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Abstract

Arthrodesis is a recommended treatment in advanced stages of degenerative disc disease.

Despite dynamic fixations were designed to prevent abnormal motions with better physio-

logical load transmission, improving lumbar pain and reducing stress on adjacent segments,

contradictory results have been obtained. This study was designed to compare differences

in the biomechanical behaviour between the healthy lumbar spine and the spine with

DYNESYS and DIAM fixation, respectively, at L4-L5 level. Behaviour under flexion, exten-

sion, lateral bending and axial rotation are compared using healthy lumbar spine as refer-

ence. Three 3D finite element models of lumbar spine (healthy, DYNESYS and DIAM

implemented, respectively) were developed, together a clinical follow-up of 58 patients oper-

ated on for degenerative disc disease. DYNESYS produced higher variations of motion with

a maximum value for lateral bending, decreasing intradiscal pressure and facet joint forces

at instrumented level, whereas screw insertion zones concentrated stress. DIAM increased

movement during flexion, decreased it in another three movements, and produced stress

concentration at the apophyses at instrumented level. Dynamic systems, used as single

systems without vertebral fusion, could be a good alternative to degenerative disc disease

for grade II and grade III of Pfirrmann.

Introduction

A lot of patients suffer low back pain in some of them with chronic evolution. Lumbar pain

can have multiple etiologies, in some cases unidentified. One of the most prevalent etiologies

of lumbar pain is degenerative disc disease (DDD) [1]. The etiology of DDD is multifactorial,

in its production they influence, among other: the age, sedentary lifestyle, toxic habits, obesity

[2], loads supported [3] which in addition can activate the inflammatory and enzymatic pro-

cesses which play an important role in the degeneration [4–6] movements during flexion [7]
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and the genetics of each individual [8, 9], with particular relevance of the genetic polymor-

phisms [10, 11].

Most patients exhibit grades IV and V of Pfirrmann [12] in magnetic resonance imaging

(MRI) and evident signs of facet arthrosis leaving instability as the only remaining aspect to

improve with surgical treatment.

Lumbar spinal fusion is a standardized and widely accepted procedure for the treatment of

discogenic back pain, showing good results in the long term. It can be achieved through ante-

rior lumbar interbody fusion (ALIF), postero-lumbar interbody fusion (PLIF), transforaminal

lumbar interbody fusion (TLIF), lateral lumbar interbody fusion (XLIF), non-instrumented

posterolateral fusion and circumferential interbody fusion by double approach (anterior and

posterior).

The question which remains is if adjacent segment disease (ASD) is produced by age-

related degeneration or if it is a consequence of the previous fusion. [13]. As it has been

reported, ASD has a multifactorial etiology [13–17]. In order to avoid or minimize the occur-

rence of ASD, several alternative techniques in the treatment of disc degeneration (DD) have

emerged including: arthroplasty of facet joints [18], total disc replacement (TDR) and dynamic

fixation (DF). Nowadays, DF is the most used among these techniques.

Dynamic fixations can be used as a surgical treatment system for degenerative disc disease

or as a hybrid system, combined with circumferential fusion, to reduce a further progression

of degeneration in the adjacent discs to fusion [19–21]. During last years, the two most

employed systems are: the DIAM fixator (Device for Intervertebral Assisted Motion) [22],

used as an interspinous spacer and the dynamic neutralization system (DYNESYS) [21],

although nowadays Dynesys continues being used and the use of interspinous spacers has

diminished, including DIAM.

Although in vitro and clinical studies in the mid-term reported good results using DIAM

[23, 24] together with a lower incidence of ASD [25], it presented a high rate of revision sur-

gery due to either the loosening or fracture of the interspinous apophyses [26]. Regarding the

DYNESYS system, some follow-up studies have reported evident clinical improvement in

patients [21, 27].

The biomechanical analysis of the wide variety of fixations can be developed through in

vitro and in vivo testing and through finite element (FE) simulations. Concerning in vitro

tests, some authors have studied rigid and semi-rigid implants: Wallis, DYNESYS, Locker

implant and pedicle screw rod [28, 29], in terms of range of motion (ROM) and at different

levels of fixation [30]. Regarding in vivo studies, clinical outcome was evaluated for DIAM

dynamic stabilization with successful results in ROM and intervertebral fusion [31]. Several FE

studies have been developed to study the effect of implant positioning [32], different flexible

implants (FlexPLUS, DSS, DYNESYS, NFlex and PEEK, Awesome Rod System) and rigid fixa-

tions evaluating ROM in the four principal movements [33–37], the effect of pre compression

level, tension at the screws [38, 39] and several other parameters: Young’s modulus, diameter

of the cords, angular stiffness of head screws, etc [40]. The influence of the spacer diameter of

DYNESYS on lumbar spine biomechanics was analyzed in a previous study [41].

Despite the number of studies published, contradictory results have been obtained for the

different fixations. Thus, the aim of this work is to analyse and compare differences in the bio-

mechanical behaviour between the healthy lumbar spine model and the two operated models

with dynamic fixations at L4-L5 level, evaluating the efficiency of dynamic implants in terms

of mobility recovery against the healthy spine, used as baseline, and verifying the influence on

biomechanical behaviour of adjacent segments. With respect to previous works, the main con-

tribution is the combination of FE study and clinical results in our patients operated with both

systems, covering a total of 58 operated patients, with important low back pain, without
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clinical improvement after several months of conservative treatment, and with Pfirrmann II

and III of disc degeneration [12], without instability or signs of vertebral arthrosis. The clinical

study allowed verifying if the use of dynamic fixations is able to avoid or diminish the appear-

ance of the ASD, in the non-operated intervertebral discs, which is one of the main reasons for

the use of DF, completing and confirming, if possible, the results obtained by means of FE sim-

ulations. The present study refers to the use of dynamic fixation as single systems without ver-

tebral fusion (not hybrid systems).

Material and methods

Computational simulations

The present work is based on a previous FE model [42] validated according to the four basic

movements for a healthy spine (flexion, extension, lateral bending and axial rotation). This

model was used as a baseline to generate two new models of lumbar spine with arthrodesis

using two types of dynamic fixation and thus compare results from simulations of healthy and

implanted models (DYNESYS and DIAM, at L4-L5).

The DYNESYS system (Zimmer GmbH Warsaw, Indiana, USA) (Fig 1) has two cylindrical

space bars made of Polycarbonate-urethane (Selene PCU) which fasten spinal segments

towards anatomical position absorbing loads and controlling the spine through extension posi-

tions; a stabilizer cord made of Polyethylene-terephthalate (Selene PET) which under traction,

compresses the space bar achieving the global stability of the whole implant; and for pedicle

locking screws made of a Titanium-Aluminium-Niobium alloy (Ti-Al-Nb) (Protasul-100),

which permit the fixation of the cord and enable the compression of the modular space bars.

The DIAM Spinal Stabilization System (Medtronic, Minneapolis, USA) (Fig 1) consists of a

silicone structure covered by a polyester H-shape mesh placed in between the spinous apophy-

ses, acting as a shock absorber reducing loads at the vertebrae and serving as a flexible support

for the lumbar spine through its degenerative process. It is fixed in position by two cords serv-

ing as bonds. The DIAM device was conceived to stabilize degenerations of spine segments

without fusion surgery, maintaining the movement of the segments and preventing the degen-

eration of adjacent segments.

Three models, one for the healthy column and two with fixations were generated and

meshed. Implants were meshed automatically with linear tetrahedra except for the cords and

the space bars which were meshed with linear hexahedra. Thereafter, the positioning of each

device on the healthy lumbar spine model was carried out. Concerning the DYNESYS model,

screws were inserted in the perforations prepared during the initial stage, provided that inter-

discal space had not been affected by disc degeneration. Respecting the DIAM model, device

insertion was executed by posterior approach removing supraspinous ligament between L4

and L5 vertebrae to locate the DIAM device between the spinous apophyses. The final models

with arthrodesis are shown in Fig 1.

The 3D FE model of the healthy lumbar spine consisted of 195726 elements. The statistics

of the implanted models are shown in Tables 1 and 2. The final mesh sizes for the three models

were obtained after performing a sensitivity analysis, refining the mesh in order to achieve a

convergence towards a minimum of the potential energy, both for the whole model and for

each of its components, with a tolerance of 1% between consecutive meshes.

Regarding the model with DYNESYS, once pedicular screws were fixed, the length of the

space bar was determined and the cord was inserted applying a pre-compression to simulate

stretching with a value of 50 N (usual value in surgical practice). To this respect, the options

Rebar and Initial Conditions in Abaqus [43] were used, allowing changing the pre-stress state

during the subsequent equilibrating static analysis steps. Polyester laces placed at each side of

FE simulation and clinical follow-up of lumbar spine dynamic fixations
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the DIAM device were not modelled, as their restraint effect was included as a boundary

condition.

For the DYNESYS model, tie constraints [43] were applied between the screws and the

bone and the screws and the cords (i.e., perfectly bonded). Conversely, contact interaction was

Fig 1. Analyzed devices, their FE models and lateral and posterior view of the operated models. (A) DYNESYS. (B) DIAM.

https://doi.org/10.1371/journal.pone.0188328.g001
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considered between the space bar and the cords (friction coefficient of 0.1) and the space bar

and the screws (friction coefficient of 0.1). The DIAM model included contact interaction

between the polyester mesh and the bone (friction coefficient of 0.2). Mechanical properties of

biological tissues corresponded to those included in a previously published study [42].

DYNESYS components were made from the following materials: screws were made of Protasul

100 Ti-Al-Nb alloy, space bars were made of Poliethylene-terephthalate, and the cord of

Poliethylene-terephthalate. Mechanical properties of the cord and space bar of the DYNESYS

device were obtained by traction and compression tests, respectively, using an Instron Axial-

Torsion Servohydraulic Fatigue Testing System (model 8874) at the Mechanical Engineering

Lab of the University of Zaragoza. To prevent sliding, a set of load-displacement curves were

Table 1. Number and type of elements of each component in the FE models with DYNESYS and DIAM, respectively.

Group

Element type

Number of elements

Dynsesys model

L4-L5

Number of elements

DIAM model

L4-L5

Cartilage Wedge 4077 3086

Anterior longitudinal ligament Wedge 9967 9046

Posterior longitudinal ligament Wedge 4115 3844

Ligamentum flavum Tetrahedron 2619 3042

Intertransverse ligament Tetrahedron 7016 6678

Capsular ligament Membrane 2039 3225

Interspinous ligament Tetrahedron 2972 2363

Supraspinous ligament Tetrahedron 2770 2611

Iliolumbar ligament Wedge 822 816

Annulus fibrosus Hexahedron 8288 8288

Nucleus pulposus Tetrahedron 14410 14410

Annulus fiber layers 1 Truss 592 592

Annulus fiber layers 2 Truss 592 592

Annulus fiber layers 3 Truss 592 592

Annulus fiber layers 4 Truss 592 592

Annulus fiber layers 5 Truss 296 296

Outer vertebral endplates Tetrahedron 6507 3578

Intermediate vertebral endplates Tetrahedron 4047 2244

Center of the vertebral endplates Tetrahedron 2055 831

Walls of the vertebral body Tetrahedron 52456 37205

Cancellous bone (inside vertebrae) Tetrahedron 64038 44133

Posterior vertebra Tetrahedron 51416 47134

Spinal stabilization system See Table 2 16402 11099

Total 251811 258680

https://doi.org/10.1371/journal.pone.0188328.t001

Table 2. Material properties of every fixation component.

Device Component Material Young Modulus

(MPa)

Poisson’s ratio N˚ of elements/Element type

DYNESYS (L4-L5) Screws Protasul 100 (Ti-Al-Nb alloy) 110000 0.33 11375/Tetrahedron

Space bars Poliethylene-terefthalate 1980 (*) 0.35 2420/Hexahedron

Cord Poliethylene-terefthalate 3225 (*) 0.40 2607/ Hexahedron

Interspinous fixation DIAM Silicone core covered by polyester 2100 0.35 11099/Tetrahedron

(*) Obtained from experimental testing

https://doi.org/10.1371/journal.pone.0188328.t002
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Fig 2. Experimental strain-stress curves for DYNESYS device. (A) Cord. (B) Bar.

https://doi.org/10.1371/journal.pone.0188328.g002
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obtained. A quasi-static traction test was performed with a displacement rate of 2 mm/min

and an extension limit of 2 mm. The space bar was tested under a compression rate of 1 mm/

min and 3 mm of compression limit. The stress and strain values obtained for the cord and

space bar in the traction test and compression test are shown in Fig 2A and 2B, respectively.

Regarding Interspinous fixation DIAM, it was made of Silicone core covered by polyester.

For the affected disc, in the models with DYNESYS and DIAM, mechanical properties

according to Ibarz [44] were considered (equivalent to grade II or III of Pfirrmann [12], which

corresponds to slightly affected vertebral endplates, in grade III, but without instability. This is

in accordance with clinical recommendations for dynamic fixations.

The boundary conditions applied were the same in every model: movements at the sacrum

wings were restrained, and a pure moment scenario as reported in [45] was considered. A uni-

fied moment of 7.5 Nm was applied at the central node on the top side of the vertebra L1

around the corresponding axes for flexion, extension and lateral bending, and a moment of 0.6

Nm for axial rotation. Those values are in accordance with the recommended ones for the

lumbar spine in pathological conditions [40].

In order to analyse the angles formed by each vertebra with the sacrum in the four basic

movements, the same technique described in [42] was used (Fig 3). Flexion and extension

movements were analysed by measuring the angle between facet joints at the sagittal plane; lat-

eral bending movement was analysed by measuring the angle between facet joints at the frontal

plane. Finally, axial rotation movement was analysed by measuring the angle between facet

joints at the coronal plane.

Fig 3. Geometrical references for relative movement calculation.

https://doi.org/10.1371/journal.pone.0188328.g003
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Clinical study

A total of 58 patients were operated on for degenerative disc disease, 46 patients with a DIAM

device and 12 patients with DYNESYS, all of whom were examined to know their evolution and

the long-term results of surgical treatment. This study was authorized by the Ethics Committee

of Aragon and all patients signed the corresponding informed consent. Both groups of patients

were similar, in age and degree of disc degeneration.The inclusion criteria were:

• Patients younger than 50 years

• Persistent chronic low back pain after at least 6 months of conservative treatment

• Pfirrmann Grade II or III of degenerative disc disease

• No existence of facet osteoarthritis or instability

• No previous surgery

The exclusion criteria were:

• Patients older than 50 years

• Pfirrmann Grade IV or V of Degenerative Disc Disease

• Existence of facet osteoarthritis or instability

• Previous surgeries

The study of patients operated with Dynesys was retrospective, the assessment of outcome

was performed by an independent observer. The study of patients operated with DIAM was

prospective.

Results

Results of computational simulations

Concerning the results of FE simulations, the mobility values shown in Fig 4 were obtained.

Regarding flexion, Fig 4A shows similar behaviour between the healthy and interspinous

device model along all the vertebrae. The DYNESYS device model was not as stiff as the

healthy one yielding to a greater global movement.

In extension movement (Fig 4B), the DYNESYS device provided a higher movement as pre

compression of the cord favoured this type movement whereas for the interspinous model a

higher mobility was developed at superior segments (L1 and L2).

Regarding lateral bending movement in undeformed and deformed shapes, the DYNESYS

model had a marked higher movement compared to the other models. The interspinous

model gave a similar ROM to the healthy one (Fig 4C).

Concerning rotation axial movement (Fig 4D), lower amplitude was observed compared to

previous movements. The healthy and DIAM model had a similar ROM again with the range

being more reduced for the DYNESYS model.

Table 3 summarises all the results concerning the implanted models compared with the

healthy model. The DIAM device produced, in general, smaller variations in degree of move-

ment compared to DYNESYS, exhibiting minimal variations for axial rotation (+0.10/+0.78%)

and lateral bending (-0.48/-4.59%). In extension it increased +13.35% with respect to the

healthy model reaching a maximum variation for flexion (-32.65%) where all variations were

negative as in lateral bending. Consequently, movement compared to the healthy model was

limited. Conversely, DIAM increased movement along all the vertebrae during extension.

FE simulation and clinical follow-up of lumbar spine dynamic fixations
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Vertebra L5 (1.86%) had the smallest variation, corresponding to the movement of extension,

whereas L4 (-32.65%) was the most altered one, in the movement of flexion.

Compared to the healthy model, the DYNESYS device produced higher variations in the

degree of motion, reaching a maximum value during lateral bending. Flexion and extension

produced the same range of variations. The same range of percentages is reached for rotation

movement. In summary, vertebra L4 (10.94%) was the least altered, occurring in the

Fig 4. Results of the movement angle at each vertebra. (A) Flexion. (B) Extension. (C) Lateral bending. (D) Axial rotation.

https://doi.org/10.1371/journal.pone.0188328.g004

Table 3. Variations of the degree of movement compared to healthy model through the four movements simulated (% of relative rotation between

vertebrae).

Movement Implant L1 L2 L3 L4 L5

Flexion DYNESYS 44.13 58.07 22.10 -11.36 40.03

DIAM -16.12 -20.76 -27.33 -32.65 -3.21

Extension DYNESYS 44.05 55.82 29.85 10.94 39.05

DIAM 6.50 8.15 10.53 13.35 1.86

Lateral bending DYNESYS 135.07 176.84 190.86 28.47 117.60

DIAM -2.22 -2.28 -2.93 -4.59 -0.48

Rotation DYNESYS 40.20 53.20 28.98 -21.07 39.79

DIAM 0.78 0.63 0.10 0.33 -0.35

https://doi.org/10.1371/journal.pone.0188328.t003
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movement of extension, whereas L3 (190.86%) experimented the highest variation, corre-

sponding to lateral bending.

Interdiscal pressure (IDP) was measured as compressive stresses (minimum principal

stress) at the instrumented and adjacent levels (Fig 5). During flexion, DYNESYS decreased

IDP mainly at the instrumented level (L4-L5) and slightly at the upper level (L3-L4) whereas it

slightly increased IDP at the lower level (L5-S1). Conversely, with the DIAM device IDP

remained stable at every level (Fig 5A). In extension, DYNESYS increased IDP at the lower

level (L5-S1) without producing any changes to the rest of discs, while IDP continued to be sta-

ble with DIAM at every level (Fig 5B). In lateral bending, IDP decreased at the instrumented

level but increased in adjacent discs with DYNESYS, whilst remaining stable with DIAM at

every level (Fig 5C). Finally, in axial rotation, IDP decreased at the instrumented and lower

level and increased in the upper disc with DYNESYS, whereas a slight discharge was produced

at every level with DIAM (Fig 5D).

Results concerning the simulated movements are post processed at L3-L4-L5 in terms of

von Mises stress, as Fig 6 shows. Depending on the fixation used, maximum values were con-

centrated at the location of the fixations: the DYNESYS implant at the screw insertions in con-

trast to the DIAM at the apophyses. The von Mises criterion was used for comparison

purposes only, and it cannot be used as failure criterion for bone, which has a brittle behavior.

In flexion movement (Fig 6A) the DYNESYS implant produced higher stress concentra-

tions at the screw insertions at L4-L5 particularly at vertebra L4. L3 was discharged which is

related with the onset of screw loosening. The DIAM implant developed a similar behaviour to

the healthy model but overloading the apophyses of L4.

Regarding extension movement (Fig 6B), DYNESYS showed a high stress rate at the inser-

tion screws of L4 while L3 remained almost unloaded. The DIAM implant overloaded both L4

and L5, a stress concentration is observed at the apophyses of L4 vertebra.

During lateral bending (Fig 6C), the DIAM device transmitted loads mainly through the

apophyses of L4. In relation to DYNESYS, L4 and L5 had a similar stress distribution to the

healthy model, except at the screw insertions where a concentration appears again. L3 had a

noticeable increase of stress compared to the healthy model, with a different distribution and

higher values near to the back vertebral body.

Axial rotation discharged L4 and L5 in the DYNESYS model while this movement over-

loaded the apophyses of L3 and L4. The DIAM device exhibited a similar distribution to the

healthy model, except at the apophyses of L4 which exhibited a stress concentration and at L3

where a slight decrease was observed (Fig 6D).

Results of clinical study

DIAM. Between the years 2012 and 2016, 46 patients were operated on, 3 of them with a

double device in L4-L5 and L5-S1. The ages range from 26–43 years with an average of 35.7

years. The follow-up time ranges from 5 years to 8 months with an average of 3.4 years.

Three of them have been reoperated due to persistent low back pain despite conservative

treatment. Two at the two-year DIAM placement and another at 14 months, all were treated

with lumbar arthrodesis. Of the remaining 43 patients, 6 had lumbar pain and were treated by

rhizolysis, and the symptomatology disappeared. The remaining 37 patients (80.43%) were

asymptomatic. We have not had any breakage of spinous apophyses nor any displacement of

the device. There are no clinical or radiographic signs of ASD in the adjacent segments.

DYNESYS. We reviewed 12 patients operated between 2007 and 2010, ranging in age

from 28–41 years with an average of 38.3 years. The follow-up time ranges from 10 years to 6.6

years with an average of 8.3 years. Of these 12 patients, 7 are asymptomatic (58.33%), 3 were

FE simulation and clinical follow-up of lumbar spine dynamic fixations
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Fig 5. Compression stress maps in discs L3- L4 and L5-S1 for healthy, DYNESYS and DIAM models.

(A) Flexion. (B) Extension. (C) Lateral bending. (D) Axial rotation.

https://doi.org/10.1371/journal.pone.0188328.g005
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Fig 6. Von Mises stress maps in vertebras L3, L4 and L5 for healthy, DYNESYS and DIAM models. (A)

Flexion. (B) Extension. (C) Lateral bending. (D) Axial rotation.

https://doi.org/10.1371/journal.pone.0188328.g006
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arthrodesed, 2 of them at 5 years of Dynesys placement and 1 at one year, while the remaining

two patients underwent rhizolysis to treat their low back pain, with improvement, only having

some occasional discomfort.

We have not detected any pulling of the screws, or breakage of the material. There are no

clinical or radiographic signs of ASD in the adjacent segments.

Discussion

The incidence of clinically symptomatic adjacent segment disease (SASD) is lower compared

to radiographic adjacent segment disease (RASD), because radiographic changes in adjacent

segments do not necessarily imply functional impairment in patients with Arthrodesis [46].

The incidence of SASD ranging between 2% and 36% [46] and its treatment represents a

serious problem, especially in young patients. The stiffness of the implant and the number of

fixed segments in lumbar fusion has been associated with an increased incidence of ASD [47].

Nevertheless, fusion produces a significant increase in stress of the adjacent segments, particu-

larly in the facet joints which is considered to provoke a degenerative cumulative process lead-

ing to ASD [48].

So as to avoid or minimize the occurrence of ASD, dynamic fixation systems have emerged,

becoming a popular alternative to arthrodesis in the treatment of degenerative disc disease. DF

reduces IDP at the instrumented levels by unloading the discs [49]. Consequently, an improve-

ment is obtained on the MRI images of the degenerated disc by increasing the proportion of

glycosaminoglycans [27].

Dynamic fixations were designed to prevent abnormal motions, yielding to a better physio-

logical load transmission. Posterior motion-sparing devices intend to off-load facet joints and

fibrous annulus enabling the damaged discs to repair themselves [50] if the degenerative pro-

cess is not very advanced. They improve lumbar pain and reduce the stress on adjacent seg-

ments. Computational biomechanical research has confirmed that dynamic systems protect

adjacent levels from excessive motion [51]. However, other authors consider this technique to

produce a high rate (19%) of revision surgeries and low clinical improvement (only 67%) [52].

Our research group has long and mid-term experience with DF (DYNESYS and DIAM) for

the treatment of degenerative disc disease localized at L4-L5 level. Important clinical symp-

toms and clear signs of disc degeneration were confirmed by MRI, but without instability or

degeneration of the facet joints in young and active patients. As floating fusion entails a high

risk for ASD [53], this technique is considered to be a good alternative.

The four principal movements were simulated. ROM was different in both systems. Both

devices allowed motion at L4-L5 level (instrumented level) in flexion without variations in

amplitude compared to the healthy spine; in extension, both systems limited mobility, a greater

percentage with DIAM; in lateral bending, DYNESYS increased the mobility and DIAM did

not produce any variation; finally, in axial rotation, DIAMTM did not alter the range of motion

and DYNESYS decreased it by 25%.

Concerning the rest of the segments, the results of the ROM with DYNESYS are in agree-

ment with previous reports [30, 54]; it must be considered that the ROM with DYNESYS may

vary in relation to the cord pretension [39], length and diameter of the spacer [41]. The results

obtained in the present study with DIAM are in agreement with other works [22].

With respect to the stresses, although neither fixation device produced a significant rise on

adjacent vertebrae, they both generated stress concentrations at their locations. Therefore,

DYNESYS underwent this increase at the insertion zones of the screws, according to a previous

study [54]; the stress concentration can provoke the pull-out of the screws in the medium or long

term [21]. The obtained results showed the insertions at vertebra L4 as the most loaded whereas
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vertebra L3 was discharged, suggesting possible problems related to screw loosening at this level.

In our clinical experience, we have not observed any pulling or loosening of the screws.

The DIAM device increased the stresses at the spinous apophyses of the instrumented level.

This complication, already described [26], can cause its own fracture. In the 46 operated cases

we did not suffer any fracture of the spinous apophyses, although we must consider the follow-

up time is not especially long.

The obtained results are in accordance with Wu [26], exhibiting peak stress values at the

apophyses of L4 during extension, flexion and lateral bending above all. As a result vertebra L4

remained as the most loaded one. Neither significant increase in mobility in the L5-S1 level

nor an increase on the stress were found, considering that a dynamic fixation floating was sim-

ulated, like those of our clinical cases.

In the movement of flexion, DIAM and the healthy model developed similar stress maps

whereas DYNESYS exhibited the maximum values amongst the three models at the insertion

points of L4. During lateral bending the highest range of stresses occurred, where the DIAM

model had a very similar stress distribution to the healthy model and the DYNESYS model

remained almost discharged. Conversely, the minimum stress values were obtained for axial

rotation with the DIAM model exhibiting lower stresses.

Results for IDP are in good agreement with previous published results: DYNESYS

decreased IDP at the instrumented level and the facet joint forces at implant level [34] with no

significant changes in IDP seen in the adjacent discs [20]. Regarding DIAM, contradictory

published results have reported: a decrease in IDP at instrumented level and adjacent discs

[48], a decrease in IDP at instrumented level with no significant changes in the IDP at the adja-

cent levels [55], and only a decrease in IDP during extension at the instrumented level [56].

Nonetheless, a recent paper has published a rise in IDP and the facet load in adjacent segment

with an important stress at the bone-implant interface, similar to the findings in the present

work [54]. IDP decrease and the stabilization of the stresses on adjacent vertebrae is a positive

factor in avoiding the appearance of ASD.

The obtained results did not detect a stress increase on the adjacent segments, which is in

accordance with the published evidence where no incidence was observed on ASD after the

implantation of dynamic systems. In the same way, our results through FE simulation con-

firmed a decrease in IDP without any variations in the adjacent discs. In the clinical study we

did not observe the presence of ASD in the adjacent discs, which is in favor of that there is no

increase of IDP, although in the cases of DIAM the follow-up is short.

Concerning the increased mobility detected in the adjacent segments, particularly with

DYNESYS, it does not appear to have clinical implications in the medium term taking into

account the published results [21]. The mid-term results obtained by our group in the clinical

follow-up were very satisfactory and we did not find hypermobility with displacement of adja-

cent vertebrae in any case, which is a major cause of ASD [47]. Our clinical results with the use

of the DIAM, with 80.43% of asymptomatic patients and without presence of ASD in the adja-

cent discs, can be considered satisfactory, although more follow-up time is needed to reach

definitive conclusions. The results with DYNESYS, with a longer follow-up time and smaller

number of patients, are lower, with only 58.33% of asymptomatic patients. But, what is evident

is that with both devices we have not detected ASD in the adjacent discs, which is one of the

reasons for using dynamic fixations.

The obtained results show that the use of dynamic fixations as single systems without verte-

bral fusion, for low grades of disc degeneration (grades II and III of Pfirrmann), which corre-

sponds to slightly affected vertebral endplates but without instability, is an advisable technique

which can provide good results. Regardin the controversial published results, the results

obtained in the present work are in accordance with the authors who consider both systems
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capable of maintaining the stability of the lumbar spine (DYNESYS [20, 54, 57–60] and DIAM

[50, 61–63]).

Our clinical experimental results with DIAM are satisfactory whereas they were not as

favorable with the use of DYNESYS, although the latter is considered to provide a more stable

fixation. Nonetheless, the follow up period is not long enough to establish definitive conclu-

sions. Both fixations have been used on young patients, and have made it possible to postpone

the lumbar spine arthrodesis whenever necessary, as the definitive solution. Additionally,

patients have been re-operated after several months of ineffective conservative treatments, rec-

ommending a dynamic fixation mainly because of their age.

The main limitations of this study derive from the small sample of patients and the short

follow-up time, both of which need to be broadened. Nevertheless, there is a good correspon-

dence between computational results and the absence of ASD in the radiologic controls of the

patients.

Conclusions

The results obtained in the present work are in accordance with other authors who consider

both systems (DYNESYS and DIAM) capable of maintaining the stability of the lumbar spine.

Nevertheless, it must be noted that the DYNESYS system may have greater long-term stability,

whilst also considering that its implementation requires a more aggressive surgery.

Accorfing to the obtained results, the dynamic systems anlyzed, used as single systems with-

out vertebral fusion, could be an alternative for the treatment of degenerative disc disease for

grade II and grade III of Pfirrmann. Their major advantage is the possibility they offer to exe-

cute a subsequent rigid fixation in case of the failure of the dynamic fixation. In any case, they

make it possible to postpone the procedure of lumbar spine arthrodesis.
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