006). Following host-range testing and potential impact assessments, L. osakensis was approved for release in 2010 (Fischer et al. 2014, Mooneyham et al. 2016, Toland et al. 2018). However, due to the presence of a cryptic second species within the colony, Laricobius naganoensis Leschen (Coleoptera: Derodontidae), releases were deferred until strict colony purification procedures were implemented (Fischer et al. 2014). Although L. naganoensis was approved for release from quarantine in 2017 (USDA 2017), no releases have occurred and colony purification protocols continue to be used when rearing wild-caught collections

of *L. osakensis*. Rearing requirements for *L. osakensis* followed the protocol developed for *L. nigrinus*. It was assumed that the two congeners shared similar thermal and moisture requirements based on climate matching data (Vieira et al. 2013).

With the approval for release of two Laricobius spp. granted, the Insectary at Virginia Tech was the first lab to develop and implement mass rearing protocols (Salom et al. 2012), with the goal of supplying biological control agents to federal and state land managers. In order to produce consistent and reliable specimens for release, specific biological and environmental requirements must be met. This includes mirroring the two distinct life phases (arboreal and subterranean) of Laricobius spp. and adequate provisioning of temperature, light, humidity, and primary and secondary nutrients. Development of the rearing procedures was initially based on the best available knowledge of the biology and environmental conditions of the natural systems. These procedures have evolved over time through scientific testing to optimize production. The long-term nature of this rearing program and the lessons learned have produced a considerable amount data that are analyzed here to better understand our successes and failures. In addition, we aim to highlight potential avenues of research to further increase laboratory production, quality, efficiency, and consistency.

Methods and Materials

Overview of the Past and Present Standard Operating Procedures (SOP) for the Mass Production of *Laricobius* spp. Agents *Laricobius* spp. Adult Collections and Importations to Virginia Tech

Inherent in the success of many biological control programs is the ability to mass-produce natural enemies of target insect pests or plant herbivores of weeds within a laboratory insectary. This requires efficient rearing procedures with precise knowledge of a natural enemy's lifecycle, dietary and thermal requirements, reliable personnel, and quality control (Leppla and Fisher 1989, Cohen and Cheah 2019). Beginning in 1997, the first shipments of L. nigrinus were sent to the Virginia Tech's BICF in Blacksburg, VA. Here, incipient colonies were established and host-range and developmental biological studies were conducted (Zilahi-Balogh et al. 2002; Salom et al. 2002; Zilahi-Balogh et al. 2003a, 2005). Over the next four years, a colony was maintained in the BICF, however, due to high rates of mortality, further scientific studies were conducted with the goal of increasing colony survivorship in order to have a sufficient number of specimens for research use (Lamb et al. 2005, Salom et al. 2012).

With the approval for release granted and rearing protocols further streamlined, *L. nigrinus* was removed from quarantine and brought to the Virginia Tech Mass Rearing Insectary in Blacksburg, VA. Mass rearing protocols were put in place in 2004 (Salom et al. 2012). At this time, a field insectary was also established at Kentland Farm, Blacksburg, VA (Mausel et al. 2008, Salom et al. 2011). The long-term goal of our field insectary was to passively produce sufficient field reared specimens without artificially introducing laboratory domestication effects and reducing rearing costs. From 2005 to 2015, in attempts to avoid inbreeding depression through genetic bottlenecking and laboratory domestication, *L. nigrinus* rearing colonies were restocked annually with wild-caught specimens from either the Puget Sound region in Washington, or from Idaho, USA. It's been documented

that ecotypes of biological agents can vary in weight (Foley et al. 2016), thermal tolerance (Mausel et al. 2011), and morphology (Tipping et al. 2010). Therefore, two ecotypes of *L. nigrinus* (coastal vs. interior) were collected from climatically distinct areas in the Pacific Northwest with the goal of establishing each ecotype in the eastern United States with respect to their cold tolerant thresholds (Mausel et al. 2011).

Following the original collections in 2006 and the subsequent approval for release of *L. osakensis* in 2012, there have been four additional overseas collections (2010, 2012, 2015, 2019). Those specimens were sent to Virginia Tech BICF for colony purification, mass rearing, and experimental testing (Fischer et al. 2014).

While, for the most part, the rearing SOP for *L. nigrinus* outlined by Salom et al. (2012) is still in effect at Virginia Tech, we are now rearing *L. osakensis*, and there have been incremental changes to the equipment used, changes in the order of operations, the addition of artificial diets for early emerging adults, shifts in temperature requirements, and timing of temperature treatments throughout the rearing season (Salom et al. 2012). For a general diagram on the rearing procedures for *Laricobius* spp. for each respective life stage see Fig. 1, and for more detailed descriptions of the SOP see Salom et al. (2012).

HWA field collections as host material for Laricobius spp.: In order to supply developing Laricobius spp. colonies with sufficient prey, week-to-bi-weekly collections of HWA infested eastern hemlocks are made from field sites in Virginia and surrounding states between the months of October and June. Hemlock branches infested with HWA are cut, brought back to the mass rearing lab, and are stored in 18.9 liters buckets of H₂O. From these branches, individual bouquets of hemlock twigs (20-25 cm long) with high densities of HWA (2-3 per cm) are bundled by securing hemlock twigs in 29.6 ml Waddington North America (WNA) P10 plastic cups filled with Instant Deluxe Floral Foam (Smithers-Oasis North America, Kent, OH) saturated with H₂O and wrapped in Parafilm M (Beemis N.A., Neemah, WI). Field collecting HWA as food for the developing colony, without the presence of L. nigrinus and L. rubidus larvae and/or adults on hemlock branches, has been a continuous challenge. This is due to the dispersal of L. nigrinus from original release sites and the presence of L. rubidus on HWA in areas where white pine and hemlock co-occur. Steps are taken to minimize the occurrence of field collected Laricobius larvae and adults as HWA is brought in from the field, details of which are discussed later on.

Oviposition and egg transfer: Laricobius nigrinus start oviposition shortly after HWA sistens adults begin oviposition (Zilahi-Balogh et al. 2003a). Laricobius osakensis start oviposition shortly before HWA sistens adults begins oviposition (Vieira et al. 2013). Laricobius spp. densities in feeding containers are then reduced from 50 to approximately 20–25 adults per container to maximize feeding and oviposition opportunities within the container (Fig. 1). Hemlock/HWA bouquets now containing Laricobius spp. eggs are removed every week from the feeding/oviposition containers and transferred into Berlese larval funnels with additional fresh foliage (Fig. 1). Adult oviposition temperatures during this period are incrementally increased from 4°C in January to a maximum of 10°C in March which coincides with the period of peak Laricobius oviposition.

Larval development and drop: The transferred hemlock bouquets containing *Laricobius* spp. eggs are held in rearing funnels at 13° ± 2°C (12:12) for the duration of egg and subsequent larval development. When the larvae reach the fourth instar prepupal stage, they drop from the branch into four-ounce Mason jars (Jarden Corporation, Rye, NY) attached to the bottom of the

Mass-rearing Laricobius spp. at Virginia Tech

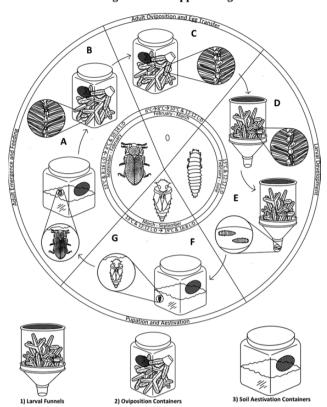


Fig. 1. Diagram of the specific rearing temperatures, shift in temperature treatments, and arenas used with respect to each distinct life stage (Center: egg, larva, pupa, and adult) for the production *Laricobius* spp. agents. There are three arenas used (bottom): 1) Larval funnels, 2) Oviposition containers, and 3) Soil estivation containers. The process begins with adult emergence and feeding: A) adults are either field collected or laboratory reared and used as reproductive adults, B) adults are given bouquets of first early instar HWA and an artificial diet. Once oviposition begins: C) Hemlock plant material containing *Laricobius* spp. eggs embedded in the HWA woolly flocculent are transferred to D) larval funnels. Here larvae develop to the fourth instar prepupa stage and E) drop to the bottom the funnel where they are collected and placed onto the soil in the F) soil estivation arenas. Following pupation and estivation, G) *Laricobius* spp. adults emerge. A selective cohort is used as P₁ reproductive adults for subsequent colony production and the rest are shipped to land mangers throughout the range of HWA infestations.

larval funnels. In the early years of rearing Laricobius spp., pupation medium (soil mix) was directly placed at the bottom of the Mason jars three weeks after larval funnel initiation. However, this approach is no longer used (due to the difficulty of separating out the fallen larvae from the soil) and Mason jars are left empty and checked once daily for the presence of prepupae. If premature larvae (not yet prepupae) have fallen into the Mason jars, they are placed back on HWA infested hemlock to continue feeding and developing and are recollected when they drop as mature larvae. Any prepupae located are removed, counted, and placed onto the soil in an estivation container with 5-7 cm of soil media composed of 2:1 peat moss:sand. Prior to adding prepupae, the soil media is saturated with distilled water at ~35% by weight. The weight of each soil container is then maintained throughout the season. Once in the estivation container, prepupae burrow into the soil and begin pupation. They are kept in estivation containers at a density of approximately 200 individuals per 820 cm³ of soil (Fig. 1).

Pupation and estivation: Pupating *Laricobius* spp. are held in soil estivation containers at $13 \pm 2^{\circ}$ C (12:12) for approximately 6–7 wk until pupation is complete. Temperatures are then adjusted to 19° C for adult summer estivation.

Adult emergence and feeding: As HWA breaks its summer dormancy and develops through its four nymphal stages, Laricobius adults emerge from the soil and begin predation. It is precisely at this time, when HWA is breaking dormancy, when the temperature is deceased from 19° to 13°C in the insectary to simulate seasonal changes in temperature. This temperature decrease prompts Laricobius spp. to emerge from the soil (Lamb et al. 2007, Salom et al. 2012). From 2004 to 2007, following Laricobius spp. adult emergence prior to estivation break of HWA, beetles were given bouquets of hemlocks infested with first instar estivating HWA nymphs as a nutrient source (Fig. 1). From 2008 until present, the early emerging adults have been offered an artificial diet; Lacewing and Ladybug Food (Wheast, Planet Naturals, Bozeman, MT) or the CC diet (egg-based), in addition to bouquets of hemlocks containing estivating first instar HWA nymphs (Cohen and Cheah 2015). A quarter-sized spread of artificial diet is offered on filter paper, which is taped to the side of each feeding/oviposition container. The diet is replaced every 2 wk until HWA reaches the second instar stage. The early emerging adults are held at temperatures of 4°C, 12:12 L:D, and at densities of approximately 50 adults per container (Fig. 1). Host material and artificial diets are replaced every 2 wk. Following emergence, adults are identified to species based on their morphology (coloration, size, and presence, absence, and shape of their pronotal tooth) using a dissection microscope (Zilahi-Balogh et al. 2006, Leschen 2011).

Data Analysis

Rearing data were collected over 15 yr; from 2004 to 2019. Statistical analysis of the data was conducted using R version 3.6.1 and JMP version 15 and a $P \le 0.05$ was considered significant for all of the following analyses. Data such as larval drop Julian date (JD), adult emergence JD, and subterranean survivorship are reported for each container (Tables 1–3). Calendar dates reported for corresponding JD are for nonleap years. The larval drop date for each container is the last JD that larvae were placed in the container (before reaching capacity), and the container's adult emergence date is the first day that adults emerged from that container (Tables 1 and 2).

The first day larvae went underground and the number of days larvae spent underground were correlated against percent subterranean survivorship using the Pearson's correlation test for *L. nigrinus*, *L. osakensis*, and both *L. nigrinus* and *L. osakensis* combined from 2005 to 2019 (Tables 1 and 3). Averages of each Pearson's correlations were calculated using a Fisher's *r*-to-*Z* transformation (Tables 1 and 3).

The larval drop JD, adult emergence JD, and the total days underground data did not follow normal distributions, resulting in the use of the nonparametric Kruskal–Wallis and Friedman tests. Kruskal–Wallis tests were conducted to determine whether there was a difference in the median larval drop JD, adult emergence JD, and total days underground across years. A Friedman test, using year as the blocking variable, was used to determine whether there was a difference in the median larval drop JD, adult emergence JD, and total days underground, between the two species. Due to the unequal number of observations across the different species/years, an approximate Friedman test with repeated measures was performed in JMP by conducting a Wilcoxon rank-sum test on the ranks of the response blocked by year.

Results

Laricobius nigrinus and L. osakensis have been mass-produced by Virginia Tech since 2004 and 2010, respectively. To date, Virginia Tech has produced 264,552 larvae and 108,992 adults of L. nigrinus and 210,143 larvae and 70,850 adults of L. osakensis (Tables 1 and 2). Following emergence and prior to release or experimentation, 70,307 (39%) additional L. nigrinus and L. osakensis adult deaths occurred across all years. The total number of L. nigrinus reproductive adults (P_1) used for colony foundation from 2005 to 2019 was 8,594 and ranged from 26 in 2019 to 713 in 2005 (Table 1). The total number of L. osakensis reproductive adults (P_1) used for colony foundation from 2011 to 2019 was 5,560 and ranged from 342 in 2015 to 1,200 in 2011 (Table 1).

Larval Drop

The average total number of days *L. nigrinus* larvae dropped from 2004 to 2019 was 114, and ranged from JD 76 (March 17) to 190 (July 9) with a median of 128 (May 8) (Table 1 and Fig. 2). The average total number of days *L. osakensis* larvae dropped from 2010 to 2019 was 120 and ranged from JD 66 (March 7) to 186 (July 8) with a median of 116 (May 26).

Due to year-to-year variability in the timing of temperature treatments, the unitization of wild-caught and laboratory reared P_1 reproductive adults, and host availability and quality, we expected to find differences in the responses of interest (median larval drop JD) across the years and between the two species. Kruskal–Wallis analysis on JD larvae drop, from 2005 to 2019, showed a significant difference across the years for *L. nigrinus* ($X^2 = 131.76$, d.f. = 13, P < 0.001) and for *L. osakensis* ($X^2 = 236.34$, d.f. = 8, P < 0.001) from 2011 to 2019.

When it came to comparing the two species across years, only data from 2011 to 2017 and 2019 were included due to not having data for both species in other years. Friedman's pairwise comparison test showed a significant difference between both species ($X^2 = 11.56$, d.f. = 1, P = 0.007). The result of this test supports the observation that the median larval drop date is later for *L. nigrinus* (JD 128) than for *L. osakensis* (JD 116) across the years.

The first day underground (i.e., last larvae drop date for each container) for *L. nigrinus* and *L. osakensis* was significantly negatively correlated with the percent survivorship from 2007–2011, 2013 and 2015 and from 2011, 2014–2017, respectively (Table 1). From 2004 to 2019, the average Pearson's correlation coefficient and corresponding *P*-value for *L. nigrinus* was –0.50 and <0.001, respectively (Table 1). From 2010 to 2019, the average Pearson's correlation coefficient and corresponding *P*-value for *L. osakensis* was –0.18 and <0.001, respectively (Table 1). The average correlation coefficient of survivorship versus first day underground for *L. nigrinus* is 64% larger than for *L. osakensis* (Table 3). These results suggest, especially for *L. nigrinus*, that the earlier each larvae cohort drop to the soil the higher their survivorship.

Subterranean Duration and Survivorship

The average median number of days spent underground for *L. nigrinus* was 198 and for *L. osakensis* was 214, and ranged from 165 to 237 and 178 to 250, respectively (Table 3). The average subterranean survivorship, which includes both pupation and adult estivation, for *L. nigrinus* and *L. osakensis* was 39.7 and 33.9%, respectively.

Kruskal–Wallis analysis on number of days underground, from 2005 to 2019, showed a significant difference between each year for *L. nigrinus* ($X^2 = 229.38$, d.f. = 13, P < 0.001) and from 2011 to 2019 for *L. osakensis* ($X^2 = 403.14$, d.f. = 8, P < 0.001). Friedman's

Table 1. Summary of the total number of Laricobius spp. reproductive adults and larvae produced by Julian date at the Virginia Tech insectary and Pearson's correlation for each year and species relating survivorship of emerging adults to date they first went into the soil

Year Spp. Feeund adults Total laryae Minimum 25% 50% 75% Maximum Mean mone Spil containners (p) Coefficient (r) P-adult 2004 IN NA 24,803 20 62 93 112 159 88 ± 20.3 NA NA NA NA 0.48 0.48 0.001 0.48 0.49 0.44 0.49 0.44 0.001 <							Julian date	Julian date of larvae drop	do		Survivorship v (Pears	Survivorship vs. first day underground (Pearson's correlation)	round
I.N NA	Year	Spp.	Fecund adults	Total larvae	Minimum	25%	20%	75%	Maximum	+I	Soil containers (n)	Coefficient (r)	P-value
IN 1,04 1,	2004	IN	NA	24,803	20	62	93	112	159	+1	NA	NA	NA
IN	2005	Z	713	19,285	98	123	133	152	192	137 ± 17.7	16	-0.18	0.483
IN 1,231 4,942 72 121 133 145 190 133±17.2 199 -0.441 IN 1,230 4,5885 72 128 139 158 198 140±23.1 237 -0.475 IN 1,200 4,5885 76 114 127 138 196 126±19.7 190 -0.55 IN 1,070 38,325 76 114 127 138 196 126±19.7 191 -0.55 IN 245 2,823 72 114 124 147 181 191 129±28.2 16 -0.647 IN 246 2,823 72 119 129 144 191 129±28.2 16 -0.647 IN 246 2,823 64 89 113 129±28.2 16 -0.647 IN 440 3,2,89 54 92 113 129±28.2 16 -0.631 IN 336 3,835 65 114 130 146 182 130±24.4 176 -0.021 IN 342 11,944 61 92 105 126 107±21.3 43 -0.531 IN 277 11,805 57 97 115 129 195 114±26.8 63 -0.17 IN NA 792 115 135 130 124 114±26.8 144±26.8 63 -0.17 IN 8,594 2,645.2 12 138 139 131 124±21.8 141±26.8 141±20.8 IN 6,50 14,505 12 13 13 13 13 13 13 13	2006	Z	1,067	13,205	102	126	144	156	214	143 ± 22.0	34	-0.13	0.47
IN 1,200 45,985 72 128 139 149 149 149 131 237 -0.47	2007	Z	1,231	40,912	72	121	133	145	190	133 ± 17.2	199	-0.41	<0.001*
IN 1,230 32,009 86 123 135 145 202 135 ±18.7 160 -0.76 IN 1,070 8,032 76 114 127 138 199 134 ±119 40 -0.055 IN 2,00 2,7,987 79 114 124 137 184 199 124 ±1219 40 -0.047 IN 2,45 2,823 72 109 125 144 191 124 ±18.5 160 -0.047 IN 2,45 2,823 72 109 125 149 199 129 ±28.2 160 -0.047 IN 4,40 1,691 60 89 110 125 180 109 ±6.6 86 0.03 IN 4,40 32,389 54 92 108 128 184 110 ±24.4 176 -0.02 IN 3,87 2,981 61 193 132 184 110 ±24.4 176 -0.02 IN 3,87 2,981 61 103 118 132 134 135 ±13.3 160 -0.53 IN 3,42 11,546 64 103 118 124 ±18.5 160 -0.53 IN 3,42 11,580 54 194 114 180 99 ±2.1 204 -0.53 IN 2,77 11,805 57 97 115 129 198 114 ±2.8 144 -0.27 IN NA 792 115 135 130 128 ±2.1 144 ±2.8 44 0.03 IN 8,594 2,64,532 76 112 128 129 128 ±2.1 112 112 1.03 IN 5,580 10,44,695 72 10,81 129 128 ±2.1 -0.03 IN 1,4,154 474,695 72 10,81 129 139 128 ±2.2 -0.31 IN 1,4,154 1,44,695 72 10,81 130 131 114 130 -0.53 IN 1,4,154 1,4,459 72 10,81 123 139 139 139 124 ±2.4 -0.53 IN 1,4,154 1,4,469 72 10,81 10,91 10,91 10,91 10,91 IN 1,4,154	2008	Z	1,200	45,985	72	128	139	158	198	140 ± 23.1	237	-0.47	<0.001*
LN 1,070 38,352 76 114 127 138 196 126±19.7 191 -0.55 LN 245 2,823 72 114 124 124 149 191 19±2±18.4 40 -0.47 LN 245 2,823 72 119 114 124 114 191 19±2±18.4 40 -0.47 LN 245 2,823 72 119 115 144 191 129±28.2 16 0.01 LN 340 11,661 84 119 12 129±28.2 16 0.01 LN 340 32,389 54 92 110 125 189 19±26.6 86 0.03 LN 340 32,389 54 92 113 146 182 19±2±18.5 16 0.01 LN 340 32,821 61 119 135 144 116 180 142±13 140 140 141±2.3 16 110±2.1 140 140 140 140 14,459 140 14,459 140 14,454 140 140 14,454 140 1	2009	Z	1,230	32,009	98	123	135	145	202	135 ± 18.7	160	-0.76	<0.001*
LN 300 8,039 93 117 132 149 134 ±21.9 40 -0.81 LN 246 27,987 79 114 124 137 183 127 ± 184 40 -0.47 LN 846 10,691 60 89 110 125 184 199 129 ± 26.6 86 0.03 LN 470 11,561 84 109 123 139 171 124 ± 185 72 -0.31 LN 470 11,561 84 109 123 139 171 124 ± 185 72 -0.31 LN 440 23,389 54 149 130 146 182 130 ± 13.0 162 -0.047 LN 387 2,812 61 119 135 152 184 135 ± 23.0 162 -0.47 LN 42 1,564 64 103 118 132 176 117 ± 21.3 43 -0.55 LN 42 1,564 64 103 118 134 114 180 99 ± 22.1 204 -0.37 LN 578 42,753 65 115 113 129 114 ± 5.8 63 -0.17 LN 5,864 2,64,552 75 112 128 136 112 ± 2.08 142 ± 2.18 LN 5,864 2,64,552 75 109 116 132 188 117 ± 2.13 1161 -0.18 LN 14,154 474,695 72 108 113 124 ± 22.4 -0.17 -0.81 LN 14,154 474,695 72 108 113 124 ± 22.4 -0.17 -0.81 LN 14,154 474,695 72 108 123 124 ± 22.4 -0.17 -0.81 LN 14,154 474,695 72 108 123 139 188 124 ± 22.4 -0.17 -0.81 LN 14,154 474,695 72 108 123 139 188 124 ± 22.4 -0.18 -0.81 LN 14,154 474,695 72 108 123 139 188 124 ± 22.4 -0.18 -0.81 LN 14,154 474,695 72 108 123 139 188 124 ± 22.4 -0.18 -0.81 LN 14,154 474,695 72 108 123 136 124 ± 22.4 -0.18 -0.81 LN 14,154 474,695 72 108 123 139 134 ± 22.4 -0.81 -0.81 LN 14,154 474,695 72 108 123 139 124 ± 22.4 -0.81 -0.81 LN 14,154 474,695 72 72 72 72 72 72 72 7	2010	Z	1,070	38,352	9/	114	127	138	196	126 ± 19.7	191	-0.55	<0.001*
LO 1200 27,987 79 114 124 137 183 127 ±18.4 40 -0.47 LN 840 10,581 60 89 123 139 171 129 ±28.2 16 0.01 LN 470 11,561 84 199 123 139 171 124 ±18.3	2011	Z	300	8,039	93	117	132	149	199	+1	40	-0.81	<0.001*
LN 245 2,823 72 109 125 144 191 129±28.2 16 0.01 LO 800 10,691 60 89 110 125 180 109±266 86 0.03 LO 400 11,561 84 199 123 139 171 124±18.5 72 -0.31 LO 440 32,389 54 92 189 171 114±18.5 72 -0.31 LO 440 32,389 64 119 135 184 116±44 17 10±24.4 76 -0.02 LO 735 29,812 61 119 135 176 117±21.3 43 -0.50 LO 342 11,944 61 103 118 136 176 117±21.3 43 -0.50 LO 50 54 78 79 118 134 117±21.8 76 -0.47 LO		ГО	1200	27,987	62	114	124	137	183	127 ± 18.4	40	-0.47	0.002*
LO 800 10,691 60 89 110 125 180 109±26.6 86 0.03 LN 470 11,561 84 109 123 139 171 124±18.5 72 0.031 LO 440 32,389 54 92 108 128 176 116±24.4 176 0.03 LO 340 53,389 65 114 130 148 110±24.4 176 0.02 LO 735 25,812 61 119 135 184 110±24.4 176 0.02 LO 735 25,812 61 119 118 132 176 117±21.3 43 0.02 LO 342 11,544 61 103 118 132 176 119±21.3 43 0.05 LO 342 11,556 64 103 118 134 118 134 144±26.8 149 0.05	2012	Z	245	2,823	72	109	125	144	191	129 ± 28.2	16	0.01	896.0
LN 470 11,561 84 109 123 139 171 124±18.5 72 -0.31 LO 440 32,389 54 92 108 128 184 110±244 176 -0.02 LN 735 5,803 65 114 130 146 182 130±21.2 31 -0.21 LN 735 29,812 61 103 118 132 176 117±21.3 42 -0.21 LN 42 1,556 66 103 118 134 182 119±23.4 176 -0.53 LN 42 1,556 66 103 118 134 182 119±23.4 14 -0.53 LN 42 1,556 66 103 118 134 180 99±22.1 204 -0.53 LN 50 21,420 57 97 115 128 114 180 99±22.1 204 <		ГО	800	10,691	09	68	110	125	180		98	0.03	0.752
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2013	Z	470	11,561	84	109	123	139	171	124 ± 18.5	72	-0.31	*800.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ГО	440	32,389	54	92	108	128	184	+I	176	-0.02	0.749
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2014	Z	336	5,803	65	114	130	146	182	+I	31	-0.21	0.268
LN 387 7,622 61 103 118 132 176 117 \pm 21.3 43 -0.50 LO 342 11,944 61 92 105 120 176 107 \pm 21.8 76 -0.53 LN 42 1,556 66 103 118 134 182 119 \pm 23.4 14 -0.37 LO 500 21,420 54 78 94 114 180 99 \pm 22.1 204 -0.27 LN 570 11,805 57 97 115 129 195 114 \pm 26.8 63 -0.17 LO 600 18,612 58 91 113 127 189 114 \pm 26.8 63 -0.17 LO 365 42,753 65 105 114 126 189 117 \pm 18.6 201 0.05 LN NA 792 115 135 150 165 198 152 \pm 20.8 4 0.83 LO 578 14,535 99 123 138 159 213 142 \pm 21.8 71 0.64 LN 8,594 264,552 76 110 116 132 180 117 \pm 23.1 1161 -0.18 $^{\circ}$ LN+LO 14,154 474,695 72 108 123 139 189 189 124 \pm 22.4		ГО	735	29,812	61	119	135	152	184	+I	162	-0.47	<0.001*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2015	Γ N	387	7,622	61	103	118	132	176	+I	43	-0.50	<0.001*
LN 42 1,556 66 103 118 134 182 119 \pm 23.4 14 -0.37 LO 500 21,420 54 78 94 114 180 99 \pm 22.1 204 -0.27 LN 277 11,805 57 97 115 129 195 114 \pm 2.68 63 -0.17 LO 600 18,612 58 91 113 127 188 111 \pm 2.58 145 -0.41 LO 365 42,753 65 105 114 126 189 117 \pm 186 201 0.05 LN NA 792 115 135 150 165 198 152 \pm 2.08 4 0.83 LO 578 14,535 99 123 138 159 213 142 \pm 2.18 71 0.64 LN 8,594 264,552 76 112 128 143 190 128 \pm 2.20 112 0.50 ^a LO 5,560 210,143 66 100 116 132 186 117 \pm 2.31 1161 -0.18 ^a LN+LO 14,154 474,695 72 108 123 139 189 124 \pm 2.24		ГО	342	11,944	61	92	105	120	176	+I	92	-0.53	<0.001*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2016	Z	42	1,556	99	103	118	134	182	+1	14	-0.37	0.197
LN 277 11,805 57 97 115 129 195 114 \pm 26.8 63 -0.17 LO 600 18,612 58 91 113 127 188 111 \pm 25.8 145 -0.41 LO 365 42,753 65 105 114 126 189 117 \pm 18.6 201 0.05 LN NA 792 115 135 150 165 198 152 \pm 20.8 4 0.83 LO 578 14,535 99 123 138 159 213 142 \pm 21.8 71 0.64 LN 8,594 264,552 76 112 128 143 190 128 \pm 22.0 1120 -0.50 ^a LO 5,560 210,143 66 100 116 132 186 117 \pm 23.1 1161 -0.18 ^a LN+LO 14,154 474,695 72 108 123 139 188 124 \pm 22.4		ГО	500	21,420	54	78	94	114	180	99 ± 22.1	204	-0.27	<0.001*
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2017	Z	277	11,805	57	26	115	129	195	+I	63	-0.17	0.178
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ГО	009	18,612	58	91	113	127	188	+I	145	-0.41	<0.001*
LN NA 792 115 135 150 165 198 152 ± 20.8 4 0.83 LO 578 14,535 99 123 138 159 213 142 ± 21.8 71 0.64 LN 8,594 264,552 76 112 128 143 190 128 ± 22.0 1120 -0.50^a LO 5,560 210,143 66 100 116 132 186 117 ± 23.1 1161 -0.18^a LN+LO 14,154 474,695 72 108 123 139 188 124 ± 22.4 $ -$	2018	ГО	365	42,753	65	105	114	126	189	117 ± 18.6	201	0.05	0.453
LO 578 14,535 99 123 138 159 213 142 \pm 21.8 71 0.64 LN 8,594 264,552 76 112 128 143 190 128 \pm 22.0 1120 -0.50^a LO 5,560 210,143 66 100 116 132 186 117 \pm 23.1 1161 -0.18^a LN+LO 14,154 474,695 72 108 123 139 188 124 \pm 22.4 $ -$	2019	LN	NA	792	115	135	150	165	198	+I	4	0.83	0.17
LN 8,594 $264,552$ 76 112 128 143 190 128 ± 22.0 1120 -0.50^a LO 5,560 $210,143$ 66 100 116 132 186 117 ± 23.1 1161 -0.18^a LN+LO 14,154 $474,695$ 72 108 123 139 188 124 ± 22.4 –		ГО	578	14,535	66	123	138	159	213	+I	71	0.64	<0.001*
LO 5,560 210,143 66 100 116 132 186 117 \pm 23.1 1161 -0.18^a LN+LO 14,154 474,695 72 108 123 139 188 124 \pm 22.4 $ -$	2004-2019	Γ	8,594	264,552	92	112	128	143	190	+I	1120	-0.50^{a}	<0.001**
LN+LO 14,154 $474,695$ 72 108 123 139 188 124 \pm 22.4 -	2011–2019	ГО	5,560	210,143	99	100	116	132	186	+I	1161	-0.18^{a}	<0.001*a
	2004–2019	LN+LO	14,154	474,695	72	108	123	139	188	+I	I	I	I

LN = Laricobius nigrinus.

LO = Laricobius osakensis.

*Statistically significant P-value (<0.05).

n = total number of soil containers.

 $^{\rm a}{\rm Calculated}$ using Fisher's z' transformation.

- Analyses were not conducted.

Table 2. Summary of the total number of Laricobius spp. adults produced at the Virginia Tech insectary for each year and Julian data quantiles of emergence with the mean ± SD

Species adults			Total	Soil containers			Julian date o	Julian date of adult emergence		
IN 7,828	Year	Species	adults	(u)	First	25%	20%	75%	Last	Mean ± SD
IN 3416 16 262 293 301 308	2004	LN	7,828	NA	233	293	300	307	326	300 ± 13.2
IN 1,995 344 264 293 300 3144 204 204 205 304 304 204 205 304 30	2005	LN	3,416	16	262	293	301	308	341	301 ± 10.8
IN 15,136 199 199 291 305 314 IN 20,526 2.37 211 261 266 302 IN 26,574 191 204 299 308 315 IN 2,536 40 2.31 308 315 IN 2,537 40 2.43 302 319 318 IN 1,248 40 2.43 303 310 317 IN 1,248 16 2.64 393 310 317 IN 2,862 176 163 2.94 303 318 IN 2,862 176 188 283 304 314 IN 2,862 176 188 283 304 314 IN 2,862 176 188 284 302 313 IN 1,542 198 164 2.72 2.97 310 IN 1,542 193 164 2.72 2.97 310 IN 2,862 193 164 2.72 2.97 310 IN 1,542 193 164 2.72 2.97 310 IN 8,586 176 188 2.84 302 313 IN 8,385 2.18 182 2.46 2.56 2.84 IN 8,385 2.18 182 2.46 2.86 306 IN 1,542 194 182 2.63 2.84 302 IN 8,572 2.08 2.05 2.04 3.14 IN 309 44 2.26 2.24 304 311 IN 4,684 73 71 2.26 2.94 304 311 IN 108,932 1120 163 2.86 2.86 306 311 IN 108,932 1120 163 2.86 2.86 306 311 IN 108,932 1120 1120 1120 1120 1120 IN 108,932 1120 1120 1120 1120 1120 IN 108,932 1120 1120 1120 1120 1120 IN 108,932 1120 11	2006	LN	1,995	34	264	293	300	308	365	300 ± 21.0
IN	2007	LN	15,136	199	199	291	305	314	355	301 ± 18.1
IN 13,060 160 238 301 308 315 IN 3,737 40 231 305 316 315 IN 1,248 40 231 302 308 315 IN 1,248 40 231 302 309 317 IN 1,248 16 256 295 308 318 IN 1,348 172 163 294 304 314 IN 1,384 176 188 284 304 314 IN 2,823 176 188 284 304 314 IN 2,824 176 188 284 304 314 IN 1,549 198 43 164 277 297 310 IN 1,540 14 182 264 286 286 IN 1,540 14 182 263 284 306 IN 1,542 201 204 205 204 304 IN 1,542 201 205 204 304 IN 1,543 201 204 206 204 304 IN 1,543 201 206 204 304 IN 1,543 201 206 204 306 301 IN 1,543 201 201 201 201 IN 1,544 175 205 204 304 301 IN 1,544 175 205 204 304 301 IN 1,544 175 206 204 306 308 IN 1,544 175 206 204 304 301 IN 1,544 175 170 470 470 IN 1,544 175 170 470 470 IN 1,545 110 163 205 204 306 308 IN 1,544 10 10 10 10 10 IN 1,545 110 10 10 10 10 IN 1,544 10 10 10 10 10 10 IN 1,544 10 10 10 10 10 10 IN 1,545 110 10 10 10 10 10 IN 1,545 110 11	2008	LN	20,526	237	211	261	276	302	339	280 ± 25.6
LN 26,774 191 204 299 308 315 LN 3,575 40 2,31 305 311 318 LO 5,875 40 2,31 305 311 318 LO 5,875 40 2,55 302 319 318 LO 2,391 80 2,56 295 309 318 LO 3,539 102 163 294 304 318 LO 1,3846 72 163 287 304 314 LNHO 1,5846 176 158 287 304 314 LNHO 1,5846 176 158 284 304 314 LNHO 1,542 183 164 277 292 314 LNHO 1,542 193 164 277 292 314 LNHO 8,750 43 164 277 292 314 LNHO <td>2009</td> <td>LN</td> <td>13,060</td> <td>160</td> <td>238</td> <td>301</td> <td>308</td> <td>315</td> <td>348</td> <td>307 ± 12.5</td>	2009	LN	13,060	160	238	301	308	315	348	307 ± 12.5
LN 3,757 40 251 305 311 318 LN+LO 5,896 40 265 302 309 317 LN+LO 2,653 80 231 303 318 318 LN 1,248 16 2,66 295 308 318 LN 1,248 16 2,66 295 308 318 LN+LO 13,896 176 163 287 304 314 LN 1,844 2,862 31 31 31 LN+LO 1,870 43 164 277 297 314 LN+LO 1,868 164 277 297 314 LN+LO 1,870 43 182 284 302 314 LN+LO 8,876 164 277 297 314 314 LN+LO 8,876 174 182 284 302 314 LN+LO 8,385	2010	LN	26,774	191	204	299	308	315	363	304 ± 18.9
Line 5,886 40 265 302 309 317 Line 1,244 2,653 80 234 303 318 Line 1,248 16 256 295 308 318 Line 1,248 16 256 294 304 314 Line 1,3896 176 158 284 300 313 Line 1,3896 176 158 284 300 313 Line 1,3896 176 158 284 300 313 Line 1,542 131 166 301 311 317 Line 1,542 133 164 277 292 304 Line 1,542 133 164 277 292 304 Line 1,542 143 164 277 292 304 Line 1,542 143 164 277 294 305 Line 1,542 143 163 284 302 313 Line 1,542 143 163 284 302 313 Line 1,542 204 182 265 284 307 Line 2,523 204 225 224 304 311 Line 3,03 44 226 224 277 290 Line 4,544 75 226 224 304 311 Line 4,444 75 226 224 304 311 Line 1,00 1,00 164 163 284 306 Line 1,00 1,00 1,00 164 168 284 306 Line 1,00 1,00 1,00 1,00 164 168 284 306 Line 1,00 1,00 1,00 1,00 1,00 1,00 Line 1,00	2011	LN	3,757	40	231	305	311	318	340	311 ± 11.3
IN4-LO 9,653 80 231 303 317 LN 1,248 16 2,56 295 308 318 LN LO 2,391 86 163 294 304 318 LN-LO 13,896 102 163 287 304 314 LN-LO 13,896 176 188 284 302 313 LN-LO 19,814 248 18 284 302 313 LN-LO 19,814 248 162 164 277 297 313 LN-LO 11,542 193 164 277 297 310 LN-LO 1,530 43 164 277 297 310 LN-LO 8,626 193 164 277 297 310 LN-LO 8,626 119 163 302 318 312 LN-LO 8,626 119 163 284 307 318 <td></td> <td>ОТ</td> <td>5,896</td> <td>40</td> <td>265</td> <td>302</td> <td>309</td> <td>317</td> <td>341</td> <td>309 ± 12.1</td>		ОТ	5,896	40	265	302	309	317	341	309 ± 12.1
LN 1,248 16 256 295 308 318 LN LN 3,639 102 163 294 304 314 LN 1,348 72 163 294 304 314 LN 1,3896 176 158 287 304 314 LN 1,9814 248 248 304 313 LN 1,582 31 166 301 311 317 LN 1,542 193 164 272 292 304 LN 1,542 193 164 272 292 304 LN 1,542 193 164 277 297 310 LN 1,542 193 163 288 302 318 327 LN 1,542 1,542 1,542 1,542 2,542 304 LN 1,542 2,543 2,543 2,543 2,543 3,643 LN 1,542 2,543 2,543 2,543 2,543 3,643 LN 1,542 2,543 2,543 2,544 2,77 2,90 LN 1,542 2,543 2,544 2,544 3,644 3,11 LN 1,542 2,444 2,544 2,44		LN+LO	9,653	80	231	303	310	317	341	310 ± 11.8
LN+LO	2012	LN	1,248	16	256	295	308	318	351	+1
Inhtto		ГО	2,391	98	163	294	303	310	351	300 ± 23.0
LN 5,918 72 163 287 304 314 LN 2,862 176 188 284 300 313 LN 2,862 162 164 272 292 304 LN 2,862 162 164 277 297 310 LN 1,550 43 183 26 311 LN 6,876 76 163 302 313 313 LN 6,876 119 163 286 302 313 LN 8,626 119 163 289 308 319 LN 8,626 119 163 289 308 319 LN 8,626 119 182 263 283 306 LN LO 8,838 204 182 263 283 306 LN LO 8,384 63 203 203 203 203 LN LO 8,385 204 182 263 283 306 LN LO 15,322 201 222 273 304 317 LN 3,99 145 226 274 304 317 LN 4,0 4,84 75 226 291 300 318 LN 4,0 108,992 1120 158 286 298 308 LN 4,0 108,992 1120 158 389 309 LN 1,0 70,850 1161 158 286 308 LN 1,0 70,850 1161 158 286 308 LN 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0		LN+LO	3,639	102	163	294	304	314	351	+1
LO 13,896 176 158 283 300 313 LN+LO 19,814 248 176 158 284 302 313 LN+LO 8,680 162 164 277 297 310 LN+LO 11,542 193 164 277 297 310 LN 1,570 43 182 246 256 274 LN 1,570 14 14 258 302 313 321 LN 8,70 14 258 307 318 327 LN 8,70 14 258 307 318 327 LN 8,70 14 258 263 281 302 LN 8,525 218 182 263 281 302 LN 9,235 218 182 263 281 302 LN 0 5,029 145 205 275 291 LN 0 15,322 201 222 274 304 311 LN 0 4,375 71 226 294 304 311 LN+LO 4,584 75 226 224 304 311 LN+LO 4,684 75 226 224 306 308 LN 108,992 1120 158 286 308 LN 108,992 1120 158 286 308 LN 108,902 1161 158 308 LN 108,902 1161 1161	2013	LN	5,918	72	163	287	304	314	356	300 ± 18.9
LN+LO 19,814 248 158 284 302 313 LN+LO 19,814 248 156 301 311 317 LN LO 11,542 193 164 272 292 304 LN LN 1,750 43 182 246 256 274 LN LN 6,876 76 163 289 308 319 LN LN 8,626 119 163 289 308 319 LN LO 8,385 204 182 263 281 302 LN LO 9,255 218 182 265 286 306 LN LO 5,029 145 205 275 291 302 LN LO 15,322 201 226 274 304 311 LN LO 4,375 71 226 294 304 311 LN LO 4,584 75 226 294 308 319 LN LO 4,684 75 226 294 306 308 LN LN LN 108,992 1161 158 286 308 LN LN LN 108,992 1161 158 286 308 LN LN LN LN 108,992 1161 158 286 308 LN LN LN LN LN LN LN		ГО	13,896	176	158	283	300	313	364	298 ± 23.1
LN 2,862 31 166 301 311 317 LO 8,680 162 164 272 292 304 LN+LO 11,542 193 182 246 256 274 LN 6,876 76 163 302 313 321 LN+LO 8,626 119 163 289 308 319 LN LO 8,385 204 182 263 281 302 LN +LO 9,255 218 182 263 281 302 LN +LO 9,255 218 205 263 281 302 LN +LO 9,255 208 205 275 291 302 LN +LO 18,322 208 205 274 291 302 LN +LO 18,322 201 222 274 304 317 LN +LO 4,584 75 226 294 304 311 LN +LO 7,0850 1120 163 286 308 2019 2019 101 101 108,992 1161 158 286 308 2019 101 101 108,992 1161 158 286 308 2019 2019 2019 2019 3019 3019 2019 101 101 101 108,992 1161 158 286 308 2010 2010 2010 2010 2010 2010 2010 201		LN+LO	19,814	248	158	284	302	313	364	298 ± 21.9
LO 8,680 162 164 272 292 304 LN+LO 11,542 193 164 277 297 310 LN LN 43 182 246 256 274 LO 6,876 76 163 302 313 321 LN 870 114 258 307 318 321 LN 870 14 258 307 318 321 LN+LO 9,255 218 182 263 281 306 LN+LO 9,255 218 182 263 283 306 LN+LO 9,255 218 182 263 283 306 LN+LO 8,572 208 205 283 307 310 LN-LO 8,572 208 27 294 311 LN 4,375 71 226 254 277 290 LN 4,684	2014	LN	2,862	31	166	301	311	317	349	307 ± 16.0
LN+LO 11,542 193 164 277 297 310 LN 1,750 43 182 246 256 274 LO 6,876 76 163 302 313 321 LO 6,876 119 163 289 308 274 LN 8,626 119 163 289 308 319 LN 8,872 204 182 263 281 302 LN+LO 8,572 218 182 263 281 306 LN+LO 8,572 218 205 273 281 306 LN+LO 8,572 208 205 274 304 317 LN 10 4,375 71 226 254 277 290 LN+LO 8,572 201 4 226 254 277 290 LN 4,684 75 226 294 304 311		ПО	8,680	162	164	272	292	304	348	288 ± 21.0
LN-LO 6,876 43 182 246 256 274 LN-LO 6,876 76 163 302 313 321 LN-LO 8,626 119 163 289 308 319 LN-LO 8,385 204 182 263 281 302 LN-LO 9,255 218 205 263 286 306 LN-LO 5,029 145 205 205 273 300 LN-LO 15,322 201 222 274 304 317 LN-LO 4,375 71 226 294 304 311 LN-LO 4,375 71 226 294 304 311 LN-LO 4,375 1120 163 286 308 -2019 LN-LO 70,892 1120 163 286 308 -2019 LN-LO 170,847 731 158 286 308 -2019 LN-LO 70,800 1161 158 308 -2019 LN-LO 70,800 1161 163 308 -2010 LN-LO 7		LN+LO	11,542	193	164	277	297	310	349	293 ± 21.5
LO 6,876 76 163 302 313 321 LN+LO 8,626 119 163 289 308 319 LN 870	2015	LN	1,750	43	182	246	256	274	331	260 ± 25.3
LN+LO 8,626 119 163 289 308 319 LN + S 70		ГО	9.876	92	163	302	313	321	364	311 ± 16.7
LN+LO 9,255 204 182 263 281 302 LN+LO 9,255 218 182 263 281 302 LN+LO 9,255 218 182 263 286 306 LN 3,543 63 208 205 275 291 302 LN+LO 8,572 208 205 277 287 304 LN 15,322 201 222 274 304 317 LN 309 4 226 224 277 290 LN+LO 4,375 71 226 294 304 311 LN+LO 4,684 75 71 226 294 303 311 LN+LO 108,992 1120 163 286 308 2019 LN 70,830 1161 158 284 309		LN+LO	8,626	119	163	289	308	319	364	+I
LO 8,385 204 182 263 281 302 LN+LO 9,255 218 182 265 286 306 LN 3,543 63 205 205 263 283 296 LO 5,029 145 205 275 291 302 LN+LO 8,572 201 222 274 304 317 LN 309 4 226 294 304 311 LN+LO 4,375 71 226 294 304 311 LN+LO 4,844 75 226 291 303 311 LN+LO 10,992 1120 163 286 298 309 2019 LO 70,850 1161 158 284 309 309	2016	LN	870	14	258	307	318	327	364	+I
LN+LO 9,255 218 182 265 286 306 LN 3,543 63 63 205 263 283 296 LN 5,029 145 205 275 291 302 LN+LO 8,572 208 205 277 287 300 LN 10 4,375 71 226 294 304 311 LN+LO 4,684 75 226 291 303 311 LN+LO 10,992 1120 163 286 298 309 2019 LO 70,850 1161 158 284 300 311		ГО	8,385	204	182	263	281	302	364	281 ± 27.4
LN+LO 8,572 201 205 263 283 296 296 205 LO 5,029 145 205 277 291 302 207 208 205 277 287 300 207 201 222 274 304 317 290 201 222 274 304 317 290 201 226 254 277 290 201 LO 4,375 71 226 294 304 311 20 LN+LO 4,684 75 226 291 303 311 201 LN+LO 70,850 1161 158 284 300 311 201 10 10,010		LN+LO	9,255	218	182	265	286	306	364	+I
LO 5,029 145 205 275 291 302 LN+LO 8,572 208 205 277 287 300 LO 15,322 201 222 274 304 317 LN 309 4 226 254 277 290 LO 4,375 71 226 294 304 311 LN+LO 4,684 75 226 291 303 311 LN+LO 108,992 1120 163 286 298 308 2019 LO 70,850 1161 158 284 300 311 10,10 179,842 731 158 284 300 311	2017	LN	3,543	63	205	263	283	296	315	+I
LN+LO 8,572 208 205 271 287 300 LO 15,322 201 222 274 304 317 LN 309 4 226 254 277 290 LO 4,375 71 226 294 304 311 LN+LO 4,684 75 226 291 303 311 LN+LO 108,992 1120 163 286 298 308 2019 LO 70,850 1161 158 284 300 311 2020 1N-LO 70,850 208 309 309		ГО	5,029	145	205	275	291	302	316	288 ± 18.0
LO 15,322 201 222 274 304 317 317 318 319 4 226 254 277 290 27		LN+LO	8,572	208	205	271	287	300	316	284 ± 21.0
LN 4 226 254 277 290 LO 4,375 71 226 294 304 311 LN+LO 4,684 75 226 291 303 311 LN+LO 108,992 1120 163 286 298 308 2019 LO 70,850 1161 158 284 300 311 2019 INJO 179,823 278 290	2018	ГО	15,322	201	222	274	304	317	361	296 ± 27.9
LO 4,375 71 226 294 304 311 LN+LO 4,684 75 226 291 303 311 LN 108,992 1120 163 286 298 308 LO 70,850 1161 158 284 300 311 INLIO 179,842 298 309	2019	LN	309	4	226	254	277	290	328	273 ± 22.1
LN+LO 4,684 75 226 291 303 311 LN 108,992 1120 163 286 298 308 LO 70,850 1161 158 284 300 311 LO 70,840 2381 309 319		ГО	4,375	71	226	294	304	311	349	300 ± 17.8
LN 108,992 1120 163 286 298 308 20		LN+LO	4,684	7.5	226	291	303	311	349	+I
LO 70,850 1161 158 284 300 311 1N-1O 179,843 2381 158 285 298 309	2004–2019	LN	108,992	1120	163	286	298	308	345	296 ± 18.4
1N-1 179 842 2381 158 298 309	2011–2019	ГО	70,850	1161	158	284	300	311	351	297 ± 20.8
LIN+LO 1/3,042 2201 130 203 270 307	2004–2019	LN+LO	179,842	2281	158	285	298	309	347	297 ± 19.3

LN = Laricobius nigrinus. LO = Laricobius osakensis. n = total number of soil container.

Table 3. Summary of *Laricobius* spp. adult subterranean survivorship at the Virginia Tech insectary for each year and species and Pearson's correlation coefficient (Survivorship vs. Median Days Underground). Correlation coefficients averages from 2005 to 2019 are weighted by the number of data points used to calculate each year's correlation

				Survivorship	vs. median days undergr	ound
		Subterranean	Median days	(P	earson's correlation)	
Year	Species	survivorship (%)	Underground ¹	Soil containers (n)	Coefficient (r)	P-value
2004	LN	31.6	NA	NA	NA	NA
2005	LN	17.7	197	16	0.51	0.043*
2006	LN	15.1	184	34	0.44	0.009*
2007	LN	37.0	193	199	0.54	<0.001*
2008	LN	44.6	178	237	0.46	<0.001*
2009	LN	40.8	191	160	0.84	<0.001*
2010	LN	69.8	199	191	0.63	<0.001*
2011	LN	46.7	196	40	0.81	<0.001*
	LO	21.1	219	40	0.63	<0.001*
2012	LN	44.2	211	16	0.02	0.951
	LO	22.4	227	86	-0.04	0.720
2013	LN	51.2	207	72	0.36	<0.001*
	LO	42.9	221	176	0.31	<0.001*
2014	LN	49.3	213	31	0.25	0.179
	LO	29.1	187	162	0.59	<0.001*
2015	LN	23.0	202	43	0.51	<0.001*
	LO	57.6	250	76	0.50	<0.001*
2016	LN	55.9	237	14	0.28	0.341
	LO	39.1	227	204	0.45	<0.001*
2017	LN	30.0	195	63	0.36	0.004*
	LO	27.0	205	145	0.50	<0.001*
2018	LO	35.8	216	201	0.37	<0.001*
2019	LN	39.0	165	4	-0.86	0.136
- 15	LO	30.1	178	71	-0.53	<0.001*
2004-2019	LN	39.7	198	1120	0.58^{a}	<0.001**
2011–2019	LO	33.9	214	1161	0.37^{a}	<0.001**a

LN = Laricobius nigrinus.

pairwise comparison test showed a significant difference between L. nigrinus and L. osakensis ($X^2 = 27.54$, d.f. = 1, P < 0.001). This test result supports the observation that the median number of days spent underground across the years is higher for L. osakensis compared to L. nigrinus.

The median days spent underground was significantly positively correlated with subterranean survivorship for a majority (71%) of the rearing years for L. nigrinus (from 2005 to 2011, 2013, 2015, and 2017 (Table 3). From 2005 to 2019, the average Pearson's correlation coefficient and corresponding P-value for L. nigrinus was 0.58 and <0.001, respectively (Table 3). The median days spent underground was significantly positively correlated with subterranean survivorship for a majority (70%) of the rearing years for L. osakensis (from 2011, 2013 to 2018 (Table 3). From 2011 to 2019, the average Pearson's correlation coefficient and corresponding P-value for L. nigrinus was 0.37 and <0.001, respectively (Table 3). The average correlation coefficient of survivorship versus median days underground for L. nigrinus is 36% larger than for L. osakensis (Table 3). These results suggest that the longer Laricobius spp. are underground the higher their survivorship.

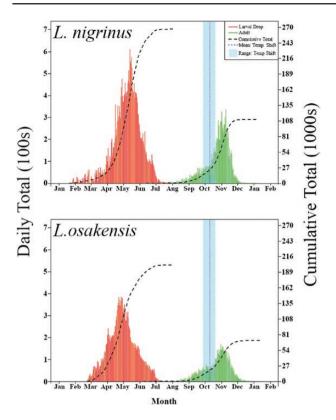
Adult Emergence

The JD window of emergence for *L. nigrinus* ranged from 153 (June 2) to 345 (December 11) and for *L. osakensis* was 158 (June 7) to 351 (December 17). The average median adult emergence JD for *L. nigrinus* ranged from 256 (September 13) to 318 (November 14) ($\Delta = 62$ d) with mean and standard deviation of 296 (October 23) \pm 18.4 from 2004 to 2019 (Table 2). The average median adult emergence JD for *L. osakensis* ranged 281 (October 8) to 313 (November 9) ($\Delta = 32$ d) with mean and standard deviation of 297 (October 24) \pm 20.8 from 2011 to 2019 (Table 2).

Kruskal–Wallis analysis on median emergence JD, from 2005 to 2019, showed a significant difference across each year for *L. nigrinus* ($X^2 = 394.33$, d.f. = 13, P < 0.001) and from 2011 to 2019 for *L. osakensis* ($X^2 = 379.12$, d.f. = 8, P < 0.001). Friedman's pairwise comparison test showed a significant difference between both species' median adult emergence JD ($X^2 = 6.85$, d.f. = 1, Y = 0.009).

Discussion

When the mass production of *Laricobius* agents began, the goals were to supply local, state, and federal land managers with biological


LO = Laricobius osakensis.

n = Total number of soil containers.

^{1 =} Julian date.

^{*}Statistically significant *P*-value (<0.05).

^aCalculated using Fisher's z' transformation.

Fig. 2. Daily and cumulative larval drop (red) and subsequent adults emerged (green) from 2014 to 2019 for *L. nigrinus* (top) and *L. osakensis* (bottom). The blue dotted line (mean) and the surrounding light blue band shows the range in which the temperatures were changed from 19 to 13°C to stimulate emergences based on the field observation of estivation break of HWA.

control agents for release, and to have enough live insects to conduct related experiments regarding the biological control of HWA. The tandem pursuit of these two goals has allowed us to continue the mass production of *Laricobius* spp. agents over the past decade and a half at Virginia Tech. From inception of our rearing program in 2004 until present, we have sent an average, 693 *Laricobius* spp. per shipment to 43 collaborators across 15 states (Table 4). The states that received *Laricobius* spp. are GA, KY, MA, MD, ME, NC, NH, NJ, NY, OH, PA, RI, VA, VT, and WV. These collaborators have played a pivotal role in dispersing these agents across the eastern and Carolina hemlock landscape in eastern North America with 13 of the 15 states who've received beetles having confirmed establishment (Virginia Tech 2019).

Over the past decade and half of rearing Laricobius spp. at Virginia Tech, the observation of 'premature' larvae found in the Mason jars attached to the bottom of the funnels has consistently been noted. Salom et al. (2012), described these premature larvae as smaller, darker in color, and less mobile than mature larvae. It is unclear why these larvae premature drop from the infested plant material. The premature larvae are typically found throughout the larval rearing season and are placed back onto the hemlock foliage containing HWA, whereby they presumably resume predation and larval development before dropping back down into the funnels. Following the observation of larvae in the funnels, a technician visually determines based on size, color, and mobility if the specimens are premature or not. However, the weight difference between second and third instars to the fourth prepupal instar is on the scale of milligrams and not always easily discernable by the naked eye. It is possible these larvae are being placed onto the soil and do not

Table 4. Number of *Laricobius* spp. shipments from the Virginia Tech insectary and the number beetles released per State and overall from 2004 to 2019

Release State	Total no. of	Total no. released
	shipments	
GA	1	600
KY	4	6,500
MA	7	5,200
MD	18	13,850
ME	12	6,510
NC	1	200
NH	14	6,650
NJ	7	5,800
NY	7	4,010
OH	10	4,950
PA	30	17,810
RI	1	300
VA	20	16,755
VT	2	1,000
WV	24	19,400
Total	158	109,535

have enough resource, measured by biomass, to make it thorough pupation and/or remain in estivation.

While there is variability in the starting number of adults for each species and from year-to-year, based on our experience, the ideal starting number of reproductive adults range is between 800 and 1000 P_1 at a sex ratio of roughly 1:1. This rearing capacity is limited by the physical space available in the rearing facility as well as available personnel. The lower end of the range is more suitable for colony purification of *L. osakensis*, as physical space requirements increase with the need to keep individual groups separated (Fischer et al. 2014). The higher end of the range is more appropriate for *L. nigrinus*, which are reared using standard protocols.

The average median JD on which 50% of the larval population dropped and were placed onto soil is later for *L. nigrinus* compared to *L. osakensis*. A possible explanation for these results is the timing of when oviposition starts for the respective species. *Laricobius osakensis* have been observed starting oviposition as early as mid-December (Vieira et al. 2013, Personal obs.) in its native range of Japan, in the laboratory, and at release sites, whereas oviposition for *L. nigrinus* has been observed as early as late January (Zilahi-Balogh et al. 2003b). The phenological rate of development for *L. osakensis* is not fully understood within its introduced range of eastern North America and warrants further investigation.

Based on our analysis of these data, we have highlighted three major challenges in *Laricobius* spp. mass production and corresponding potential avenues of research. These need to be adequately addressed and understood in order to further increase laboratory quality, consistency, and production of *Laricobius* agents. The first major challenge is higher than desired colony mortality during pupation and estivation, when the insects are in their subterranean environment (Table 3). A second major challenge has been the early emergence of *Laricobius* spp. relative to their host, HWA (Table 2 and Fig. 2). The final challenge involves the presence of field-collected larvae and adults on HWA infested branches used to feed lab-reared colonies. Because *L. nigrinus* has established at and dispersed from many original release sites, finding locations where *L. nigrinus* is not present is a continuous issue that complicates our rearing efforts.

Challenge 1: Subterranean Duration and Survivorship

During the subterranean portion of the *Laricobius* spp. lifecycle (~6 mo), the insect pupates and enters into a period of presumed estivation. From 2004 until 2019, the average subterranean colony mortality for *L. nigrinus* and *L. osakensis* was 40 and 34%, respectively (Table 3). The reason for such severe mortality is unclear. Some variables we might consider are soil moisture and larval density per soil container. Lamb et al. (2007) reported a decrease in adult emergence at soil moisture levels outside of the 40–50% range. However, our moisture levels are consistently monitored and maintained at or close to recommended levels and does not explain our results. Salom et al. (2012) did not see a density effect on survivorship when evaluating 120, 240, and 360 larvae per container. As we have maintained our larval densities at ~200 per soil container, it is unlikely larval densities explain our mortality rates.

Laricobius spp. subterranean mortality in a field setting is not currently well understood. Jones et al. (2014) experimentally tested the subterranean survivorship of *L. nigrinus* in northern Georgia, USA, which corresponds to the southern limit of eastern hemlock, and recovered four adults from the estimated 1,440 larvae released. Jones et al. (2014) contributed their findings and lack of recoveries to the thermal developmental limit of 21°C for *L. nigrinus* (Zilahi-Balogh et al. 2003b). Additional studies need to be conducted to accurately document the subterranean survivorship of *L. nigrinus* and *L. osakensis* across their established range in relation to site factors and thermal requirements.

Avenues of research that could serve to increase colony production and subterranean survivorship is to determine the life stage (pupation or estivation) most susceptible to mortality, the effect of fourth instar larvae biomass on *Laricobius* spp. subterranean duration and survivorship, the effect of prepupa handling time on subterranean survivorship, and the nutrient quality of HWA in relation to tree age, health, and stage of infestation.

Challenge 2: Timing of Emergence

The median emergence time for *L. nigrinus* was significantly different from that of *L. osakensis*. Moreover, the average median range (the number of days during which 50% of the population emerges) for *L. osakensis* (32 d) is almost half compared to that of *L. nigrinus* (64 d). Based on these data, *L. osakensis* also remains in the soil longer than *L. nigrinus*.

When *Laricobius* spp. adults emerge before HWA breaks estivation, additional colony mortality occurs. Early emergence has been and continues to be an issue and suggests there are underlying biological variations that are not fully understood (Fig. 1). The total number of adults for both species that emerged early from estivation from 2004 to 2019 was 179,842. Of those, 39% (70,307) died prior to field release or experimental research. To decrease further colony mortality following early emergence, the use of interim diets and slight changes to temperature treatment and timing of temperature treatments have been implemented or recently suggested.

Interim diets used by Virginia Tech have two main forms: 1) various artificial yeast, egg, and protein mixtures, and 2) adelgid eggs of either HWA from the previous generation kept at their minimal developmental threshold of 5°C (Zilahi-Balogh et al. 2003b), to slow development, or from secondary adelgid host such as PBA. The artificial diet currently used is 'Lacewing and Ladybug Food'. Cohen and Cheah (2015) concluded the diet as 'highly effective in extending the survival of adults'. In attempts to decrease any further mortality

of *Laricobius* spp. adults, HWA sistens and PBA eggs are supplied. Although, *Laricobius* spp. cannot complete development on PBA eggs solely (Zilahi-Balogh et al. 2002, Vieira et al. 2011), feeding still occurs. There are no data available on the effects that consumption of older stored HWA progrediens or freshly collected PBA eggs have on increasing *Laricobius* spp. survivorship. However, based on anecdotal observation, we believe there is a net positive effect.

From 2004 until 2019, the average median number of days spent underground for *L. nigrinus* and *L. osakensis* was 198 and 214, respectively (Table 3). Salom et al (2012) determined that both moisture and temperature influence the number of days spent underground. The decision for when to shift from simulated summer temperatures (19°C) to simulated fall temperatures (13°C) is based on field observations of HWA breaking estivation in southwest Virginia. This reduction in laboratory temperature is usually initiated in early to mid-October around JD 274 (Fig. 2). Following this shift in temperature at the insectary, the median JD at which 50% of the adults emerged for *L. nigrinus* and *L. osakensis* was 298 and 300, respectively (Table 2). Therefore, while there is substantial variability in the timing of initial emergence, half of the colony consistently emerges from the subterranean environment following the shift to cooler temperatures (Table 2 and Fig. 2).

Based on these data, a potential technique that could be used to subvert the phenomenon of early emergence and to increase subterranean survivorship of *Laricobius* spp. is to allow the beetles to have a longer subterranean period with respect to how long each larval cohort is in the soil. For example, the Pearson's correlation between days spent underground and survivorship shows a significant positive relationship, for most years (Table 3). These results suggest that the longer the beetles are in the soil the greater their survivorship, on a per soil container basis. In addition, the Pearson's correlation between first day underground and survivorship shows a significant negative relationship, for most years (Table 1). These results suggest that the first cohort of larvae to make it to the soil, and thereby having a longer subterranean period, also has a higher survivorship.

Together, these results indicate the potential to increase subterranean survivorship. Instead of making the temperature shift on the same date for all soil containers (based on field-observed estivation break), the temperature-shift date could be varied by container, based on the number of days each cohort have been in the soil. This ensures a more uniform subterranean period (of adequate length) for each estivation container.

Challenge 3: Unintended Field Collections of *Laricobius* spp. Larvae

Laricobius nigrinus was first released from 2003 to 2005, in 22 localities from Georgia to Massachusetts (Mausel et al. 2010). Following a three-year sampling period, establishment was confirmed at 13 locations in plant hardiness zones 6a, 6b, and 5b (Mausel et al. 2010). Since 2005, L. nigrinus releases have continued and this species is now established >13 states in both forest and urban environments (Foley et al. 2019, Virginia Tech 2019, Jubb et al. 2021). The dispersal and subsequent establishment of L. nigrinus from field release sites is likely larger than previously reported (Davis et al. 2012, Foley et al. 2019). During weekly to bi-weekly food collections, it is challenging to find locations in southwest Virginia and the surrounding area where Laricobius spp. are not present. Unintended field collections of Laricobius spp., whether L. nigrinus, L. rubidus, or hybrids thereof, further complicate rearing procedures by reducing the food availability for the lab reared colony, by disrupting the synchrony of larval

developmental progression, and increasing the handling time for technicians when identifying species morphologically following emergence.

Laricobius nigrinus has overwhelmingly been considered the focal predator of HWA sistens by numerous governmental agencies, universities, and private stakeholders, each with the goal of releasing as many agents as possible. This was either done through the mass production of these agents (Salom et al. 2012), or through the relocation of these agents directly from the PNW (McDonald et al. 2011). As a result, L. nigrinus is now widespread across most of the HWA infested eastern hemlock and Carolina hemlock range (Foley et al. 2019, Virginia Tech 2019, Jubb et al. 2021). This same initiative has not been as exhaustive for L. osakensis as it has been for L. nigrinus. Therefore, we foresee the rate of establishment of L. osakensis across the eastern and Carolina hemlock range occurring at a slower pace.

Following HWA field collections, where the presence of Laricobius spp. is noted, efforts are made to avoid those collection areas in the future. In attempts to capitalize on regular cycles of quick population growth and decline of HWA, we also try to find new source populations of HWA, hoping that Laricobius spp. are not yet established there. From a mass rearing perspective, we foresee the unwanted field collection of unidentified species of Laricobius larvae as a continuing disruption within the rearing process, and therefore, we must adapt accordingly. As food is brought in from the field to the Insectary and stored in 18.9 liters buckets, prior to bouquet construction, subsamples are scouted for the presence of Laricobius spp. eggs and larvae. In addition, when scouting is neither effective nor sufficiently comprehensive, phenological anomalies can aid detection of field-collected insects. The date at which larvae start appearing at the bottom of the funnels, in relation to the entire colony's phenology, is particularly informative. For example, if fourth instar prepupal larvae are found in mason jars when the majority of the lab colony larvae are still developmentally younger (i.e., second instar), they are considered field-caught larvae.

Laricobius nigrinus is an important species in the biological control effort against HWA. However, limited laboratory resources and the widespread release and subsequent establishment of *L. nigrinus* across the landscape raises an earnest question: is there a need for continued mass production of this species? It is precisely with this question in mind that Virginia Tech discontinued the mass production of *L. nigrinus* in 2018 and focused on a species that is not already widely established, *L. osakensis*. However, in subsequent years, field-caught fourth instar prepupal *Laricobius* spp. larvae continued to be found in Mason jars, and therefore soil estivation arenas were prepared so that those individuals could be reared to the adult stage and later released. Moving forward, mass production at Virginia Tech will continue to be focused on *L. osakensis*, however, retaining, rearing, and releasing field caught *L. nigrinus* is a worthwhile side effort.

From an applied perspective, the ubiquity of *L. nigrinus* throughout its introduced landscape of eastern North America is promising. An operational metric often used to help define a successful biological control agent is its establishment and subsequent dispersal success and capabilities (Messenger et al. 1976, Goode et al. 2019). Evidence suggests that *L. nigrinus* is established at most release sites, is dispersing from those sites into new environments that contain hemlocks infested with HWA, and is exhibiting significant predation of HWA (Mausel et al. 2008, Mayfield et al. 2015, Jubb et al. 2020). However, *Laricobius* spp. by themselves are not sufficient in reducing

HWA populations to acceptable levels and are but one tool in the overarching IPM strategy for HWA (Mayfield et al. 2020).

Lastly, it is with the undesirable field-caught *L. nigrinus* and/ or *L. rubidus* in mind, that these data must be examined carefully. During larval production, species identity and the number of undesirable field-caught specimens brought into the lab are difficult to discern. *Laricobius* larval species determination, based on morphology, is not possible. However, when *L. nigrinus* and *L. osakensis* become adults, morphology can be used to separate these species. The aforementioned steps of scouting host material as it's brought into the lab and observing phenologically asynchronous prepupal larval drops are taken to help identify the presence of undesirable field-caught *Laricobius* spp., but does not completely stop the input of field-caught insects into the insectary.

Overall, the production of Laricobius spp. at Virginia Tech has been a successful endeavor that has not only served our local forest and urban ecosystems, but also those numerous collaborators in multiple states who have received shipments of predatory beetles. Based on these analyses and results of rearing Laricobius spp. over the past 15 yr, we recommend several areas of research in order to understand their biological requirements and to increase laboratory production. These include: 1) constant temperature experiments of L. osakensis to determine the developmental rate and ideal temperatures for rearing with respect to each life stage and phase, 2) evaluate the effect of Laricobius spp. larval biomass on their subterranean survivorship and timing of emergence, 3) study Laricobius spp. subterranean survivorship in a field setting as it relates to site factors, 4) assess the effect of handling time for prepupae, 5) determine the nutrient quality of HWA in relation to tree health, age, and stage of infestation, and 6) stagger the changes in temperature with respect to how long each larval cohort is in the soil.

Acknowledgments

We would like to thank Ryan Mays for his dedication in supplying *Laricobius* spp. colonies with fresh host material and all the technicians, laboratory assistants, and graduate students who have played a major role in the production of *Laricobius* spp. agents for field release and experimentation. We would also like to thank Shiyake Shigehiko with the Natural History Museum in Osaka, Japan as our overseas collaborator and all the State and Federal collaborators who have received and released *Laricobius* agents of the over the past decade and half. We would also like to thank Dr. Albert Mayfield for his review and suggestions prior to submission. This research was supported by the USDA-Forest Service Cooperative agreement 16-CA-1142004-086 and USDA APHIS PPQ grant AP19PPQFO000C566.

Author Contributions

JRF: Investigation; Writing – original draft; Writing – review & editing; Visualization; Conceptualization; Supervision; Funding acquisition; Methodology. CSJ: Writing – original draft; Writing – review & editing; Data curation; Methodology. ADS: Data curation; Formal analysis; Visualization; Writing; Conceptualization. DM: Writing – review & editing; Conceptualization. ALG: Writing – review & editing; Conceptualization. RB: Writing – original draft; Writing – review & editing; Conceptualization; Visualization. SMS: Funding acquisition; Supervision; Writing – original draft; Writing – review & editing; Conceptualization.

Conflicts of Interest

No conflicts of interest have been declared.

References Cited

- Cohen, A., and C. Cheah. 2015. Interim diets for specialist predators of hemlock woolly adelgids. Entomol. Ornithol. Herpetol. Curr. Res. 4: 153.
- Cohen, A., and C. Cheah. 2019. The nature of unnatural insects infrastructure of insect rearing. Am. Entomol. 65: 122–135.
- Davis, G. A., S. M. Salom, C. C. Brewster, B. P. Onken, and L. T. Kok. 2012. Spatiotemporal distribution of the hemlock woolly adelgid predator *Laricobius nigrinus* after release in eastern hemlock forests. Agric. For. Entomol. 14: 408–418.
- Fischer, M. J., N. P. Havill, C. S. Jubb, S. W. Prosser, B. D. Opell, S. M. Salom, and L. T. Kok. 2014. Contamination delays the release of *Laricobius osakensis* for biological control of hemlock woolly adelgid: cryptic diversity in Japanese *Laricobius* spp. and colony-purification techniques. Southeast. Nat. 13: 178–191.
- Fischer, M. J., N. P. Havill, C. C. Brewster, G. A. Davis, S. M. Salom, and L. T. Kok. 2015. Field assessment of hybridization between *Laricobius nigrinus* and *L. rubidus*, predators of Adelgidae. Biol. Control. 82: 1–6.
- Foley, J. R., C. Minteer, and P. W. Tipping. 2016. Differences in seasonal variation between two biotypes of *Megamelus scutellaris* (Hemiptera: Delphacidae), a biological control agent for *Eichhornia crassipes* (Pontederiaceae) in Florida. Fla. Entomol. 99: 569–571.
- Foley, J. R., T. J. McAvoy, S. Dorman, K. Bekelja, T. J. Kring, and S. M. Salom. 2019. Establishment and distribution of *Laricobius* spp. (Coleoptera: Derodontidae), a predator of hemlock woolly adelgid, within the urban environment in two localities in southwest Virginia. J. Integr. Pest Manag. 10: 30
- Goode, A. B., C. R. Minteer, P. W. Tipping, B. K. Knowles, R. J. Valmonte, J. R. Foley, and L. A. Gettys. 2019. Small-scale dispersal of a biological control agent–Implications for more effective releases. Biol. Control. 132: 89–94
- Gouger, R. J. 1971. Control of Adelges tsuage on hemlock in Pennsylvania. Sci. Tree Top. 3: 6–9.
- Havill, N. P., and R. G. Foottit. 2007. Biology and evolution of adelgidae. Annu. Rev. Entomol. 52: 325–349.
- Havill, N. P., M. E. Montgomery, G. Yu, S. Shiyake, and A. Caccone. 2006. Mitochondrial DNA from hemlock woolly adelgid (Hemiptera: Adelgidae) suggests cryptic speciation and pinpoints the source of the introduction to eastern North America. Ann. Entomol. Soc. Am. 99: 195–203.
- Havill, N. P., G. A. Davis, D. L. Mausel, J. Klein, R. McDonald, C. Jones, M. Fischer, S. M. Salom, and A. Caccone. 2012. Hybridization between a native and introduced predator of Adelgidae: an unintended result of classical biological control. Biol. Control. 63: 359–369.
- Havill, N. P., L. C. Vieira, and S. M. Salom. 2016. Biology and control of hemlock woolly adelgid. FHTET-2014-05. U.S. Department of Agriculture Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV.
- Humble, L. M. 1994. Recovery of additional exotic predators of balsam woolly adelgid, Adelges piceae (Ratzeburg) (Homoptera: Adelgidae), in British Columbia. Can. Entomol. 126: 1101–1103.
- JMP®, Version 15. SAS Institute Inc., Cary, NC, 1989-2019.
- Jones, C. E., J. L. Hanula, and S. K. Braman. 2014. Emergence of *Laricobius nigrinus* (Fender) (Coleoptera: Derodontidae) in the North Georgia Mountains. J. Entomol. Sci. 49: 401–412.
- Jubb, C. S., A. R. Heminger, A. E. Mayfield, J. S. Elkinton, G. J. Wiggins, J. F. Grant, J. A. Lombardo, T. J. McAvoy, R. S. Crandall, and S. M. Salom. 2020. Impact of the introduced predator, *Laricobius nigrinus*, on ovisacs of the overwintering generation of hemlock woolly adelgid in the eastern United States. Biol. Control. 143: 104180.
- Jubb, C. S., T. J. McAvoy, K. E. Stanley, A. R. Heminger, and S. M. Salom. 2021. Establishment of the predator, *Laricobius nigrinus*, introduced as a biological control agent for hemlock woolly adelgid in Virginia, USA. BioControl. 1–13.
- Kantola, T., J. L. Tracy, P. Lyytikäinen-Saarenmaa, H. Saarenmaa, R. N. Coulson, A. Trabucco, and M. Holopainen. 2019. Hemlock woolly adelgid niche models from the invasive eastern North American range with projections to native ranges and future climates. IForest. 12: 149–159.
- Lamb, A. B., S. M. Salom, and L. T. Kok. 2005. Survival and reproduction of *Laricobius nigrinus* Fender (Coleoptera: Derodontidae), a predator of

- hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae) in field cages. Biol. Control. 32: 200–207.
- Lamb, A. B., S. M. Salom, and L. T. Kok. 2007. Factors influencing aestivation in *Laricobius nigrinus* (Coleoptera: Derodontidae), a predator of *Adelges* tsugae (Hemiptera: Adelgidae). Can. Entomol. 139: 576–586.
- Lawrence, J., and T. Hlavac. 1979. Review of the Derodontidae (Coleoptera: Polyphaga) with New Species from North America and Chile. Coleopt. Bull. 369–414.
- Leppla, N. C., and W. R. Fisher. 1989. Total quality control in insect mass production for insect pest management. J. Appl. Entomol. 108: 452–461.
- Leschen, R. A. B. 2011. World review of *Laricobius* (Coleoptera: Derodontidae). Zootaxa. 2908: 1–44.
- Mausel, D. L., S. M. Salom, L. T. Kok, and J. G. Fidgen. 2008. Propagation, synchrony, and impact of introduced and native Laricobius spp. (Coleoptera: Derodontidae) on hemlock woolly adelgid in Virginia. Environ. Entomol. 37: 1498–1507.
- Mausel, D. L., S. M. Salom, L. T. Kok, and G. A. Davis. 2010. Establishment of the hemlock woolly adelgid predator, *Laricobius nigrinus* (Coleoptera: Derodontidae), in the Eastern United States. Environ. Entomol. 39: 440–448.
- Mausel, D. L., R. G. Van Driesche, and J. S. Elkinton. 2011. Comparative cold tolerance and climate matching of coastal and inland *Laricobius nigrinus* (Coleoptera: Derodontidae), a biological control agent of hemlock woolly adelgid. Biol. Control. 58: 96–102.
- Mayfield, A. E., B. C. Reynolds, C. I. Coots, N. P. Havill, C. Brownie, A. R. Tait, J. L. Hanula, S. V. Joseph, and A. B. Galloway. 2015. Establishment, hybridization, and impact of Laricobius predators on insecticide-treated hemlocks: exploring integrated management of the hemlock woolly adelgid. For. Ecol. Manag. 335: 1–10.
- Mayfield, A. E., S. M. Salom, K. Sumpter, T. Mcavoy, N. F. Schneeberger, and R. Rhea. 2020. Integrating chemical and biological control of the hemlock woolly adelgid: a resource manager's guide technology transfer integrated pest management, FHAAST-2018-04. USDA For. Serv. For. Heal. Assess. Appl. Sci. Team, Morgantown, West Virginia.
- McClure, M. S. 1989. Evidence of a polymorphic life cycle in the hemlock woolly adelgid, *Adelges tsugae* (Homoptera: Adelgidae). Ann. Entomol. Soc. Am. 82: 50–54.
- McClure, M. S. 1991. Density-dependent feedback and population cycles in Adelges tsugae (Homoptera: Adelgidae) on Tsuga canadensis. Environ. Entomol. 20: 258–264.
- McDonald, R., D. Mausel, S. Salom, and L. T. Kok. 2011. A case study of a release of the predator *Laricobius nigrinus* Fender against hemlock woolly adelgid, *Adelges tsugae*, Annand, at the urban community forest interface: Hemlock Hill, Lees-McRae College, Banner Elk, North Carolina, pp. 168–175. *In* B. Onken, and R. Reardon (Tech. Coord.), Implementation and Status of Biological Control of the Hemlock Woolly Adelgid. USDA Forest Service FHTET 2011-04.
- Messenger, P. S., F. Wilson, and M. J. Whitten. 1976. Variation, fitness, and adaptability of natural enemies, pp. 209–231. In C. B. Huffaker and P. S. Messenger (eds.), Theory and Practice of Biological Control. Academic Press, New York.
- Montgomery, M. E., and S. M. Lyon. 1996. Natural enemies of adelgids in North America: their prospect for biological control of Adelges tsugae (Homoptera: Adelgidae), pp. 89–102. *In S. M. Salom*, T. C. Tigner, and R. C. Reardon (eds.), Proceedings of the First Hemlock Woolly Adelgid Review. U.S. Department of Agriculture. Forest Service, Washington, DC.
- Montgomery M. E., S. Shiyake, N. P. Havill, and R. A. B. Leschen. 2011.
 A new species of Laricobius (Coleoptera: Derodontidae) from Japan with phylogeny and a key for native and introduced congeners in North America. Ann. Entomol. Soc. Am. 104: 389–401.
- Mooneyham, K. L., S. M. Salom, and L. T. Kok. 2016. Release and colonization of *Laricobius osakensis* (Coleoptera: Derodontidae), a predator of the hemlock woolly adelgid, *Adelges tsugae*. Northeast. Nat. 23: 141–150.
- R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

- Salom, S. M., A. A. Sharov, W. T. Mays, and D. R. Gray. 2002. Influence of temperature on development of hemlock woolly adelgid (Homoptera: Adelgidae) progrediens. J. Entomol Sci. 37: 166–176.
- Salom, Scott, Loke T. Kok, Tom McAvoy, and Richard McDonald. 2011.
 Field insectary: Concept for future predator production, pp. 195–198. In
 B. Onken, and R. Reardon, (eds.), Implementation and status of biological control of the hemlock woolly adelgid. FHTET-2011-04. US Department of Agriculture, Forest Service Forest Health Technology Enterprise Team, Morgantown, WV.
- Salom, S., L. Kok, A. Lamb, and C. Jubb. 2012. Laboratory rearing of Laricobius nigrinus (Coleoptera: Derodontidae): a predator of the hemlock woolly adelgid (Hemiptera: Adelgidae). Psyche. 2012: 1–9.
- Silcox, C. A. 2002. Using imidacloprid to control hemlock woolly adelgid, pp. 280–287. In B. Onken, R. Reardon, and J. Lashomb (eds.), Hemlock woolly adelgid in the eastern United States Symposium. U.S. Dep. Agric. For. Serv. Publ., East Brunswick, NJ.
- Steward, V. B., G. Braness, and S. Gill. 1998. Ornamental pest management using imidacloprid applied with the Kioritz® soil injector. Arboric. 24: 344–346.
- Stoetzel, M. B. 2002. History of the introduction of Adelges tsugae based on voucher specimens in the Smithsonian Institute National Collection of Insects, p. 12. In B. Onken, R. Reardon, and J. Lashomb (eds.), Proceedings of the hemlock woolly adelgid in eastern North America symposium. U.S. Department of Agriculture Forest Service and State University of NJ Rutgers, East Brunswick, NJ.
- Story, H. M., L. C. Vieira, S. M. Salom, and L. T. Kok. 2012. Assessing performance and competition among three Laricobius (Coleoptera: Derodontidae) species, predators of hemlock woolly adelgid, *Adelges tsugae* (Hemiptera: Adelgidae). Environ. Entomol. 41: 896–904.
- Tipping, P. W., M. R. Martin, L. Bauer, E. Pokorny, and T. D. Center. 2010. Asymmetric impacts of two herbivore ecotypes on similar host plants. Ecol. Entomol. 35: 469–476.
- Toland, A., C. Brewster, K. Mooneyham, and S. M. Salom. 2018. First report on establishment of *Laricobius osakensis* (Coleoptera: Derodontidae), a biological control agent for hemlock woolly adelgid, *Adelges tsugae* (Hemiptera: Adelgidae), in the Eastern US. Forests. 9: 496.
- USDA (United States Department of Agriculture). 2017. Approval of Laricobius naganoensis (Coleoptera: Derodontidae), a Predatory Beetle for Biological

- Control of Hemlock Woolly Adelgid, Adelges tsugae (Hemiptera: Adelgidae), in the Continental United States, Draft Environmental Assessment 2017. Plant Protection and Quarantine, Animal and Plant Health Inspection Service, United States Department of Agriculture, Riverdale, MD.
- Vieira, L. C., T. J. Mcavoy, J. Chantos, A. B. Lamb, S. M. Salom, and L. T. Kok. 2011. Host range of *Laricobius osakensis* (Coleoptera: Derodontidae), a new biological control agent of hemlock woolly adelgid (Hemiptera: Adelgidae). Environ. Entomol. 40: 324–332.
- Vieira, L., A. Lamb, S. Shiyake, S. Salom, and L. Kok. 2013. Seasonal abundance and synchrony between *Laricobius osakensis* (Coleoptera: Derodontidae) and its prey, *Adelges tsugae* (Hemiptera: Adelgidae) in Japan. Ann. Entomol. Soc. Am. 106: 249–25.
- Virginia Tech. 2019. HWA Predator Database Hemlock Woolly Adelgid. Available from http://hiro.ento.vt.edu/pdb/.
- Wiggins, G. J., J. F. Grant, J. R. Rhea, A. E. Mayfield, A. Hakeem, P. L. Lambdin, and A. B. Galloway. 2016. Emergence, Seasonality, and Hybridization of Laricobius nigrimus (Coleoptera: Derodontidae), an Introduced Predator of Hemlock Woolly Adelgid (Hemiptera: Adelgidae), in the Tennessee Appalachians. Environ. Entomol. 45: 1371–1378.
- Zilahi-Balogh, G. M. G., L. T. Kok, and S. M. Salom. 2002. Host specificity of *Laricobius nigrinus* Fender (Coleoptera: Derodontidae), a potential biological control agent of the hemlock woolly adelgid, *Adelges tsugae* annual (Homoptera: Adelgidae). Biol. Control. 24: 192–198.
- Zilahi-Balogh, G. M. G., S. M. Salom, and L. T. Kok. 2003a. Development and reproductive biology of *Laricobius nigrinus*, a potential biological control agent of *Adelges tsugae*. Biol. Control. 48: 293–306.
- Zilahi-Balogh, G. M. G., S. M. Salom, and L. T. Kok. 2003b. Temperature-dependent development of the specialist predator *Laricobius nigrinus* (Coleoptera: Derodontidae). Environ. Entomol. 32: 1322–1328.
- Zilahi-Balogh, G. M. G., C. D. Broeckling, L. T. Kok, and S. M. Salom. 2005. Comparison between a native and exotic adelgid as hosts for Laricobius rubidus (Coleoptera: Derodontidae). Biocontrol Sci. Technol. 15: 165–171.
- Zilahi-Balogh, G. M. G., L. M. Humble, L. T. Kok, and S. M. Salom. 2006. Morphology of *Laricobius nigrinus* (Coleoptera: Derodontidae), a predator of the hemlock woolly adelgid. Can. Entomol. 138: 595-601.