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A bi-functional material based on silver nanoparticles (AgNPs)-reduced graphene oxide

(rGO) composite for both electrode modification and signal generation is successfully

synthesized for use in the construction of a label-free electrochemical immunosensor.

An AgNPs/rGO nanocomposite is prepared by a one-pot wet chemical process.

The AgNPs/rGO composite dispersion is simply cast on a screen-printed carbon

electrode (SPCE) to fabricate the electrochemical immunosensor. It possesses a

sufficient conductivity/electroreactivity and improves the electrode reactivity of SPCE.

Moreover, the material can generate an analytical response due to the formation of

immunocomplexes for detection of human immunoglobulin G (IgG), a model biomarker.

Based on electrochemical stripping of AgNPs, the material reveals signal amplification

without external redox molecules/probes. Under optimized conditions, the square wave

voltammetric peak current is responded to the logarithm of IgG concentration in two

wide linear ranges from 1 to 50 pg.ml−1 and 0.05 to 50 ng.ml−1, and the limit of

detection (LOD) is estimated to be 0.86 pg.ml−1. The proposed immunosensor displays

satisfactory sensitivity and selectivity. Importantly, detection of IgG in human serum using

the immunosensor shows satisfactory accuracy, suggesting that the immunosensor

possesses a huge potential for further development in clinical diagnosis.

Keywords: silver nanoparticles, reduced graphene oxide, electrochemistry, immunosensor, Immunoglobulin G,

screen-printed carbon electrode

INTRODUCTION

Development of new strategies and sensitive, selective, and low-cost devices for detection of
clinically predictive bioindicators in the human body with good accuracy and precision has
received considerable attention (Reanpang et al., 2015; Justino et al., 2016; Sharafeldin et al., 2017).
These devices have been extensively studied for screening, monitoring, and diagnosing diseases
and virus infections (Gug et al., 2019; Metkar and Girigoswami, 2019; Roointan et al., 2019;
Sadighbayan et al., 2019; Farzin et al., 2020; Menon et al., 2020). In particular, the electrochemical
immunosensing strategy is one of the most studied methods, because it combines advantages of
antibodies via immunoreaction with high specificity, which gives high sensitivity and fast response
(Luppa et al., 2001; Rama and Costa-García, 2016; Putnin et al., 2018). Moreover, for applications
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in point-of-care (POC) clinical testing, it can beminiaturized and
developed for in situ detection and real-time assay (Janmanee
et al., 2012; Thunkhamrak et al., 2017, 2020; Pothipor et al.,
2018; Gao H. et al., 2019; Jofre et al., 2020; Regiart et al., 2020;
Upan et al., 2020). These reasons make an immunosensor very
attractive for applications in assays of clinically relevant analytes
(Luppa et al., 2001; Rama and Costa-García, 2016).

Many reports showed uses of sandwich-type electrochemical
immunosensors to detect various kinds of biomarker proteins
popularly due to high sensitivity and specificity (Huang et al.,
2015; Miao et al., 2019; Pei et al., 2019a; Zhang C. et al.,
2019; Zhang S. et al., 2019; Awan et al., 2020; Li et al., 2020a;
Pourmadadi et al., 2020). Although the immunosensors show
high performance in the detection of target analytes, some
devices present limits of detection (LOD) comparable to those
of label-free configuration, which has less complexity. Chen
et al. (2020) reported that a sandwich-type sensor with a dual-
signal amplification element mechanism used in the detection of
carcinoembryonic antigen (CEA) obtained an LOD of 0.032 pg
ml−1. Additionally, signal amplification using high-surface area
graphene (GP) nanocomposites presented an LOD value of 100
pg ml−1 (Chen et al., 2013), and Ag/Au nanoparticles (NPs)/GP
provided an LOD value of 8 pg ml−1 (Huang et al., 2015). With
more complexity using glucose oxidase-encapsulated gold (Au)
hollow microspheres and pH meter readout, an electrochemical
immunosensor provided an LOD value of 62 pg ml−1 (Jiang
et al., 2018), while a label-free immunosensor based on Bi2MoO6

nano-tremella (NT) showed an LOD value of 0.3 pg ml−1 for
CEA assay (Wang et al., 2020). Recently, many reports have
shown insignificant improvement in the LOD value for the
detection. Deng et al. (2020), Li et al. (2020b), and Shen et al.
(2020) demonstrated sandwich-type immunosensors with LOD
values of 0.48, 0.5, and 5 pg.ml−1, respectively. Employing other
techniques, together with electrochemical process, in sandwich-
type immunosensing, such as electrochemiluminescence (LOD
of 3 pg ml−1) (Huang et al., 2018) and photoelectrochemical
format (LOD of 0.468 pg ml−1) (Liu et al., 2020), also offers LOD
values comparable with those of the label-free configuration.
Moreover, a photoelectrochemical immunodevice with a 3D
origami platform was used for detection of CEA with a lower
LOD value of 0.3 pg ml−1 (Ge et al., 2015). For detection
of a target protein, new and highly complicated methods
would not show significantly better performance compared
with the label-free immunosensors. Furthermore, a label-free
sensor using electrochemiluminescence response revealed no
significant difference in LOD value (0.23 pg ml−1) (Zhang et al.,
2020). Therefore, the label-free electrochemical immunodevice is
interesting due to its low cost, easy to operate instrumentation,
and no time consumption. This device can reduce chemical
consumption and complexity such as fabrication steps.

There are excellent nanomaterials such as graphene oxide
(GO) (Jumpathong et al., 2016), Au@Bi2MoO6 NTs (Wang et al.,
2020), Pt–Au alloy nanotube array (Tao et al., 2011), Au–Pt
nanostructures (Jia et al., 2015), Au@Pd/Ag NPs and amination
GP (Li N. et al., 2014), AuNPs and poly(amidoamine)-MWCNTs-
chitosan nanocomposite (Dong et al., 2013), AuPd@Au
nanocrystals (Wang et al., 2018b), Au@Pt nanocrystals (Wang

et al., 2018c), AuNPs/Zn/Ni–ZIF-8-800@GP composites (Hu
et al., 2019), PdCu tripod functionalized porous GP (Tan et al.,
2020), Cu3Pt nanoframes (Wang et al., 2018a), Pd NPs@3D
MoSx (Gao Z. et al., 2019), 3D PtCu nanoframes (Chen et al.,
2019), Ag/MoS2/rGO nanocomposites (Wang et al., 2018),
AuPdCu NPs/N-doped GP quantum dots functionalized
polymer nanospheres (Yan et al., 2018), Pd NPs functionalized
MoS2/NiCo heterostructures (Ding et al., 2020), Au NPs/MoS2-
GP aerogels composite (Xu et al., 2020), AuNPs–PtNPs–MOFs
(Zhao et al., 2019), and PtPd NCs@MoS2 nanoenzymes (Tan
et al., 2019), which have been employed in the construction
of label-free electrochemical immunosensors. Their label-free
immunosensors are demonstrated with additional chemicals
or redox probes such as H2O2 (Tao et al., 2011; Wang et al.,
2018, Leng et al., 2011; Yan et al., 2018; Chen et al., 2019; Gao Z.
et al., 2019; Pei et al., 2019a,b; Tan et al., 2019; Zhao et al., 2019;
Ding et al., 2020), O2 (Wang et al., 2018a,c; Chen et al., 2019),
methyl orange (Sun et al., 2019), and [Fe(CN)6]4−/3− (Dong
et al., 2013; Li R. et al., 2014; Liu et al., 2015; Han et al., 2017;
Hu et al., 2019; Xu et al., 2020) to obtain signal amplification
via electrocatalytic reductions and charge transfer reactions.
Moreover, the nanomaterials can improve the conductivity and
electrochemical reactivity of an electrode surface. Han et al.
reported an immunosensor based on rGO/Ag NPs composites
in the detection of target protein by signal amplification via
blockage of the electron transfer process in [Fe(CN)6]4−/3−

due to the amount of immunocomplex (Han et al., 2017).
The composites can immobilize antibodies without covalent
bonding. Interestingly, some nanomaterials, namely, AgPt
nanorings/reduced GO (Wang et al., 2018a) and Ag–GO
nanocomposites (Wu et al., 2013), can amplify analytical
responses in label-free immunosensing with no addition of
chemicals. The responses are from the redox processes of surface-
confined AgPt nanorings/reduced GO and Ag–GO, which are
restricted by immunocomplexes formed on the electrode surface.
Therefore, development of label-free immunosensors with no
complication is challenging. These immunosensors require
versatile materials for device construction, which can improve
electrode reactivity and protein immobilization without coupling
agents and can perform with signal generation.

Taking into account the need for advancements in the
diagnosis of target biomarker proteins, this study presents
the development of a simple, sensitive, cost-effective, and
label-free electrochemical immunosensor for the detection of
immunoglobulin G (IgG) as a model protein in human serum.
Compared with that in the study of Han et al. (2017), the strategy
used in this study requires no other redox probes for label-
free assay. Wu et al. demonstrated a label-free Ag–GO-based
immunosensor, which required a step for the deposition of an
Au film (Wu et al., 2013). Although AgPt nanorings/reduced GO
offered very low LOD, the sensor consumed an expensive reagent
(Wang et al., 2018a). Additionally, the label-free electrochemical
determination of IgG in our study was demonstrated by
the proof-of-concept development of sensor-based signal-
amplifying AgNPs on rGO. A bifunctional material based on
silver nanoparticles (AgNPs)-reduced graphene oxides (rGO)
was employed for both electrode modification and signal
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SCHEME 1 | Fabrication of AgNP/rGO-based electrochemical immunosensor.

generation. The biocompatibility and electrochemical properties
of screen-printed carbon electrodes (SPCEs) were improved
by modification with such AgNPs-rGO. The reduction in
electrochemical stripping response of AgNPs is proportional to
the amount of target IgG in the electrode. Under optimized
conditions, our proposed immunosensor obtained satisfactory
sensitivity and selectivity, two wide dynamic ranges, and low
LOD of 0.86 pg.ml−1. The immunosensor was successfully
examined for the detection of IgG in human serum with
good recoveries.

EXPERIMENT

Chemicals and Materials
Anti-human IgG (Fab specific) antibody (anti-IgG, 5.5mg
ml−1) produced in goats, dopamine hydrochloride (DA, 99.5%),
graphite powder (synthetic, size <20µm), IgG from human
serum (IgG, 4.8mg ml−1, ≥95%), phosphate-buffered saline
(PBS) tablets (pH 7.4), myoglobin from the human heart (Mb,
2.4mgml −1,≥95%), and human serum from amale (AB plasma,
United States origin, lot: SLBS6544) were purchased from Sigma
Aldrich (Singapore). Potassium ferricyanide (K3[Fe(CN)]6,
98.5%) (), sulfuric acid (H2SO4, 96%), potassium nitrate (KNO3,
99%), hydrochloric acid (HCl, 37%), and ethanol (C2H6O, 95%)
were obtained from Lab Scan (Gliwice, Poland). L(+)-ascorbic
acid (C6H8O6, 99.7%), sodium di-hydrogen phosphate dehydrate
(NaH2PO42H2O, 98.5%), and nitric acid (HNO3, 65%) were
ordered from Merck (Darmstadt, Germany). Bovine serum
albumin (BSA, 98%) was obtained from Merck (Germany). Di-
sodium hydrogen phosphate dehydrate (Na2HPO42H2O, 99%),
glucose (C6H12O6, 99%), hydrogen peroxide (H2O2, 50%),
potassium permanganate (KMnO4, 99%), silver nitrate (AgNO3,

99.8–100.5%), and uric acid (C5H4O3N4,≥99%) were purchased
from Scharlau (Barcelona, Spain), Fluka (Buchs, Switzerland),
AJAX (NSW, Australia), Carlo Erba (Cornaredo, MI, Italy),
BDH Chemical Ltd. (Poole, England), and Sigma-Aldrich (St.
Louis, United States), respectively. Interleukin-15 (IL-15, lot:
2381730, ≥ 98%) was purchased from Millipore (Burlington,
MA, United States). Deionized water was used throughout this
study. Sodium citrate (Na3C6H5O7, 99%) was purchased from
Merck (Germany).

Synthesis of AgNPs/rGO Composite
Graphene oxide (GO) powder achieved from the modified
Hummers process (Hummers and Offeman, 1958; Pothipor
et al., 2015) was employed for the synthesis of an AgNPs/rGO
composite (Han et al., 2017). Briefly, GO (25mg) and AgNO3

(15mg) were mixed in DI water (50ml) under stirring at 95◦C
and then Na3C6H5O7 (25mg) was added into the mixture,
which was continuously stirred for 1 h. After stirring, the
AgNPs/rGO composite obtained was washed with distilled water
by centrifugation at 9,500 rpm for 25min. The washing process
was repeated for a few times. Finally, the AgNPs/rGO composite
powder was dried at 60◦C overnight.

Apparatus and Instrumentation
Scanning electron microscopy (SEM) photographs of the
electrode surfaces were recorded using a JSM-6335F field
emission scanning electron microscope (JEOL, Tokyo, Japan),
and transmission electron microscopy (TEM) images were
obtained using a JEM 2010 transmission electron microscope
(JEOL, Tokyo, Japan). Raman spectra were recorded using a
T64000 Raman spectrometer (Horiba Jobin Yvon, Villeneuve
d’Ascq, France). All electrochemical experiments were carried
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FIGURE 1 | SEM images of GO (A) and AgNPs/rGO (B) coated on SPCEs. A TEM image (C) of AgNPs/rGO and a particle size distribution profile (D) of AgNPs on

rGO sheets.

out using a three-electrode electrochemical cell configuration.
A platinum (Pt) wire (Nilaco Co. Ltd., Tokyo, Japan), a
silver/silver chloride (Ag/AgCl, 3M NaCl) from BASi (West
Lafayette, United States), and a SPCE were employed as counter,
reference, and working electrodes, respectively. The SPCEs were
prepared following the optimal condition described in previous
reports (Reanpang et al., 2015). To obtain modified SPCEs,
4-µl droplets of 1.5mg.ml−1 GO or AgNPs/rGO dispersion
solution were added onto the plasma-cleaned SPCEs (Rama and
Costa-García, 2016; Jiang et al., 2018), and then the electrodes
were dried with air. Cyclic voltammetry (CV) and square wave
voltammetry (SWV) measurements were carried out using an
Emstat 3 potentiostat (PalmSens, Houten, the Netherlands).
Electrochemical impedance spectroscopy (EIS) measurement
was performed using a PGSTAT302N Autolab potentiostat
(Metrohm, Barendrecht, the Netherlands).

Fabrication of the Immunosensor
Scheme 1 shows the fabrication of the label-free AgNP/rGO-
based electrochemical immunosensor. First, the droplet of 1.5

mg.ml−1 AgNPs/rGO dispersion solution was added onto the
plasma-treated SPCE (Jumpathong et al., 2016; Putnin et al.,
2018), and then the electrode was dried with air. Then, the
AgNPs/rGO-coated working electrode was washed with a 0.01M
PBS buffer (pH 7.4) solution several times. The modified
electrode was incubated with a 7.5 µl of 50 µg.ml−1 anti-IgG
antibody solution for 40min at room temperature. After washing
with 0.01M PBS buffer (pH 7.4) several times, the electrode was
incubated with 7.5 µl of 1 wt % BSA solution for 40min to
eliminate and block non-specific binding of other substances on
the electrode surface. Finally, the electrode was washed again
with PBS buffer several times, and then for immunoassay, the
electrodes were incubated with a 7.5 µl solution at different
concentrations of IgG (1, 2.5, 5, 10, 25, 50, 100, 250, 500,
1,000, 2,500, 5,000, 10,000, 25,000, and 50,000 pg ml−1) for
40min at room temperature in order to construct the calibration
curve. Consequently, electrodes with different IgG amounts were
washed gently with the PBS buffer several times to remove
unbound IgG molecules. The square wave voltammetric scan of
the immunosensing electrode before and after incubation with
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each IgG solution was taken at 0–0.35V (vs. Ag/AgCl) in 0.1M
PB (pH 7.4).

RESULTS AND DISCUSSION

Properties of Ag/rGO Composite
The morphology of GO and AgNPs/rGO modified on SPCEs
was investigated by SEM observation. As shown in Figure 1A,
GO reveals a thin wrinkled blanket-like structure with some
corrugations covering the whole SPCE surface. Compared with
Figures 1A,B shows a large irregular shape of rGO nanosheets.
The particle surface of rGO is smooth while that of AgNPs

FIGURE 2 | CV results of bare SPCE, and GO and AgNPs/rGO-modified

SPCEs in contact with PB (pH 7.4).

could not be observed. Figures 1C,D present a TEM image
of an AgNPs/rGO sample, which is fully exfoliated into an
individual sheet with smooth surface and corresponding particle
size distribution profile. The anchored AgNPs are uniformly
distributed on the surface of the rGO. The result indicates
a strong interaction between AgNPs and the compatible rGO
support, which offers a sufficient number of chemically active
sites for deposition of well-dispersed AgNPs (Wu et al., 2013; Han
et al., 2017). The average size for decorating AgNPs is estimated
to be 21.77 nm. High dispersibility of AgNPs on rGO nanosheets

FIGURE 4 | CVs of the AgNPs/GO-modified SPCE in contact with 0.010M

PB (pH 7.4) containing 5mM K3[Fe(CN)6]/K4[Fe(CN)6] at different scan rates:

10, 20, 40, 50, 80, 100, 125, 200, 250, and 400 mVs−1. Inset: plots of the

anodic peak current (Ipa) and the cathodic peak current (Ipc) vs. the square root

of the scan rate.

FIGURE 3 | (A) CV curves at a scan rate of 100mV s−1 and (B) Nyquist plots of bare SPCE, and GO- and AgNP/rGO-modified SPCEs in contact with 0.10M PB (pH

7.4) containing 5mM K3[Fe(CN)6]/K4[Fe(CN)6].
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FIGURE 5 | Influence of incubation time of anti-IgG (A), incubation time of IgG (B), pH of phosphate buffer (C) on current responses of the developed immunosensor.

would give high surface area, resulting in good reactivity of the
modified SPCE and a large amount of loaded antibodies. This
would offer a great sensing performance. Moreover, observable
background current in CV (see Figure 2) is clearly increased due
to increased surface area of the electrode by rGO modification
together with introduction of AgNPs deposition (Nossol et al.,
2014). Raman spectroscopy has been performed recently to
identify the electronic characteristics and structure of graphene-
based materials, defect structures, and disorder (Liu et al., 2012;
Das et al., 2014). In Supplementary Figure 1, Raman spectra of
SPCE, GO, and AgNPs/rGO present two major characteristic
peaks, D band and G band, which represent the symmetric
A1g breathing mode and the E2g mode of sp2 carbon atoms,
respectively (Das et al., 2014). In addition, the 2D peak represents
the second order of zone-boundary phonons and varies with
the number of layers in graphene flakes (Liu et al., 2012). In
this study, the D, G, and 2D bands of GO sitting on SPCE
are located at 1,347, 1,584, and 2,690 cm−1, respectively. After
reduction, there are no significant changes in peak positions for
all bands. Changes in the relative intensity of the D and G bands

(ID/IG) display alterations in the electronic conjugation state
within the GO sheets during reduction. Additionally, the ID/IG
value of AgNPs/rGO is almost the same as that of GO, implying
that reduction caused no additional structural defects during the
one-pot synthesis of AgNPs/rGO (Das et al., 2014; Han et al.,
2017).

Electrochemical Study of AgNPs/rGO
Composite
The electrochemical characteristics and performance of the
modified SPCEs in 0.10M PB (pH 7.4) at a scan rate of
100mV.s−1 were investigated by CV. CV is a capable method
for probing an electrochemical process in electrode modification.
The CV results of bare SPCE and SPCEs modified with different
materials (GO and AgNPs/rGO) in contact with 0.10M PB (pH
7.4) are displayed in Figure 2. The curves of the based SPCE
(black line) and GO-modified SPCEs (brown line) electrode
show no oxidation peak current because of the absence of redox
species, namely, redox probe (AgNPs). However, the SPCEs
modified with AgNPs/rGO (blue line) display a sharp oxidation
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peak current due to the oxidation of AgNPs (Ag0 to Ag+)
at 0.114V and a small reduction peak located at −0.036V.
Approximately 6-fold higher intensity of oxidation response
is observed. In addition, the overall background current is
expanded for AgNPs/rGO due to the capacitive properties of rGO
(Nossol et al., 2014). This suggests stripping of Ag+ from the
AgNPs/rGO-modified electrode surface. The surface coverage or
amount of Ag metal on the electrode is calculated to be 69.6
pmol cm−2 (7.51 ng cm −2 Ag) (Fleming and Bond, 2009). The
stripping response of AgNPs is employed for signal amplification
of the label-free electrochemical immunosensor. The CV results
of the three electrodes in 0.1M PBS (pH 7.4) containing 5
mMK3 [Fe(CN)6]/K4[Fe(CN)6] in the scan range of potential
from −0.4 to +0.8V are also recorded, as shown in Figure 3A.
All SPCEs display observable reversible couple peaks over the

FIGURE 6 | SWVs of the immunosensor after incubation with different

concentrations of IgG. Inset: a calibration curve based on the change in the

SWV peak current vs. the logarithm of the concentration (n = 3).

potential range. The cathodic (Icp) and anodic (Iap) peak currents
and lowest peak-to-peak (1EP) are sequentially improved by
modification using GO and AgNPs/rGO. The highest peak
currents and the lowest 1EP value (0.3V) are observed with
AgNPs/rGO-modified SPCE, indicating the fastest electron
transfer kinetics; while bare and GO-modified electrodes show
1EP values of 0.475 and 0.35V, respectively. The SPCE modified
with GO has higher current peaks than the bare electrode, caused
by good electrochemical properties of the GO synthesized in
the laboratory that we used (Jumpathong et al., 2016; Norfun
et al., 2016). The AgNPs/rGO-modified SPCE presents the
best electrochemical reactivity due to good conductivity of the
AgNPs/rGO nanocomposite (Han et al., 2017). Electrochemical
impedance spectroscopy (EIS) measurements of the modified
electrodes were performed using 0.10M PB (pH 7.4) with 5
mMK3[Fe(CN)6]/K4[Fe(CN)6] in a range of frequency from
100 kHz to 100 mHz at 220mV. As shown in Figure 3B, EIS
spectra have a semicircular fragment and a linear fragment, which
coincide with the electron transfer process at higher frequencies
and the electron diffusion process at lower frequencies. The
size of the semicircle represents charge transfer resistance (Ret)
(Gündogdu et al., 2017). It was found that a very large semicircle
(4,228�) is observed for naked SPCE, indicating high electron
transfer resistance. When GO is modified onto the SPCE, the
Ret value significantly decreases to 1,266�, suggesting lower
resistance. This implies that the presence of GO on the electrode
surface can improve electrochemical reactivity and electroactive
surface area (Jumpathong et al., 2016; Norfun et al., 2016).
The rGO adorned with AgNPs offers the smallest semicircle
(974�), since AgNPs and rGO could increase conductivity and
improve the surface area of the SPCE (Nossol et al., 2014). EIS
results are consistent with those of CVs and confirm that good
electron transport on the rGO sheets sitting on SPCE is indeed
strengthened by the decorating AgNPs.

To explain the electrochemical activity in the AgNPs/rGO-
modified SPCE in contact with 0.10M PB containing 5mM of
K3[Fe(CN)6]/K4[Fe(CN)6] as a model redox-active compound,

TABLE 1 | Comparison of our proposed immunosensor with other reported sensors in the determination of IgG.

Modified electrode* Detection method* Linear range (ng.ml−1) Detection limit (ng.ml−1) References

GO/SPCE Amp 2–100 1.70 Thunkhamrak et al., 2017

Chit/CNT-IL/AuE DPV 0.1–15 0.02 Shen and Shen, 2019

PtNPs/PAAMI/LAG DPV 0.012–352 0.006 Barman et al., 2020

GO/PAA/SPCE DPV 1–100 0.54 Norfun et al., 2016

GO/SPCE DPV 2.5–100 1.99 Jumpathong et al., 2016

P2ABA/SPCE DPV 1–50 0.5 Putnin et al., 2018

PP3C/SPCE DPV 0.50–50 0.12 Chanarsa et al., 2020

AMPPH-AuNPs/GCE DPV 0.1–5 and 5–100 0.08 Li R. et al., 2014

TAA/AuE DPV 0.01–25 0.003 Shen et al., 2015

rGO-Ag NPs/SPCE SWV 0.001–0.05 and 0.05–50 0.00086 This work

*GO, graphene oxide; SPCE, screen printed carbon electrode; Amp, amperometry; Chit, chitosan; CNT-IL, ionic liquid functionalized carbon nanotube; AuE, gold electrode;

DPV, differential pulse voltammetry; PtNPs, platinum nanoparticles; PAAMI, polyelectrolyte polyallylamine; LAG, laser-ablated graphene; PAA, poly(acrylic acid); P2ABA, poly(2-

aminobenzylamine); PP3C, poly(pyrrole-3-carboxylic acid); AMPPH, 4-amino-1-(3-mercapto-propyl)-pyridine hexafluorophosphate; AuNPs, gold nanoparticles; GCE, glassy carbon

electrode; TAA, thiol aromatic aldehyde; rGO, reduced graphene oxide; Ag NPs, silver nanoparticles; SWV, square wave voltammetry.
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CV results are recorded at different scan rates, as displayed
in Figure 4. The optimized concentration of AgNPs/rGO of
1.5mg.ml−1 is used in the electrode modification, referring to
its highest oxidation and reduction peak currents. The anodic
(Ipa) and cathodic (Ipc) peak currents display linearly relative to
the square root of the scan rate (v1/2). The corresponding linear
regression equations for both are found to be Ipa = 3.9306[v1/2]
+ 1.0811 (R2 = 0.9978) and Ipc = −4.3985[v1/2] – 12.443 (R2

=0.996), respectively. This result indicates a diffusion-controlled
process of electroactive species in the AgNPs/rGO-modified
electrode (Chaiyo et al., 2016; Gao et al., 2016).

Construction and Performance of
Immunosensor Based on AgNPs/rGO
Composite
With the employment of the anti-IgG antibody concentration of
50mg.ml−1, the effect of incubation time on the immobilization
of anti-IgG antibody was investigated from 25 to 50min. A
decrease in the stripping response of Ag was monitored, and the
decrease is due to the blockage of immobilized antibodies. SWV
results were recorded at a potential from 0 to 0.35V (vs. Ag/AgCl)
in 0.1M PB (pH 7.4) with a pulse period of 2 s and an amplitude
of 25mV. Figure 5A shows the decrease in current signals (from
ca. 8.8 to ca. 4.5 µA) when the incubation time was increased. At
an incubation time of 40min, the current remains constant (ca.
4.5 µA), indicating saturation of the antibodies on the electrode
surface. From this point, immobilization does not further
develop. Consequently, the incubation time of 40min is used
for the next optimization. Figure 5B demonstrates a study of
incubation time for a complete reaction between surface-bound
antibodies and target antigens when the electrode is incubated
with the antigen solution (1 ng.ml−1 IgG). The reduction in
peak current is due to the amount of immunocomplexes on the
electrode surface. The reaction reaches an equilibrium point at
an incubation time of 40min, as seen with a plateau (ca. 1.5 µA).
This indicates that from this incubation time immunoreaction
cannot further occur. Therefore, the incubation time of 40min
is chosen for completion of the reaction of antigen-antibody.
The pH value of an operating medium for detection of target
is another important parameter, and it significantly affects the
performance of an immunosensor in terms of stability and
reproducibility, since the properties of antibodies depend on the
environment. High acidity and basicity would cause denaturation
of immobilized antibodies. Thus, the effect of pH value of the
0.10M phosphate buffer (PB) on the current response of Ag in
the immunosensor after binding with target antigens is studied
at the pH range from 6.2 to 7.8, as shown in Figure 5C. It is
found that the current response strongly depends on pH. The
highest peak current is observed at the pH value of 7.4, while
lower and higher pH values (<7.4 and >7.4) offer significant low
current responses (ca. 35 and 0.5, respectively). This indicates
that pH 7.4 would preserve the activity of the antibodies and
immunocomplex. Therefore, pH is controlled at 7.4 for the rest
of the measurement experiments (Duangkaew et al., 2015; Gao
et al., 2016).

FIGURE 7 | Selectivity study of the immunosensors incubated with different

solutions: blank (blue bar), IgG solution (1 ng ml−1, red bar), interference

solutions (100 ng ml−1 ) with presence of 1 ng ml−1 IgG (red bars), and

individual interference solutions (100 ng ml−1) with no IgG (blue bars).

Under the optimal conditions of immunosensor mentioned
above, current responses and the calibration curve (inset)
for the determination of IgG are presented in Figure 6. The
immunosensor displays decreased peak currents systematically
after the antigen-antibody complex forms by incubation of
immunosensing electrode with different IgG concentrations. It
shows that the peak current decreases when the concentration
of IgG increases. The reason for this is that the non-conductive
antigen-antibody immunocomplex on the electrode surface acts
as a blockage layer, which obstructs the electron transfer toward
the electrode surface (Jumpathong et al., 2016; Norfun et al.,
2016; Putnin et al., 2018). In this study, it would restrict the
voltammetric stripping process of Ag+ from rGO sitting on
the SPCE surface. Moreover, the result shows two good linear
ranges between the reduced peak current and logarithm of
target IgG concentration from 1 to 50 pg ml−1 and from 50
to 5 × 105 pg ml−1 with two regression equations, i.e., Ipa =

−0.922 log[IgG] + 3.3631 (R2 = 0.9929) and Ipc = −0.2953
log[IgG] + 2.3676 (R2 = 0.9827) (where [IgG] represents the
IgG concentration), and detection limit of 0.8608 pg ml−1.
To further clarify the advantages of the proposed label-free
electrochemical immunosensor, as shown inTable 1, we compare
the analytical performance of the sensor with those of other label-
free immunosensors toward detection of IgG with respect to
detection range and LOD. In this study, linear dynamic range is
demonstrated with a comparable wide range, while LOD is much
lower than those from other immunosensors. The immunosensor
finds its simplicity in detection and operation with not having to
use external redox probes for signal amplification, ease in scalable
material production, and consumption of inexpensive reagents
or precursors. This table confirms that the performances of the
proposed immunosensor are acceptable.

Selectivity, reproducibility, and stability are important
parameters in terms of construction and applicability of
immunosensors. Moreover, selectivity of an immunosensor
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has a significant role in the detection of a target in a sample
without separation. To examine the selectivity of the sensor,
the surfaces of the immunosensors were incubated in blank
solution, in individual interference solutions, and in different
IgG solutions without and with the presence of individual
and mixed interfering agents. Interference experiments were
performed using an IgG target antigen solution (1 ng ml−1)
with ascorbic acid (AA), dopamine (DA), glucose (Glu), uric
acid (UA), interleukin-15 (IL-15), and myoglobin (Mb) or
their mixture (100 ng ml−1) together with the solutions of
these interferences with no IgG. As shown in Figure 7, it is
found that the peak current responses of the immunosensor
are reduced (ca. 1.55 µA) when it is incubated with solutions
containing IgG. At the IgG concentration of 1 ng ml−1,
the decreases in the signal are significantly different from
that of blank, remaining ∼59% of the initial response. The
peak current responses (a range of ca. 3.35–3.8 µA) of
individual interference solutions (100 ng ml−1 AA, DA,
Glu, UA, IL-15, or Mb) are different from that of the blank
solution (ca. 3.78 µA). Reduced current responses when the
immunosensor was incubated with the solution containing
IgG (including the mixture with IgG) have no significant
difference among each other. This manifests high selectivity
compared with all the interferences. The results indicated
that the immunosensor exhibited excellent selectivity for the
detection of IgG (Jumpathong et al., 2016; Li et al., 2017). The
selectivity, reproducibility, and stability of the immunosensor
based on an AgNPs/rGO-modified SPCE are all acceptable;
therefore, it has the ability for quantitative detection of IgG
in real samples from humans. To evaluate reproducibility, 18
individual immunosensors based on an AgNPs/rGO modified
SPCE were constructed by the same process. For incubation
with the blank solution (Supplementary Figure 2), the average
current response and the relative standard deviation (RSD)
from nine individual sensors were observed to be 3.74 µA
and 1.45%, respectively. Moreover, in the detection of IgG at a
concentration of 1 ng ml−1 by the other nine immunosensors,
the average current response and the %RSD value were 1.55
µA and 1.22%, respectively, suggesting acceptable precision
and reproducibility of the proposed label-free electrochemical
immunosensor. Additionally, stability was evaluated by storing
the immunosensor at 4◦C prior to testing. After storage for 14
days, the immunosensor retains 97.63% of its initial current
signal for detection of IgG at a concentration of 1 ng ml−1,
as shown in Supplementary Figure 3, indicating that the
immunosensor possesses good stability.

A series of human serum samples with known amounts
of spiked human IgG concentrations was analyzed to evaluate
the possibility of the suggested immunoassay, as shown in
Table 2. Prior to the assay, the serum samples with a high
level of analyte were suitably diluted with 0.1M PB (pH
7.4). The % recoveries and %RSDs were found to be in the
ranges of 89.19–109.65% and 1.13–3.3%, respectively, suggesting
acceptable performance of the immunosensor. It is plausible
that it is a great promising device for the detection of
IgG in real sample analysis (Wu et al., 2013; Huang et al.,
2015).

TABLE 2 | Recovery study of the prepared immunosensor.

Sample Standard of

IgG (pg.ml−1)

Found

(pg.ml−1)

Recovery (%) RSD (%)

1 1.0 1.10 109.65 1.35

2 2.5 2.24 89.64 1.79

3 5.0 5.24 104.77 1.13

4 10 10.54 105.41 1.19

5 25 22.30 89.19 3.30

CONCLUSION

In this study, we have successfully constructed a label-
free electrochemical immunosensor using an AgNPs/rGO
composite-modified SPCE for the determination of IgG. The
AgNPs/rGO composite with excellent potential for use as a signal
amplifier in the electrochemical immunosensor can improve
the electrochemical reactivity of SPCE. Under conditional
optimization, our label-free electrochemical immunosensor
presents high sensitivity, two wide linear calibration ranges
from 1 to 50 pg.ml−1 and 50 to 5 × 105 pg.ml−1, and a low
LOD value of 0.86 pg ml −1. Furthermore, the fabricated label-
free electrochemical immunosensor exhibits high specificity
to IgG with the presence of 100-fold interfering substances.
The advantages of this label-free electrochemical immunosensor
include simple preparation, high sensitivity, high selectivity,
and low cost. The immunosensor could be further applied
for clinical diagnosis and developed for the detection of other
protein biomarkers.
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