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Importance of ozone precursors 
information in modelling urban 
surface ozone variability using 
machine learning algorithm
Vigneshkumar Balamurugan1*, Vinothkumar Balamurugan2 & Jia Chen1*

Surface ozone (O
3
 ) is primarily formed through complex photo-chemical reactions in the atmosphere, 

which are non-linearly dependent on precursors. Even though, there have been many recent studies 
exploring the potential of machine learning (ML) in modeling surface ozone, the inclusion of limited 
available ozone precursors information has received little attention. The ML algorithm with in-situ NO 
information and meteorology explains 87% (R2 = 0.87) of the ozone variability over Munich, a German 
metropolitan area, which is 15% higher than a ML algorithm that considers only meteorology. The ML 
algorithm trained for the urban measurement station in Munich can also explain the ozone variability 
of the other three stations in the same city, with R 2 = 0.88, 0.91, 0.63. While the same model robustly 
explains the ozone variability of two other German cities’ (Berlin and Hamburg) measurement 
stations, with R 2 ranges from 0.72 to 0.84, giving confidence to use the ML algorithm trained for one 
location to other locations with sparse ozone measurements. The inclusion of satellite O 

3
 precursors 

information has little effect on the ML model’s performance.

In today’s world, air quality is a major environmental threat to human health; additionally, some key air pol-
lutants, either directly or indirectly, contribute to climate change (https://​www.​who.​int/). Despite the fact that 
anthropogenic emissions of key air pollutants have decreased significantly as a result of stringent emission control 
measures implemented over the last two decades, air quality in many parts of Europe remains poor1. Particularly, 
secondary air pollutants (ozone, secondary particulate matter) formed by complex atmospheric photo-chemical 
reactions did not show the same trend of decreasing as primary air pollutants, which are emitted directly from 
primary sources2. Ozone (O3 ) has a negative impact on both human health and the ecosystem3,4, and also a 
potent greenhouse gas. The primary source of ozone in the troposphere is photolysis of nitrogen dioxide (NO2 ). 
Volatile organic compounds (VOCs) play a larger role in ozone production through producing hydrogen oxide 
radicals (HOX = OH + HO2 + RO2 ) (catalytic cycle), which drive the conversion of NO to NO2 (NOX = NO 
+ NO2)5,6. Because of the termination reactions that occur during the catalytic cycle, ozone production is not 
always directly proportional to the precursor’s emission or concentration (NOX and VOC)7,8. As a result, ozone 
production is widely classified into three regimes: NOX limited (low NOX and high VOC), NOX saturated (high 
NOX and low VOC), and transitional9,10. Ozone production can be controlled by lowering NOX in a NOX limited 
regime, whereas lowering NOX can increase ozone production in a NOX saturated regime. The major source of 
NOX in the urban environment is traffic, whereas VOC from traffic is minor, but biogenic VOC emissions are 
significant1,11. Meanwhile, VOC emissions from volatile chemical products such as cleaning agents and personal 
care products are becoming more significant12. Recent ozone enhancements in urban areas during the COVID-19 
lockdown period demonstrate the NOX saturated regime’s ozone production chemistry13,14. Chemical transport 
models (CTM) are widely used to study the ozone variability15–19. However, CTMs have a large bias in resolv-
ing complex topography and chemistry mechanisms due to coarser resolution20,21, for example, urban areas are 
typically in a NOX saturated regime, whereas rural areas are being in a NOX limited regime. In addition, the bias 
in CTM is exacerbated when emission inventories are uncertain22. CTM, on the other hand, necessitate massive 
computational resource.

Machine learning (ML) is gaining traction as an alternative modeling tool to complement CTM in Earth 
system science fields23–29. Because photo-chemical processes have a significant impact on ozone, ML algorithms 
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are trained using a wide range of meteorological variables, many of which drive photo-chemical processes30–36. 
The variability of surface ozone is well explained by the ML algorithm with meteorological information alone37–39. 
Temperature is identified as a key factor in explaining ozone variability in the ML model40. Temperature is 
also a driver of biogenic VOC emissions (a precursor to O 3 ) in addition to being a driver of photo-chemical 
processes7,8. In the NOX saturated regime, ozone production is directly proportional to VOC emission (and thus 
to temperature), but in the NOX limited regime, ozone dependency on VOC shifts to NOX

41. Given that many 
urban areas are currently in a NOX saturated regime, it is reasonable to expect that ML algorithm trained solely 
on meteorology will be able to explain ozone variability. After transitioning to a NOX limited regime, the ML 
algorithm trained solely on meteorology may fail to reproduce the surface ozone variability. Previous studies 
have also shown that the ozone response to temperature has been decreasing in recent years, as urban regions are 
transitioning to NOX limited regime42,43. However, only a few studies have focused on the inclusion of precursor 
information into the ML model33,34,36.

In-situ VOC and O 3 measurements are too scarce when compared to NOX measurements, and all are even 
scarcer in rural areas. Satellite data are becoming an indispensable tool for analyzing urban and rural air quality 
due to their increasing spatial resolution and spatial coverage, but they are column retrievals. Since stratospheric 
ozone is highly variable, total column ozone retrievals from satellites are unsuitable for studying surface ozone. 
Satellites, on the other hand, retrieve the ozone precursors (NO2 and HCHO (formaldehyde)), which can be used 
to study the surface ozone chemistry44–46. Because HCHO is an intermediate gas-product of VOC oxidation, it 
can be used as a proxy for VOC emissions. As CTMs resolve the physical-chemical processes, whereas ML algo-
rithms do not, a hybrid modelling approach that incorporates the CTM prediction as a predictor variable into 
the ML model may improve the performance47. To this end, the objectives of this study are formulated as follows: 
1) investigate the importance of limited available (in-situ and satellite) ozone precursor information and coarse 
CTM ozone simulations in modeling urban surface ozone variability using ML algorithm; and 2) investigate 
the potential of ML model’s transfer-ability; how well the ML algorithm trained for one location explains ozone 
variability in other locations. The ultimate goal of these two objectives is to provide us confidence in modeling 
the surface ozone variability of locations with sparse or no ozone measurements and filling the data gap.

Study region, datasets and model
This study focuses on Munich, a southern German metropolitan area where air pollutants are currently measured 
at five different locations. Given the long-term availability of all pollutants data, we chose an urban measure-
ment station (Lothstrasse) to train and test the ML model, which continuously measured O 3 , NO2 , NO, and CO 
from 2001 to 2017. In our study, we also used data (2003 to 2017) from other three stations in Munich (Johan-
neskirchen-suburban, Allach-suburban, and Stachus-urban) to assess the transfer-ability of the ML model. We 
also tested the ML model’s transfer-ability using data (2015 to 2019) from measurement stations in other German 
cities, including Berlin (Neukollen-urban, Wedding-urban, and Buch-suburban) and Hamburg (Bramfeld-subur-
ban, Neugraben-suburban, and Sternschanze-urban). The geographical locations of three German metropolitan 
areas (Munich, Berlin and Hamburg) and its monitoring stations considered in this study are shown in Fig. S1.

Meteorological variables (temperature, boundary layer height, relative humidity, wind speed and wind direc-
tion) are obtained from the ERA 5 reanalysis dataset, with spatial and temporal resolutions of 0.25° and 1 h, 
respectively48. Surface ozone simulations of CAMS (Copernicus Atmosphere Monitoring Service) global rea-
nalysis dataset (EAC4) are also obtained from CAMS data store, which has a spatial resolution of 0.75° and a 
temporal resolution of 3 h.

The tropospheric column NO2 and HCHO data from the NASA Aura satellite’s OMI (ozone monitoring 
instrument) are also used49. OMI data has a spatial resolution of 13 * 24 km and a daily temporal resolution. 
The OMI local overpass occurs between 1 p.m. and 2 p.m. OMI data are available beginning in October of 2004. 
We filtered the OMI data before using it to include only data with no processing errors, less than 10% snow or 
ice cover, a solar zenith angle of less than 80° for NO2 (70° for HCHO), and a cloud radiance fraction of less 
than 0.5. At the end, we only had 689 days of OMI data out of 4809 days (October, 2004 to December, 2017) for 
“Lothstrasse” station.

The Extreme Gradient Boosting (XGBoost) algorithm, a supervised learning-gradient boosting tree-based ML 
algorithm50, is used in this study to model surface ozone concentrations. Since our objective is to investigate the 
importance of precursor information in surface ozone modeling using ML, the ML algorithm we choose should 
be more interpretable. A tree-based ML algorithm, such as XGBoost, is more interpretable than neural networks, 
which are typically black box systems, and also achieves higher interpretability than simple linear regression 
algorithms (high-bias algorithm)51. We train the XGBoost ML algorithm with different predictor categories or 
combinations of predictor categories (Table 1), and then compare its performance in terms of correlation (R2 ) and 
root mean square error (RMSE). The predictor categories are broadly classified into meteorology (temperature, 
relative humidity, boundary layer height, wind speed and wind direction), in-situ ozone precursors (NO, NO2 
and CO), satellite ozone precursors (column NO2 and HCHO) and CTM simulations (CAMS model surface O 3 ). 
Additionally, we consider two more predictors (day of the week and season), which we include in the meteorol-
ogy category. The hyper-parameters of the XGBoost algorithm (such as the number of gradient boosted trees, 
learning rate, and maximum depth of a tree, etc.) are tested using grid search function (https://​scikit-​learn.​org/​
stable/​modul​es/​gener​ated/​sklea​rn.​model_​selec​tion.​GridS​earch​CV.​html) and, we find that XGBoost algorithm is 
not sensitive to hyper-parameters in this study. Therefore, the hyper-parameters were set to their default values 
(https://​xgboo​st.​readt​hedocs.​io/​en/​latest/​param​eter.​html). We also discuss the predictor variable (feature) impor-
tance in the ML model using the results derived from sklearn python library’s “feature_importance” function, 
which calculates feature importance by taking the average gain across all splits (https://​scikit-​learn.​org/​stable/​
auto_​examp​les/​ensem​ble/​plot_​gradi​ent_​boost​ing_​regre​ssion.​html). For this study, we focus on the afternoon 
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(1 p.m. to 2 p.m.) when ozone levels are at their highest (diurnal maximum), matching with the OMI satellite 
overpass time. We also performed a similar analysis with the Random Forest (RF) ML algorithm.

Results
Performance of ML model in predicting the urban surface ozone.  For the “Lothstrasse” station in 
Munich, all in-situ measurements, meteorological variables and CAMS data are available for 5375 days from 
2001 to 2017. We divided the 5375 days of measurements into two parts: first 3800 days (70%) for training, and 
remaining 1575 days (30%) for testing the ML predictions. The k-fold cross validation (CV) is used to evaluate 
the performance of the ML model for different dataset combinations for training and testing. Here we choose k 
as 10, i.e., 5375 days of data split into 10 parts. To avoid spurious correlation between training and test datasets, 
we adopted a block sampling approach52. The first nine parts are used to train the ML algorithm, and the final 
one is used to test the ML model; this process is repeated ten times for the remaining combinations. The mean 
of R 2 derived from the k(10)-fold cross validation is then computed. The ML algorithm that was trained solely 
on meteorology (“ML_met”) explains 77 percent of the variance (R2 = 0.77) in measured O 3 , with RMSE of 16 
µ g m −3 (Fig. 1a). The mean R 2 of k(10)-fold CV is 0.77. Wind speed and wind direction have a low importance 
in the fitted model when compared to other meteorological variables (relative humidity, boundary layer height, 
and temperature) (Fig. S2). In addition, including the day of the week and season in the training dataset (“ML_
met_ds”) improves the ML model’s performance (R2 = 0.81, RMSE = 14.6 µ g m −3 and mean R 2 of k(10)-fold 
CV = 0.80) (Fig. 1b). This performance improvement could be attributed to the pronounced seasonal cycle of 
ozone and weekday-weekend differences. The ozone reaches its maximum in summer and minimum in winter, 
and due to being in a NOX saturated regime, weekend ozone levels are higher than the weekdays13. The ML algo-
rithm trained solely with CAMS (“ML_cams”) or in-situ precursors (“ML_insitu”) show poor performance in all 
terms when compared to ML algorithm trained with the meteorology category alone (“ML_met_ds”) (Fig. 1c,d).

The ML algorithm trained with meteorology and in-situ precursors category (“ML_met_ds_insitu”) performs 
better than “ML_met_ds”, with R 2 and RMSE are about 0.87 and 12 µ g m −3 , respectively (Fig. 1e). The scatter of 
predicted O 3 by “ML_met_ds” is largely reduced in “ML_met_ds_insitu”, resulting in a lower RMSE. The mean R 2 
of k(10)-fold CV is 0.88, which is a 15% increase over “ML_met”. The important feature in “ML_met_ds_insitu” is 
derived to be in-situ NO measurements, followed by boundary layer height, temperature, and relative humidity. 
The improvement in performance from “ML_met_ds_insitu” is thus due to the inclusion of NO measurements in 
the model. The addition of CAMS O 3 simulations with meteorology and in-situ precursors (“ML_met_ds_insitu_
cams”) further improves the model performance (R2 = 0.89, RMSE = 10.9 µ g m −3 and mean R 2 of k(10)-fold CV 
= 0.9), which is slightly higher than that of “ML_met_ds_insitu” (Fig. 1f), with CAMS O 3 simulations being the 
most important feature (Fig. S2). The feature importance calculated using the permutation approach (https://​
chris​tophm.​github.​io/​inter​preta​ble-​ml-​book/​featu​re-​impor​tance.​html) and SHAP values (https://​chris​tophm.​
github.​io/​inter​preta​ble-​ml-​book/​shap.​html) agree with the feature importance calculated using each feature’s 
gain. For example, Fig. S3 shows the feature importance calculated based on permutation and SHAP values for 
the case ”ML_met_ds_insitu”. We also performed a similar analysis using Random Forest ML algorithm with a 
split of 5375 dataset into 70%/30% (training/testing) (Table S1). When compared to “ML_met_ds” in RF model 
simulations, the performance of “ML_met_ds_insitu” is improved (in all terms). This supports our earlier findings 
that including in-situ precursor information is not redundant when modeling surface ozone with ML model.

Table 1.   Different ML simulation type and associated training data (marked as X). T-Temperature, 
RH-Relative Humidity, BLH-Boundary Layer Height, WS-Wind Speed, WD-Wind Direction, DW-Day of 
Week, S-Season, NO-Nitric oxide, NO2-Nitrogen Dioxide, CO-Carbon Monoxide, O 3-Ozone and HCHO-
Formaldehyde. The index of different ML simulation types is given in brackets in the first column, to which we 
refer in Fig. 2. The performance of each ML simulation with fewer days case (689 days) at lothstrasee station is 
shown in the last three columns.

ML simulation name

Predictor variables

ResultMeteorology

In-situ ozone 
precursors 
measurement

Satellite ozone 
precursors retrieval CTMs simulation

T, RH, BLH, WS, WD DW, S Surface NO, NO2 , CO
Tropospheric column 
NO2 , HCHO

CAMS surface O 3 
simulations R2 RMSE

Mean R 2 of K(10)-
fold CV

ML_met (1) X 0.74 18.1 0.72

ML_met_ds (2) X X 0.76 17.5 0.74

ML_cams (3) X 0.64 21.6 0.63

ML_insitu (4) X 0.47 26.1 0.49

ML_met_ds_insitu (5) X X X 0.80 15.8 0.81

ML_met_ds_insitu_
cams (6) X X X X 0.83 14.9 0.84

ML_satellite (7) X − 0.35 41.7 -0.31

ML_met_ds_satel-
lite (8) X X X 0.77 17.1 0.74

ML_met_ds_satel-
lite_cams (9) X X X X 0.81 15.6 0.80

https://christophm.github.io/interpretable-ml-book/feature-importance.html
https://christophm.github.io/interpretable-ml-book/feature-importance.html
https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/shap.html
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For 689 days between 2001 and 2017, all in-situ and satellite ozone precursors information, meteorological 
variables and CAMS data are available. Similarly, we use the first 70% of data (480 days) for training and remain-
ing 30% (209 days) for testing the model. Also, we performed the k(10)-fold CV for 689 days of dataset. The 
performance of the ML algorithm trained with meteorology and satellite precursors (“ML_met_ds_satellite”) is, 
however, equal to the performance of the ML algorithm trained with meteorology alone (Fig. 2a–c). This implies 
that including satellite ozone precursor data had less effect on model performance. In terms of mean R 2 of k(10)-
fold CV, the ML algorithm with meteorology, satellite precursors, and the CAMS category provides slightly better 
results. However, it is poor than that of the ML algorithm trained with meteorology, in-situ precursors, and the 
CAMS category. The performance difference between ML model with a high (5375) and low (698) number of 
days is marginal. In all cases, the performance of the ML model with fewer days (698 days) is slightly worse than 
the performance of the ML model with 5375 days for training and testing (Fig. 2a–c). To see how the availability 
of training dataset affects performance, we train and test the “ML_met_ds_insitu” for varying percentages of data 
for the 5375 days case (Fig. S4). The difference between different dataset combinations for training and testing is 
also marginal; the 80%/20% (training/testing) dataset performs slightly better than the 20%/80% dataset (lower 
RMSE by 1.5 µ g m −3 and higher R 2 by 0.03). However, in this case, 20% of data equates to nearly three years of 
data, which may be sufficient to capture all ozone variability by ML model.

Figure 1.   Density scatter plots of predicted ozone by different ML simulation type vs ground-truth ozone at 
Lothstrasse station at Munich. In a total of 5375 days (between 2001 to 2017), first 3800 days used for training 
and remaining 1575 days used for testing. Mean R 2 of k(10)-fold cross validation is also given at bottom of 
figure panels at each case. Red solid line represents the linear fit and red dotted line represents 1:1 line.

Figure 2.   Performance comparison of different ML simulation types with 5375 days (blue) and 689 days (red) 
for training and testing. X axis indexes refer to the index of different ML simulation type (Table 1).
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We investigated the sensitivity of each predictor variable in the ML model. This is done by excluding the par-
ticular predictor variable from the “ML_met_ds_insitu” (Table S2). Temperature is the important feature fitted 
in model. When temperature is excluded from “ML_met_ds_insitu”, the RMSE increases by 1.9 µ g m −3 and the 
R 2 decreases by 0.04 compared to all variables included in “ML_met_ds_insitu”. Furthermore, at each case, when 
variable such as season, relative humidity, wind direction, boundary layer height, and in-situ NO is excluded, 
RMSE increases and R 2 decreases. There are no changes in RMSE and R 2 when the day of the week or wind speed 
is removed. When in-situ NO2 or CO is removed, the RMSE decreases in comparison to “ML_met_ds_insitu”, 
indicating that the model is over-fitted when these variables are included. Therefore, we train the ML algorithm 
only with season, relative humidity, temperature, wind direction, boundary layer height and in-situ NO variables 
(“ML_s_rh_t_wd_blh_no”), which show slightly better performance in-terms of RMSE decreases by 0.4 µ g m −3 
compared to “ML_met_ds_insitu”. Figure S5 depicts a time series plot of ground-truth vs modeled surface ozone 
concentrations, demonstrating the ML model’s superior performance in modeling complex ozone variability 
ranging from daily to seasonal variation.

ML model’s transfer‑ability.  First, we use the “ML_met_ds” trained for “Lothstrasse” station (5375 days) 
to predict the ozone concentrations of other three stations in Munich, two (Johanneskirchen, Allach) of which 
are sub-urban and remaining one (Stachus) is urban station. When compared to ground-truth, the performance 
of “ML_met_ds” for two sub-urban station is better (R2 = 0.86, 0.81 and RMSE = 12.6, 15.1 µ g m −3 ) than for 
the urban station (R2 = 0.5 and RMSE = 20.3 µ g m −3 ) (Fig. S6). The predictions are better in all terms when we 
use “ML_s_rh_t_wd_blh_no”, compared to “ML_met_ds”, indicating that including precursor information plays 
an important role in explaining ozone variability of other locations (Fig. 3). These findings also imply that ML 
algorithm trained on long-term data for urban stations are transferable not only to other urban stations, but also 
to sub-urban stations, which have different emission scenarios, such as low NOX . It could be because a machine 
learning algorithm trained on long-term data from urban stations can learn ozone variability for various emis-
sion scenarios (e.g., low emission activities such as public holidays, weekend, etc.). When including CAMS 
with “ML_s_rh_t_wd_blh_no” (“ML_s_rh_t_wd_blh_no_cams”), ML model show slightly better performance 
(Fig. S7).

Similarly, we use the “ML_met_ds”, “ML_s_rh_t_wd_blh_no” and “ML_s_rh_t_wd_blh_no_cams” trained 
for “Lothstrasse” station to predict the ozone concentration of two major German cities (3 stations for each city) 
(Figs. 3, S6, S7). Here, as well, the performance of “ML_s_rh_t_wd_blh_no” is better than “ML_met_ds” in all 
terms, with R 2 ranges from 0.72 to 0.84 and RMSE ranges from 13.1 to 17.2 µ g m −3 . When using “ML_s_rh_t_
wd_blh_no_cams”, the performance is slightly better than “ML_s_rh_t_wd_blh_no” in terms of R 2 and RMSE. 
We also performed a ML simulation for the days that have OMI data for all nine stations in Munich, Berlin and 
Hamburg (Tables S3–S5). In all cases, “ML_met_ds_satellite” trained for “Lothstrasse” station performs slightly 
better than “ML_met_ds” in predicting the ozone concentrations of other locations.

Discussion
In this study, the potential of a machine learning algorithm in simulating urban surface ozone has been dem-
onstrated. As ozone is primarily produced by complex photo-chemical reactions in the atmosphere, the perfor-
mance of the ML algorithm with meteorology information alone is promising; however, including the precursor 
emission (NOX ), particularly NO concentration, information further enhance the ML model’s performance in 
predicting the surface ozone. It could be because NO is an important scavenger of O 3 in the urban environment. 
Due to the scarcity of measurements, we did not use another important insitu ozone precursor (VOC) infor-
mation in this study, but instead used satellite column HCHO information in the ML model. The addition of a 
satellite ozone precursor (column NO2 , HCHO) information as a new feature has little effect on the ML model 
performance. This could be because satellite column NO2 and HCHO retrievals are less sensitive to surface 
emissions. Furthermore, the coarser resolution of satellite retrievals might limit its applicability. This study also 
reveals that ML algorithm, with O 3 , meteorology and precursor information (NO), trained for one location can 
be used to suitably model the surface ozone concentrations of different locations with sparse ozone measure-
ments. However, the performance of ML model vary by location because other factors also influence ozone 
production. Therefore, we advocate for additional research that focuses on specific campaigns that measure all 
other factors (such as VOC emissions and aerosol load) influencing ozone formation and use an ML model to 
simulate the ozone variability of other locations.
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Data availability
The satellite OMI NO2 and HCHO data can be found at https://​disc.​gsfc.​nasa.​gov/. Hourly NO2 , NO, CO and 
O 3 concentrations are downloaded from European Environment Agency (EEA) website (https://​disco​map.​eea.​
europa.​eu/​map/​fme/​AirQu​ality​Export.​htm). Hourly ERA 5 meteorological data are freely available at https://​
cds.​clima​te.​coper​nicus.​eu/. CAMS global reanalysis surface ozone simulations are obtained from CAMS data 
store (https://​ads.​atmos​phere.​coper​nicus.​eu/).
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