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Abstract
Most spatial models include a spatial weights matrix (W) derived from the
first law of geography to adjust the spatial dependence to fulfill the indepen-
dence assumption. In various fields such as epidemiological and environmental
studies, the spatial dependence often shows clustering (or geographic discon-
tinuity) due to natural or social factors. In such cases, adjustment using the
first-law-of-geography-based W might be inappropriate and leads to inaccu-
racy estimations and loss of statistical power. In this work, we propose a series
of data-driven Ws (DDWs) built following the spatial pattern identified by
the scan statistic, which can be easily carried out using existing tools such as
SaTScan software. The DDWs take both the clustering (or discontinuous) and
the intuitive first-law-of-geographic-based spatial dependence into considera-
tion. Aiming at two common purposes in epidemiology studies (ie, estimating
the effect value of explanatory variable X and estimating the risk of each spa-
tial unit in disease mapping), the common spatial autoregressive models and the
Leroux-prior-based conditional autoregressive (CAR) models were selected to
evaluate performance of DDWs, respectively. Both simulation and case studies
show that our DDWs achieve considerably better performance than the classic
W in datasets with clustering (or discontinuous) spatial dependence. Further-
more, the latest published density-based spatial clustering models, aiming at
dealing with such clustering (or discontinuity) spatial dependence in disease
mapping, were also compared as references. The DDWs, incorporated into the
CAR models, still show considerable advantage, especially in the datasets for
common diseases.
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1 INTRODUCTION

With the development of remote sensing, geographic information systems (GIS), global positioning systems, and compu-
tational science, a large number of spatial datasets have been collected.1,2 Various spatial models have been developed to
address spatial dependence in these datasets,2-5 most of which employ a spatial weights matrix (W) to adjust the spatial
dependence among observations to reclaim their independence between spatial units.6

Ws were first used in Moran’s I and Geary’s C statistics to explore whether spatial autocorrelation exists and then
developed by a large number of geographers,7-15 especially Cliff and Ord,10,11 into a relatively mature tool in geographical
analysis. In the 1980s, “Spatial Process: Methods and Application”3 and “Spatial Econometrics: Methods and Models”4

introduced spatial autocorrelation into general regression models in the form of W. Then, many spatial models involving
Ws,16 for example, spatial interpolations, spatial autoregressive (SAR) models, conditional autoregressive (CAR) models,
were developed and employed in various fields,17-21 for example, economical, epidemiological, environmental, and bio-
logical studies. As the fundamental factor in such spatial analyses, W is a n × n non-negative matrix, and the element
wij reflects the intensity of the spatial dependence between spatial units i and j.22 Although many methods have been
developed to construct W, with the lack of prior knowledge, adjacency-based Ws and distance-based Ws are commonly
used in applications according to the first law of geography5,6,23,24: two units that are closer to each other have a stronger
dependence than two units that are farther apart. Adjacency-based Ws specify that wij is equal to 1 if unit i and unit j are
adjacent and equal to 0 otherwise, while the distance-based Ws define each wij as a function of distance (eg, the Euclid-
ian distance).4 However, spatial dependence in the entire study area is not always distributed only following the first law
of geography, but also shows spatial clustering (or discontinuity) due to complex practical environment. Therefore, the
classic W cannot adjust the spatial dependence sufficiently in such datasets containing clusters and leads to biased and
inaccuracy parameter estimations.5,25 For example, in Bhattacharjee and Jensen-Butler’s simulation study,26 different Ws
yielded considerably different results in terms of the bias and root mean square error (RMSE). In Getis’s study,15 a more
appropriate W can reduce the Akaike information criterion (AIC) by over half without increasing the bias.

Several methods have been developed to address this problem, such as subgroup analysis according to the spatial
heterogeneity, adapting revised Ws based on some prior evidence and constructing Ws based on spatial pattern,27-29 such
as a multidirectional optimum ecotope-based algorithm (AMOEBA),14,15 which adopts the local G∗

i statistic to identify
clusters and further constructs W. However, subgroup analyses are often based on a subjective grouping and also reduce
the statistical power. The revised W requires prior evidence that is not always available. A W constructed considering only
clusters, as in AMOEBA, ignores the intuitive first-law-of-geography-based spatial dependence and also has no convenient
implementation approach. Recently, a two-stage method based on agglomerative hierarchical clustering (AHC) algorithm
or density-based spatial clustering (DBSC) algorithm was proposed to address the spatial clustering against the classic W
in CAR models.30,31 This method achieves smaller bias than the classic CAR model, but leads to a larger RMSE in disease
mapping. A large RMSE may not be unsatisfactory when we focus more on estimating the exact risk value for each spatial
unit than comparing the risks between spatial units. Therefore, an objective and effective W, which has a wide range of
application, was necessary to deal with spatial dependence with clustering (or discontinuity).

In this work, we proposed a novel series of data-driven Ws (DDWs) which consider not only the intuitive
first-law-of-geography-based spatial dependence but also the heterogeneity and homogeneity from clusters. DDWs do not
depend on any prior evidence and can be used for various models including a spatial weights matrix. The two-stage proce-
dure of constructing DDWs was detailed in Section 2. In Section 3, we introduced the DDWs into the commonly used SAR
and CAR models. Then their performance in two common purposes in epidemiology studies (ie, estimating the effect of
explanatory variable X and estimating the relative risk [RR] of each spatial unit in disease mapping), respectively, were
evaluated in simulation datasets, with the references of the classic W and the latest DBSC model considering the spatial
discontinuity. In Section 4, these novel DDWs were applied to a case study.

2 METHODS: TWO-STAGE PROCEDURE TO CONSTRUCT DDWS

To sufficiently adjust spatial dependence in spatial datasets with clusters (or spatial discontinuity), the spatial dependence
not following the first law of geography in clustering regions must be considered. To maintain the generalizability of the
DDWs, we choose to build DDWs based on the classic W. A two-stage procedure is employed to identify the clusters first
and then to construct DDWs according to the identified clusters.
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In the first stage, to accurately identify the spatial pattern (ie, the locations of clusters), scan statistic is employed.
According to previous studies,32 as the accuracy of the detected clusters is strongly related to the scan parameters,
the maximum clustering set-proportion (MCS-P) statistic is used for optimal parameter selection.33 The parameter
with the highest value of the MCS-P is selected, and the referred clusters represent the most likely accurate spa-
tial pattern of the current dataset. The spatial units out of the clusters are defined as the baseline, in which the
occurrence of events follows the intuitive first-law-of-geography-based spatial stochastic process. Since the spatial
units in clusters are heterogeneous compared to those in the baseline region, a spatial stochastic process in clus-
ters differing from the baseline region will be built to characterize the event occurrence. Therefore, the detected
clusters reflect the spatial dependence which is presented as the heterogeneity between two spatial units in dif-
ferent clusters (or one in baseline and the other in a cluster) and the homogeneity in baseline (or the same one
cluster).

Then, in the second stage, the spatial dependence between different spatial units can be specified. The relationship
between any two spatial units can be divided into four types: both units are in the same cluster, both units are in the base-
line region, two units are in different clusters, one is in the cluster and the other is in the baseline region. For the two
former types, as the spatial units are located in the region in which events occur following the same spatial stochastic
process, the spatial dependences mainly represent spatial homogeneity. For the two latter types, the spatial dependences
mainly represent spatial heterogeneity, as spatial units in clusters follow significantly different stochastic processes from
those in the baseline region, the spatial stochastic processes of different clusters might also be different. With the asso-
ciation between spatial units defined, the elements of W, wij, which indicate the spatial dependence in each pair, can be
built as follows:

1. A cluster mainly represents the spatial heterogeneity between the cluster itself and other parts of the spatial region, so,
for spatial units i and j from different clusters (or i from clusters and j from the baseline), wij was set to 0 to represent
the heterogeneity between them, regardless of the positions. With wij set to 0, the heterogeneous regions (ie, clusters)
are defined to be isolated from the regions in which events occur following different spatial stochastic processes.

2. For the rest of the elements wij indicating the spatial dependence between spatial units from homogeneous regions
(ie, both are from the same cluster or both are from the baseline region), we defined three different weighting meth-
ods referring to three different spatial dependence distributions in homogenous regions, that is, geographic continuity
weighting (GW), suggesting spatial dependence is distributed following the first law of geography; observed depen-
dent variable weighting (RW), suggesting spatial dependence is distributed according to the dependent variable; and
null weighting (NW), referring to uniformly distributed spatial dependence (shown in Table 1). However, consider-
ing that the baseline usually refers to a relatively large number of units with random variation, RW is excluded for
baseline regions to avoid overfitting. As the spatial dependence in clusters and baseline might be different, wij for
clusters and the baseline can be set different to build six DDWs (Table 2). Figure 1 shows the process of constructing
DDWs.

Finally, each row of W is proportionally standardized such that the sum equals 1 for better interpretability.

3 SIMULATION STUDY

To validate the performance of DDWs over the classic W, we used two batches of simulation datasets referring to two
common purposes in epidemiology studies, respectively. One is to estimate the effect parameter of the risk factor X on

T A B L E 1 The method of assigning weights within a cluster or the baseline region

Method of assigning weights Notation

Geographic continuity weighting (GW) wij = 1, when unit i and j are adjacent; otherwise, wij = 0

Null weighting (NW) wij = 1, regardless of the positional relationship

Risk weighting (RW) wij = 1
∣yi−yj ∣

Note: yi and yj are the observed values of units i and j, respectively.
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T A B L E 2 Six categories of DDWs

Assigning weights for the baseline Assigning weights for clusters Label of the DDW

GW GW GG

GW NW GN

GW RW GR

NW GW NG

NW NW NN

NW RW NR

F I G U R E 1 The process of constructing the DDWs

certain disease and the other is to estimate (or compare) the relative risk of each spatial unit in disease mapping. Though
both the commonly used SAR and CAR models can achieve the two purposes, SAR is employed more often for the former
purpose and CAR is employed more often for the latter purpose. Therefore, in our study, the SAR models was selected
to compare the performance of DDWs over the classic W in term of estimating the effective parameter of one risk factor
X, and the CAR models was selected in term of estimating (or comparing) the relative risk of each spatial unit in disease
mapping.

3.1 SAR models for effect parameter estimating

The spatial error model (SEM) and spatial lag model (SLM) are two commonly used SAR models.2,34 The SEM assumes
that spatial dependence comes from unobserved explanatory variables and the SLM assumes that spatial dependence
comes from the observed dependent variable.

SEM:

y = α𝚤n + X𝜷 + u, u = 𝜌Wu + 𝜺, 𝜺 ∼ N
(
0, 𝜎2In

)
,
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where y, the dependent variable, represents an n × 1 vector (n is the number of spatial units), 𝒊n is an n × 1 vector of
ones associated with the constant term parameter 𝛼. X, the observed explanatory variables, represents an n × p matrix
associated with the p × 1 parameter vector 𝜷, and p is the number of explanatory variables. W is the n × n spatial weights
matrix with zero diagonal elements. u and 𝜺 is an n × 1 vector. In is the n × n identity matrix. The scalar 𝜌 measures the
strength of spatial dependence.

SLM:

y = 𝜌Wy + 𝛼𝚤n + X𝜷 + 𝜺, 𝜺 ∼ N
(
0, 𝜎2In

)
,

where these variables and parameters are defined as in the SEM and Wy denotes the endogenous interaction effects
among the dependent variables.

The classic adjacence-based W (hereafter AG) was constructed derived from a symmetric matrix C with zero diag-
onal elements, in which the element cij is 1 when spatial unit i and j are neighbors, that is, share a boundary, and
cij = 0 otherwise. Finally, AG could be obtained by proportionally standardizing each row of C such that the sum
equals 1.

3.1.1 Data generation process in SAR models

In this simulation study, the purpose is to estimate the effect of a particular factor X on a common infec-
tious disease, which is a main problem to be addressed in real life. Sichuan Province in China, consisting of
180 counties, was selected as the study region. First, two batches of 10 000 base simulation datasets were gener-
ated based on the SEM and SLM with AG, respectively. Without loss of generality, both SEM and SLM include a
response variable and an explanatory variable. Then one or two artificial clusters were added to the base simula-
tion datasets, which seems to certain unobserved risk factors to emerge in corresponding spatial units in practical
situations.

Because the intensity of heterogeneity between clusters and the baseline as well as inner heterogeneity within clusters
may affect the efficiency of the DDWs, three types of clusters were generated labeled as Hh, Hl, and F. Hh type clusters
represent homogeneous clusters with a high RR over the baseline, Hl type clusters represent homogeneous clusters with
a second high RR, and F type clusters represent clusters with inner heterogeneity, namely, including both a second high
and a high RR. In addition, the number of clusters in the datasets, also affecting the intensity of spatial heterogeneity in the
whole dataset, was considered to vary from one to two. As a result, six simulation scenarios were set for the SEM and SLM,
respectively (shown in Table 3). The location of the clusters was shown in Figure 2, and the other parameter settings and
the detailed data generation process are shown in Figure S1 in the support information. In each dataset, the overall spatial
dependence is composed of the intuitive adjacence-based spatial dependence and the local spatial-clustering dependence.
The former is always distributed according to the first law of geography, while the latter is distributed according to the
clustering intensity.

For the SLM, to add clustering spatial dependence to the dependent variable, we enlarged the values of the observed
risk factor, X, to synchronize the spatial dependence from the observed explanatory variable and those from unobserved
variable in the form of an SLM. As such, the derivation of spatial dependence in simulation datasets still satisfies the
assumption of the focused SLM. Therefore, different scenarios in the SLM had different observed values for the risk factor,

T A B L E 3 Six scenarios built in the simulation study

Scenario The number of clusters The type of clusters

SEM(SLM)_C1Hh 1 Hh

SEM(SLM)_C1Hl 1 Hl

SEM(SLM)_C1F 1 F

SEM(SLM)_C2Hh 2 Hh

SEM(SLM)_C2Hl 2 Hl

SEM(SLM)_C2F 2 F
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F I G U R E 2 The distribution of clusters in the simulation scenarios for the SAR models. The top map shows the location of Sichuan
Province in China. The other six maps represent the position of the artificial clusters in Sichuan Province, where different colors correspond
to different relative risks with respect to the white

shown in Table 4. To explore the stability of the DDWs in the SLM, we also tried other observed values of the risk factors,
which will be mentioned in the discussion.

3.1.2 Performance evaluation in SAR models

With different DDWs and AG, SEM and SLM were fitted to estimate the effect parameter of X for the two batches of simula-
tion datasets, respectively. The absolute bias (ABias), mean squared error (MSE), and adjusted coefficient of determination
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T A B L E 4 Generating the simulated X for each spatial unit in the SLM

X The location of X Distribution Available scenarios

X0 In the baseline N (0.8, 0.25) All scenarios

X1 In a high H cluster N (1.5, 0.25) SLM_C1Hh and SLM_C2Hh

X2 In a second high H cluster N (1.0625, 0.25) SLM_C1Hl and SLM_C2Hl

X3 In a high-risk unit in a F cluster N (1.5, 0.25) SLM_C1F and SLM_C2F

X4 In a second high-risk unit in a F cluster N (1.325, 0.25) SLM_C1F and SLM_C2F

Note: The other parameters of the SLM are shown in Figure S1.

(R2
adj) were used to evaluate the performance of models with different W.

MSE =
N∑

i=1

(
𝛽i − 𝛽

)2

N
, ABias =

|||||||

N∑

i=1

(
𝛽i − 𝛽

)

N

|||||||

,

where 𝛽 is the estimated value obtained from the fitted model; 𝛽 is the real value; and N is the number of replicas in the
scenario.

R2
adj = 1 −

RSS∕df
SYY∕(n − 1)

,

where RSS, SYY, df represent the residual sum of squares, the total sum of squares, and the degrees of freedom,
respectively, and n is the number of spatial units in this simulation study.

3.1.3 Results in SAR models

Generally, the results show that the existence of clusters leads to considerably larger ABias, MSE and a low R2
adj for the SAR

models including the classic W (hereafter AGSAR models consisting of AGSEM and AGSLM). Stronger clusters affect the
AGSAR models more in terms of the bias and MSE. For the SAR models including DDWs (hereafter DDWSAR models
consisting of DDWSEM and DDWSLM), most of them adjust the clustering spatial dependence well, leading to much
smaller ABias, MSE and greater R2

adj than the AGSAR models. Furthermore, stronger clustering leads to larger advantage
of the DDWSAR models over the AGSAR models. The two DDWs (GG and GN) always keep a stable performance across
various scenarios and SAR models. The details of the comparisons are presented below.

For the SEMs, shown in Table 5, all the SEMs including DDWs (hereafter DDWSEMs) outperform those including
AG (hereafter AGSEM) in MSE and R2

adj. The average improvements were a 77.93% reduction in the MSE and a 30.93%
increase in the R2

adj. For the ABias, the convergence plots, Figure S2, shows that it is difficult for the AGSEM to obtain a
stable estimation of 𝛽 in the scenarios containing strong clustering, while all the DDWSEMs achieve a stable estimation.
Four kinds of DDWSEMs (ie, GGSEM, GNSEM, NGSEM, and NNSEM) achieve similar or smaller ABias values than the
AGSEM, while the GRSEM and NRSEM obtain much larger ABias values, which will be discussed in Section 5. Stronger
clustering makes larger advantage of the DDWSEMs over the AGSEM. Further comparison between DDWSEMs shows
that those models with DDWs whose baseline weights are based on a geographic contiguity relationship (ie, GG, GN, and
GR) outperform those with DDWs whose baseline weights are based on an equal-weighted relationship (ie, NG, NN, and
NR) in almost all the scenarios.

For the SLMs, shown in Table 6, all the SLMs including DDWs (hereafter DDWSLMs) outperform those including
AG (hereafter AGSLM) in ABias, MSE, and R2

adj. Stronger clustering leads to larger advantage of the DDWSLMs over the
AGSLM. The average improvements are 87.44% and 92.91% reductions in the ABias and MSE, respectively, as well as a
22.28% increase in the R2

adj. Same as in the SEMs, the SLMs with GG, GN, and GR outperform those with NG, NN, and NR,
respectively, in all the scenarios. Different from the result in the SEMs, the AGSLM obtains a stable estimation, shown in
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T A B L E 5 The simulation results in the SEM over 10 000 replicas

Scenario AG GG GN NG NN GR NR

C1Hh ABias 0.747 0.207 0.175 0.008 0.038 2.152 3.014

MSE 12.414 0.956 0.949 1.110 1.102 0.964 1.125

R2
adj 0.639 0.978 0.978 0.973 0.973 0.978 0.973

C1Hl ABias 0.030 0.003 0.017 0.030 0.016 2.643 3.467

MSE 2.545 0.923 0.914 1.110 1.100 0.936 1.127

R2
adj 0.630 0.881 0.881 0.861 0.859 0.882 0.859

C1F ABias 0.925 0.243 0.221 0.577 0.565 3.329 3.760

RMSE 5.576 1.864 1.581 2.578 2.041 1.453 1.806

R2
adj 0.706 0.938 0.943 0.932 0.937 0.947 0.941

C2Hh ABias 1.460 0.337 0.278 0.185 0.259 5.273 7.032

MSE 25.213 0.967 0.961 1.115 1.103 1.020 1.191

R2
adj 0.579 0.988 0.988 0.986 0.986 0.988 0.986

C2Hl ABias 0.526 0.120 0.146 0.130 0.159 5.831 7.285

MSE 4.469 0.937 0.936 1.113 1.112 1.001 1.198

R2
adj 0.584 0.927 0.927 0.915 0.914 0.928 0.915

C2F ABias 0.231 0.114 0.086 0.101 0.072 7.515 9.022

MSE 11.674 2.666 2.226 3.613 2.846 1.983 2.457

R2
adj 0.654 0.952 0.956 0.949 0.954 0.961 0.958

Note: For the ABias and MSE, the values have been multiplied 1000 to clearly present the comparison.

Figure S4, but the ABias considerably inflates, especially in the scenarios with strong clustering. In addition, the GR and
NR, which gives large ABias values in the SEM, achieve small ABias.

3.2 CAR models for disease mapping

Since the work by Besag et al,35 CAR models in Bayesian framework have become the most common tool to smooth the
risks in disease mapping. Let Oi and Ei indicate the observed and expected cases, in spatial unit i, respectively. ri is the
RR of spatial unit i over the expected incidence.

Oi ∣ ri ∼ Poisson (Eiri) , log (ri) = 𝜂 + 𝜉i, (1)

where 𝜂, an intercept, represents an overall level of risk. 𝜉i is the spatially random effect. Let 𝝃 = (𝜉1, 𝜉2, … , 𝜉n)′. The
commonly used Leroux prior (hereafter LCAR model)36 is given by

𝝃 ∼ N
(

0, 𝜎2
𝜉

[
𝜌𝜉R𝝃 +

(
1 − 𝜌𝜉

)
In
]−1

)
, (2)

where 𝜎2
𝜉

is the variance parameter, 𝜌𝜉 represents strength of spatial dependence taking values between 0 and 1. R𝝃 is
a n × n symmetric matrix with the diagonal elements equal to the number of neighbors around the ith unit. For the
off-diagonal element,

(
R𝜉
)

ij = −1 if spatial unit i and j are neighbors,
(

R𝜉
)

ij = 0 otherwise.
Based on LCAR model, AHC-based CAR model (hereafter AHC model) was proposed to deal with the spatial clus-

tering (or discontinuity).30,37 As the AHC model is computation-intensive especially with large number of spatial units,
DBSC-based CAR model (hereafter DBSC model),31 which has similar performance but with much lower computation
cost than AHC model, was subsequently proposed as an alternative. DBSC model first identifies the clusters using the



WANG et al. 2947

T A B L E 6 The simulation results in the SLM over 10 000 replicas

Scenario AG GG GN NG NN GR NR

C1Hh ABias 436.661 3.7674 4.062 34.011 36.932 0.706 33.648

MSE 198.881 1.087 1.092 2.485 2.706 1.067 2.469

R2
adj 0.728 0.976 0.976 0.971 0.970 0.976 0.970

C1Hl ABias 63.584 0.514 0.241 31.956 34.805 3.966 30.992

RMSE 6.554 1.062 1.064 2.354 2.556 1.080 2.305

R2
adj 0.685 0.879 0.879 0.851 0.849 0.880 0.850

C1F ABias 248.806 30.916 28.407 56.611 55.975 24.731 52.213

RMSE 66.986 2.690 2.397 5.248 5.010 2.044 4.388

R2
adj 0.771 0.942 0.946 0.933 0.937 0.951 0.944

C2Hh ABias 865.224 7.087 7.5550 35.081 38.235 0.094 30.890

RMSE 760.985 1.143 1.149 2.563 2.806 1.087 2.297

R2
adj 0.712 0.987 0.987 0.984 0.984 0.987 0.984

C2Hl ABias 144.303 2.790 3.254 33.653 36.765 4.387 29.169

RMSE 24.933 1.097 1.100 2.474 2.705 1.110 2.206

R2
adj 0.659 0.924 0.924 0.908 0.907 0.925 0.908

C2F ABias 524.901 62.686 58.240 79.726 77.186 48.519 67.418

RMSE 283.911 6.244 5.472 8.965 8.314 4.083 6.483

R2
adj 0.749 0.956 0.960 0.953 0.956 0.966 0.963

Note: For the ABias and MSE, the values have been multiplied 1000 to clearly present the comparison.

DBSC algorithm and then incorporates the identified clusters into LCAR model by adding cluster-level spatial structure
to the model. When the number of identified clusters is not large, a fixed cluster-level spatial effect is used, as such,
Equation (1) is modified to

log (ri) = 𝜂 + 𝜉i +
k∑

j=1
I
[
Ui ∈ Gj

]
𝛽j, (3)

where k is the total number of clusters, I[.] is an indicator function so that I
[
Ui ∈ Gj

]
= 1 if spatial unit i lies in cluster Gj,

I
[
Ui ∈ Gj

]
= 0 otherwise. 𝛽j is the fixed parameter to estimate. When the number of identified clusters is large, a random

cluster-level spatial stricture is added, as such, Equation (3) becomes

log (ri) = 𝜂 + 𝜉i + 𝜑j(i), (4)

where j(i) indicates that spatial unit i lies in cluster Gj. Let 𝝋 = c (𝜑1, … , 𝜑k), like the random spatial structure for 𝝃, the
cluster-level spatial structure can be represented as

𝝋 ∼ N(0, 𝜎2
𝜑

[
𝜌𝜑R𝜑 +

(
1 − 𝜌𝜑

)
Ik
]−1
,

where 𝜎2
𝜑

is the cluster-level variance parameter, 𝜌𝜑 represents strength of spatial dependence between clusters. R𝜑 is
a k × k symmetric matrix with the diagonal elements equal to the number of neighbors around the jth cluster. For the
off-diagonal element,

(
R𝜑

)
ij = −1 when cluster i and j are neighbors,

(
R𝜑

)
ij = 0 otherwise. Another noteworthy thing is

that two hyperparameters (background parameter and neighbor-level parameter) need to be prespecified or selected by
certain standard, such as the logarithm score (LS).38

To clearly understand how to employ DDWs in the CAR model, we get insight into the correlated spatial structure
above that
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F I G U R E 3 The distribution of clusters in the simulation scenarios for the CAR models. No clusters exist in scenario 1, 11
high/low-risk clusters in scenario 2, and 9 intra-heterogeneous clusters in scenario 3

R𝝃 = D𝓝 (In −W) ,

where D𝓝 is a diagonal matrix with the diagonal vector equal to𝓝whose ith element is the number of neighbors around
spatial unit i, and W is just the classic row-standardized adjacence-based W as in the SAR models. When 𝜌 = 1 in the
LCAR, 𝝃 ∼ N

(
0, 𝜎2

𝜉
R−1
𝝃

)
, we obtain the intrinsic CAR (ICAR) model, in which an intuitive explanation about W is given

as.

𝜉i ∣ 𝜉−i ∼ N

( n∑

j=1
wij𝜉j,

𝜎
2
𝜉

𝒩i

)

.

Therefore, the LCAR and DBSC model can be written as the spatial models including the classic W, and then, it is
reasonable to replace the classic W with a DDW to construct a new CAR model. In this work, based on the DBSC model
dealing with the clustering (or discontinuous) spatial dependence, we use DDWs to substitute the classic W in R𝝃 to
construct DDWCAR models, in which the random correlated spatial prior could be defined as.

𝝃 ∼ N
(

0, 𝜎2
𝜉

[
𝜌𝜉D𝓝 (In −WDDW) +

(
1 − 𝜌𝜉

)
In
]−1

)
.

And like that in the DBSC model, the cluster-level effect is introduced into the DDWCAR model using either fixed
effect or random effect according to the number of identified clusters. As WNR and WGR fail to achieve the symmetric
attribute of D𝓝 (In −WDDW) as in R𝝃 , only the other four DDWs could be used to build a total of four DDWCAR models
(ie, NNCAR, NGCAR, GNCAR, GGCAR).

3.2.1 Data generation process in the CAR

To obtain comparable results, the simulation scenarios used to validate the efficiency of the latest DBSC model are
employed to evaluate the DDWCAR performance in disease mapping.31 They derive from the cancer mortality data for
2011 to 2015 and are composed of three simulation scenarios in 508 Spanish municipalities, shown in Figure 3, the first
scenario with a spatial smooth surface based on the intuitive adjacence-based spatial structure without clusters (sce-
nario 1), the second scenario with 11 high/low-risk homogeneous clusters without overlap (scenario 2), and the last
scenario with 9 high-risk but intra-heterogeneous clusters without overlap (scenario 3). Each scenario consists of three
sub-scenarios (labeled as A, B, and C): the expected cases derive from the real cancer mortality data (A), the expected
cases of A are multiplied by 0.1 and 1/30 to get ones of B and C, respectively. The three subscenarios imitate the occur-
rence of common diseases, rare diseases, and much rare diseases, respectively. According to the expected cases and risk
level of each municipality, the Poisson-distributed observed cases were generated with 100 replicas. As such, the average
proportions of spatial units with observed cases equal to zero are 3.3%, 36%, and 57% for A, B, and C, respectively. The
detailed data generation process could be found in the work by Santafé et al.31
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3.2.2 Performance evaluation in the CAR

Four DDWCAR models were fitted along with the DBSC model and the classic LCAR model as references. For DBSC
models, three neighbor-level parameters (𝓁 = 1, 2, 3) with or without background cluster were selected as those in Santafé
et al.31 So, one LCAR, six DBCS, and four DDWCAR models were fitted to estimate the relative risks of each spatial units
for each simulation datasets. The performances of these models were compared in terms of mean absolute relative bias
(MARB) and mean relative root mean square error (MRRMSE) which are defined as

MARB = 1
n

n∑

i=1

1
100

||||||

100∑

s=1

r̂s
i − ri

ri

||||||
, MRRMSE = 1

n

n∑

i=1

√√√√√ 1
100

100∑

s=1

(
r̂s

i − ri

ri

)2

,

where ri is the artificial real relative risk of spatial unit i, r̂s
i is the estimated relative risk in sth simulation dataset and n

is the number of spatial units. MARB reflects the predictive bias of models, which is of more interest in risk comparison
between spatial units, while MRRMSE reflect the predictive accuracy of models, which is more important for predicting
the exact risk values of spatial units. In addition, the LS is also given as a secondary measure of the model predictive
ability as a cross-validation-based measure.38 With no relying on the real values, the LS can be used to select a preferred
model.

3.2.3 Results in the CAR

The comparison results are shown in Table 7. Generally, when no clusters exist, all the models obtain similar MARB
values. The LCAR and the DDWCAR models obtain competitive MRRMSE values but considerably lower than the DBSC
models. When clusters exist, in term of MRRMSE, the DDWCAR models achieve the best performance, while the DBSC
models achieve the poorest performance, even get considerably larger MRRMSE values than the classic model, LCAR.
In term of MARB, the DDWCAR models achieve similar or better performance than the DBSC models in the scenarios
for the common diseases. Although the DDWCAR models get larger MARB values than the DBSC models in most of the
scenarios for rare (or much rare) diseases, they still get considerably lower MARB values than the LCAR model. In all the
scenarios, the LS scores of the DDWCAR models are lower than the other models and capable of selecting an acceptably
optimal model. The details of the comparisons are presented below.

In the scenarios without clusters (scenario 1), the LCAR model achieve the best performance in term of both MARB
and MRRMSE as expected. Compared with the LCAR model, the DDWCAR models obtains the same MARB and com-
petitive MRRMSE (ie, the largest difference is 0.052 vs 0.032 seen in scenario 1C). For the DBSC models, they obtained
considerably larger MRRMSE values than the LCAR and DDWCAR models, even in the optimal DBSC model, the infla-
tions of MRRMSE over the LCAR models reach 107.1% (0.015/0.014), 91.3% (0.021/0.023), and 215.6% (0.069/0.032) in
scenario 1A, scenario 1B, and scenario 1C, respectively.

In the scenarios with clusters (ie, scenario 2 and scenario 3), in term of MARB, the LCAR models show the poorest
performance, and both the DBSC and the DDWCAR models considerably improve the MARB. Comparing the DBSC
models with the DDWCAR models, in the scenarios for common diseases (ie, scenario 2A and scenario 3A), the DDWCAR
models obtain the smaller (0.047 vs 0.054 seen in scenario 2A) or similar (0.04 vs 0.04 seen in scenario 3A) MARB values.
In the scenarios for rare (or much rare) diseases (ie, scenario 2B, 2C, 3B, and 3C), the DDWCAR models obtain larger
MARB values in most of scenarios, but also get smaller MARB in scenario 2C. In term of MRRMSE, the DBSC models
still inflates the MRRMSE over the LCAR model as that in scenario 1, while the DDWCAR models get considerable
improvement in almost all the scenarios. Another interesting result is that GNCAR and GGCAR has similar or better
performance than NNCAR and NGCAR in terms of both MARB and MRRMSE.

4 CASE STUDIES OF INCORPORATING DDWS INTO THE SAR AND CAR
MODELS

Hand, foot, and mouth disease (HFMD) is an acute contagious disease transmitted via the oral-fecal route and by
contact with respiratory droplets and contaminated food.39 It primarily affects children less than 5 years old and has
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T A B L E 7 Average values of MARB, MRRMSE, and LS in the CAR models

No background cluster With background cluster

LCAR DBSC𝓵=1 DBSC𝓵=2 DBSC𝓵=3 DBSC𝓵=1 DBSC𝓵=2 DBSC𝓵=3 NNCAR NGCAR GNCAR GGCAR

Scenario 1A MARB 0.012 0.013 0.014 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012

MRRMSE 0.014 0.034 0.038 0.036 0.029 0.033 0.032 0.016 0.016 0.016 0.016

LS 1394.7 1420.4 1540.7 1417.7 1414.1 1411.5 1405.9 1394.5 1394.5 1394.4 1394.4

Scenario 1B MARB 0.012 0.017 0.034 0.086 0.014 0.017 0.031 0.012 0.012 0.012 0.012

MRRMSE 0.023 0.05 0.093 0.169 0.044 0.056 0.1 0.026 0.026 0.026 0.026

LS 776.5 775.6 774.9 783.4 776.2 776.0 776.6 776.6 776.6 776.5 776.5

Scenario 1C MARB 0.012 0.047 0.057 0.078 0.033 0.033 0.032 0.013 0.013 0.013 0.013

MRRMSE 0.032 0.112 0.129 0.165 0.101 0.101 0.112 0.053 0.052 0.054 0.054

LS 521.4 520.6 521.1 524.5 520.8 521.1 522.1 522.6 523.6 5214 521.4

Scenario 2A MARB 0.058 0.054 0.054 0.057 0.054 0.055 0.057 0.053 0.052 0.052 0.047

MRRMSE 0.125 0.129 0.131 0.133 0.125 0.13 0.132 0.138 0.138 0.123 0.124

LS 1533.9 1530.0 1532.7 1547.1 1514.4 1522.2 1539.8 1539.5 1539.5 1509.5 1516.6

Scenario 2B MARB 0.096 0.099 0.113 0.127 0.099 0.102 0.104 0.117 0.117 0.11 0.112

MRRMSE 0.17 0.213 0.243 0.268 0.207 0.213 0.219 0.143 0.143 0.145 0.143

LS 826.5 817.0 820.8 833.8 817.0 819.6 822.7 807.6 807.6 803.3 804.9

Scenario 2C MARB 0.132 0.13 0.134 0.125 0.121 0.119 0.115 0.111 0.111 0.108 0.108

MRRMSE 0.202 0.266 0.276 0.285 0.268 0.267 0.266 0.187 0.186 0.187 0.183

LS 555.3 547.8 551.9 558.9 547.5 550.3 552.4 545.5 545.3 541.8 542.9

Scenario 3A MARB 0.049 0.04 0.045 0.046 0.041 0.045 0.047 0.051 0.051 0.041 0.04

MRRMSE 0.097 0.1 0.104 0.104 0.098 0.1 0.103 0.116 0.116 0.095 0.100

LS 1522.6 1522.9 1536.4 1531.8 1508.6 1519.5 1525.4 1520.9 1520.9 1493.1 1498.6

Scenario 3B MARB 0.105 0.075 0.075 0.098 0.079 0.08 0.078 0.106 0.105 0.087 0.090

MRRMSE 0.139 0.158 0.196 0.233 0.162 0.171 0.184 0.129 0.128 0.118 0.118

LS 833.6 825.1 827.5 834.5 825.1 828.4 829.7 830.9 830.5 824.0 824.9

Scenario 3C MARB 0.152 0.081 0.087 0.096 0.081 0.089 0.088 0.139 0.138 0.124 0.125

MRRMSE 0.174 0.207 0.226 0.243 0.206 0.216 0.224 0.166 0.165 0.156 0.156

LS 558.8 552.0 553.9 561.1 552.6 553.9 556.3 556.3 556.3 552.2 552.4

Note: In the DDWCAR models, the fixed cluster-level spatial effects are considered for a relatively small number of identified clusters. We also tried the random
cluster-level spatial effects, which performs a similar result. Only the high-risk clusters were considered in the scan statistic for the rare (or much rare)
diseases.

become a major public health issue in the Asia-Pacific region.40-42 As studies have demonstrated that HFMD incidence
is affected by natural and social environments, such as meteorological factors and economic and medical care levels,43-45

discontinuous (or clustering) spatial dependence of HFMD risk can easily be found due to specific terrain or social devel-
opment levels. Therefore, in this section, we aim to investigate the effects of meteorological variables on HFMD and
estimate the excess risk of HFMD for each county to provide a practical application of DDWs in SAR and CAR models,
respectively.

For each county in Sichuan Province, the incidences under the age of 5 years in April 2014 were collected from
the Chinese Center for Disease Control and Prevention. With respect to previous studies, we collected climatic factors
from the China Meteorological Bureau, including the monthly average wind speed, sunshine time, temperature, and
humidity.46,47
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T A B L E 8 The results of parameter estimation in the SAR models for the case study

X AG NG NR NN GG GR GN

Temperature 0.0169*** 0.0207*** 0.0176*** 0.0220*** 0.0160*** 0.0110*** 0.0174***

(0.0036) (0.0031) (0.0027) (0.0031) (0.0031) (0.0025) (0.0032)

Sunshine −0.0230 −0.0265** −0.0198* −0.0241* −0.0244** −0.0156 −0.0224*

(0.0141) (0.0131) (0.0117) (0.0132) (0.0127) (0.0105) (0.0127)

Wind 0.0066 0.0263 0.0650** 0.0567 0.0204 0.0582** 0.0494

(0.0378) (0.0355) (0.0314) (0.0355) (0.0341) (0.0282) (0.0341)

Humility −0.0164 −0.0239 −0.0072 −0.0203 −0.0199 −0.0019 −0.0165

(0.0197) (0.0188) (0.0166) (0.0190) (0.0178) (0.0148) (0.0179)

R2
adj 0.58 0.63 0.71 0.63 0.66 0.77 0.66

AIC 713.08 691.48 650.05 685.75 685.42 628.71 681.22

Note: The values in parentheses are the standard errors corresponding to the estimated parameters.
*P< .1.
**P< .05.
***P< .001.

4.1 SAR models in application

First, the scan statistic and the MCS-P were employed to find clusters in this dataset, and the selected maximum scan
window was 14%. Seven clusters that comprise 95 counties are identified, seen in Figure S6. Then, based on the clusters,
six kinds of DDWs were constructed. Finally, based on the Lagrange multiplier (LM) test, the SLM was selected, and the six
DDWs and AG were included in the model. The logarithm for y is used in the model under the assumption of a lognormal
distribution. As no true 𝛽 is known in practice, AIC and R2

adj were used to evaluate and compare the performance of
different DDWs and AG.

The results in Table 8 show that all the models with DDWs obtain a higher R2
adj, a lower AIC and smaller standard

errors than that with the classic W (ie, AG), suggesting that the DDWs achieve more stable parameter estimations and
more statistical power than the classic W. This advantage in the statistical power leads to a stronger capacity to find
existing associations. For example, in the models with NG and GG, sunshine time is identified as a protective factor for
HFMD, as found in the previous study.47 However, the SLM with AG fails to identify such an association because of the
smaller statistical power. The other DDWs have similar performances. In addition, the models with GR or NR obtains
considerably higher R2

adj and smaller AIC than the models with other DDWs. The reason for this finding may be that more
than half of the counties are found as clustering regions. Therefore, the assigned weights based on the observed values
in clusters utilize too much information from random errors and leads to overfitting. Overall, the models with DDWs
outperform those with the classic W, AG.

4.2 CAR models in application

The same method as in SAR was used to identify the clusters. The expected cases of each county were calculated based
on the population. Like in the simulation study for CAR models, four DDWCAR models (ie, NNCAR, NGCAR, GNCAR,
and GGCAR) were fitted, along with the references, the classic LCAR and six DBSC models. Because of the real risk
values unknown, the LS was used as the main performance measure. A smaller LS means a better model predictive
ability.

The result shows that the LCAR model, as expected, obtains the largest LS values (722.1), that is, the poorest risk esti-
mation, due to the strong clustering (or discontinuous) spatial dependence of HFMD risk in Sichuan province. As shown
in Figure 4, low-risk clusters are found in the western plateau and high-risk clusters are found in the central plains. The
DBSC and DDWCAR models considerably improve the risk estimation, that is, achieve smaller LS values. Furthermore,
the smallest LS in the DDWCAR models is 447.3 found in the GGCAR model, which is considerably smaller than 490.2
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F I G U R E 4 The estimated risk surface and logarithm score (LS) values using LCAR, DBSC, and DDWCAR models in the case study

achieved by the optimal DBSC model (ie, DBSCl1.nb model with one level of neighbor and without background), sug-
gesting the DDWCAR models achieve a better risk estimation than the DBSC models. In addition, we found the GNCAR
models also has similar LS values (448.3 vs 447.3) with the GGCAR model, which conforms to simulated results.

5 DISCUSSION

Clustering (or discontinuous) spatial dependence widely exists in spatial datasets, which will reduce the performance
of the spatial models with the classic spatial weights matrix (AG). In this work, we proposed six novel spatial weights
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matrices, called DDWs, to deal with this problem. The DDWs are constructed based on the identified clusters by the scan
statistic and the natural adjacence relationship, which take both the clustering and the intuitive adjacence-based spatial
dependence into consideration. Aiming at two common purposes in epidemiology studies (ie, estimating the effect of
explanatory variable and estimating the RR of each spatial unit in disease mapping), the common SAR models, that is,
SEM and SLM, and the CAR models were built to evaluate performance of DDWs, respectively.

In the SAR models, all the six DDWs are available for the SEM and SLM. In the simulation scenarios, the SAR models
incorporating the four DDWs (GG, GN, NN, NG) achieve considerable improvement over those including the AG in terms
of bias, MSE and R2

adj, and the stronger clustering leads to larger advantages, suggesting the DDWs have a good ability to
adjust the clustering (or discontinuous) spatial dependence. But the other two DDWs (GR and NR), which may achieve
a better performance in the scenarios with inner-heterogeneous clusters, lead to unacceptable large bias in the SEM for
the reason that the risk-weighting method employs too much information from random errors. Thus, it is risky to adopt
the risk-weighting method in complex real-world datasets. Furthermore, as the baseline spatial dependence was set to
contain only the first-law-of-geography-based spatial dependence, in the SAR models, the DDWs with baseline weights
based on the geographic contiguity relationship (ie, GG, GN, and GR) outperform those DDWs with baseline weights based
on the equal-weighted relationship (ie, NG, NN, and NR), as expected. This suggests that the spatial weights matrices
ignoring the intuitive first-law-of-geography-based spatial dependence, such as AMOEBA,14 NN, NG, and NR, might not
be appropriate choices for real-world datasets in which such spatial dependence commonly exists. The case study shows
similar results to those from simulation study, that is, the DDWs achieves stronger statistical power, higher R2

adj, and lower
SE than the AG.

Noteworthy, in the simulation datasets for the SLM, we increased the spatial dependence from the observed explana-
tory variable by appropriately enlarging this variable to satisfy the condition of the SLM. Otherwise, the strong clusters
will make the spatial dependence from the observed explanatory variable ignorable, in which conditions, the SEM or spa-
tial Durbin model should be used.5 Several other values of the observed independent variable were simulated to validate
the robustness of DDWs in the SLM and showed similar results. This may suggest a SLM including DDWs still has a stable
performance even in situations that the spatial dependence does not exactly satisfy the assumption of the SLM.

In the CAR models, because the two DDWs (GR and NR) cannot achieve the symmetry of the random correlated spatial
prior, seen in Section 3.2, only four DDWs (GG, GN, NN, NG) are available for the CAR models. Based on the latest pro-
posed DBSC model which aims to deal with the clustering spatial dependence, four DDWCAR models were constructed.
In simulation studies, the DDWCAR models achieve the considerably smaller MRRMSE values than the common LCAR
and DBSC models in the datasets with clustering spatial dependence. Moreover, in the datasets without clusters, they
also achieve similar performance with the LCAR models. In addition, similar to the pervious study,31 DBSC models con-
siderably inflate the MRRMSE over the LCAR model in all the simulation datasets. A smaller MRRMSE means a more
accuracy risk prediction, which suggests that the DDWCAR models should be recommended for predicting the risk of
each spatial unit. On the other hand, the bias is of more interest for the risk comparison between the spatial units. As the
simulation study shows, in the clustering datasets for the common diseases, the DDWCAR models improve the MARB
over the DBSC and LCAR models, while in the clustering datasets for rare (or much rare) diseases, the DBSC models
achieves the best MARB values. This suggests that, focusing on the risk comparison, the DDWCAR models should be
recommended for common diseases, while the DBSC models should be recommended for rare (or much rare) diseases.
Same as that in SAR models, the GG and GN achieve better performance than NG and NN with the widely existed geo-
graphic adjacence-based relationship considered, which also supported by the case study where the GG and GN achieve
the smallest LS values.

In addition, we must acknowledge that, due to the accessibility of data, an ancillary history dataset was not included
in this case study, which may lead to overfitting of the DBSC models.31 Taking a further insight into the overfitting for
the two methods, the DBSC models do not test the identified clusters, which may find excessive number of clusters;
while the DDWCAR models only identify statistically significantly clustering regions as clusters, which will substan-
tially alleviate the overfitting. So, under the condition without ancillary datasets, the DDWCAR models may be further
recommended.

Another issue worth noting, the proposed DDWSAR and DDWCAR models may suffer from the issues of identifiability
between spatial random effects and the fixed effects (including the intercept).48-51 Luckily, the previous methods, such as
the reparameterization method,50,51 restricted spatial regression,49-51 and constraining the random effects to be orthogonal
to the fixed effects,51 are still available at least for the DDWSEM and DDWCAR models. The preliminary derivation could
be seen in the supplementary material, while the specific performance in practical applications needs further research.
For the DDWSLM model, because a part of spatial random effect comes from the observed response variable, which is
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different from that in the SEM and CAR model, the previous method to deal with the identifiability issue may not be
simply expanded to DDWSLM.

In this study, though CAR models can both smooth the risk and estimate the coefficients, they were only
evaluated for risk smoothing to enhance the comparability between the DDWCAR and the previously developed
clustering-dealing-with method, that is, DBSC model. The performance of DDWCAR models on the regression coefficient
estimates were not considered, which would be one of our future works.

In conclusion, the proposed DDWs, especially the GG and GN, are capable of adjusting both the clustering (or discon-
tinuous) and the intuitive first-law-of-geographic-based spatial dependence, and therefore, improving the performance
of the commonly used SAR and CAR models. Although the advantage of DDWs over the classic W was only evaluated in
the SAR and CAR models for effect estimating and disease mapping, respectively, the DDWs may also be used in other
spatial models with the similar usage of W, such as spatial interpolation model, which would be part of our future work.
On the other hand, the DDWs are based on the identified clusters by the scan statistic, which could be conveniently imple-
mented by the SaTScan software. As many methods have been carried out to obtain more accuracy clusters according to
specific studies,52-55 such accuracy improvement may lead to more effective DDWs.
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