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ABSTRACT The ARTIC Network provides a common resource of PCR primer sequen-
ces and recommendations for amplifying SARS-CoV-2 genomes. The initial tiling
strategy was developed with the reference genome Wuhan-01, and subsequent iter-
ations have addressed areas of low amplification and sequence drop out. Recently, a
new version (V4) was released, based on new variant genome sequences, in
response to the realization that some V3 primers were located in regions with key
mutations. Herein, we compare the performance of the ARTIC V3 and V4 primer sets
with a matched set of 663 SARS-CoV-2 clinical samples sequenced with an Illumina
NovaSeq 6000 instrument. We observe general improvements in sequencing depth
and quality, and improved resolution of the SNP causing the D950N variation in the
spike protein. Importantly, we also find nearly universal presence of spike protein
substitution G142D in Delta-lineage samples. Due to the prior release and wide-
spread use of the ARTIC V3 primers during the initial surge of the Delta variant, it is
likely that the G142D amino acid substitution is substantially underrepresented
among early Delta variant genomes deposited in public repositories. In addition to
the improved performance of the ARTIC V4 primer set, this study also illustrates the
importance of the primer scheme in downstream analyses.

IMPORTANCE ARTIC Network primers are commonly used by laboratories worldwide to
amplify and sequence SARS-CoV-2 present in clinical samples. As new variants have
evolved and spread, it was found that the V3 primer set poorly amplified several key
mutations. In this report, we compare the results of sequencing a matched set of sam-
ples with the V3 and V4 primer sets. We find that adoption of the ARTIC V4 primer set
is critical for accurate sequencing of the SARS-CoV-2 spike region. The absence of meta-
data describing the primer scheme used will negatively impact the downstream use of
publicly available SARS-Cov-2 sequencing reads and assembled genomes.
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The ARTIC Network is a consortium dedicated to providing tools to support global
viral epidemiology efforts through low cost genomic sequencing (https://artic

.network). Early in the SARS-CoV-2 pandemic, the consortium developed a set of
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primers (ARTIC V1) designed to completely sequence the SARS-CoV-2 genome with
overlapping 400-bp amplicons. Shortcomings identified in the V1 protocol, primarily
due to regions of amplicon drop out, led to two more iterations of primer design,
which resulted in ARTIC V3 being used by many laboratories in 2020 and into 2021 (1).
As the COVID-19 pandemic continued, new variants emerged with unique mutations
and enhanced transmissibility (2–4). Some of these mutations occurred in primer bind-
ing sites in genes that encode key proteins such as spike protein, resulting in amplicon
dropout and poor sequence coverage in critical regions. ARTIC V4 was a new set
of tiling primers posted on June 18, 2021 (https://github.com/artic-network/artic-
ncov2019/tree/master/primer_schemes/nCoV-2019), designed using multiple variant
sequences as input to address these issues. In particular, there were spike protein
amino acid changes common to the Beta, Delta, and Gamma variants that occurred
in known V3 primer binding sites, including G142D (Delta) in the 2_Right primer, the
241/243del (Beta) that occurs in the 74_Left primer, and the K417N (Beta) or K417T
(Gamma) which occur in the 76_Left primer (https://community.artic.network/t/sars
-cov-2-version-4-scheme-release/312).

From the beginning of the pandemic, we strived to sequence all patient samples
with SARS-CoV-2 in the Houston Methodist Hospital system, a large 2,500-bed health
care system in Houston, TX, USA. In the summer of 2021, we experienced a massive
surge of patients with COVID-19 that corresponded with an increase in Delta variant
cases (4). Although we have been using the ARTIC primer sets throughout the pan-
demic, we elected to validate the ARTIC V4 primer set prior to adopting the new proto-
col. We chose a random set of 663 SARS-CoV-2 clinical samples isolated between July
2–18, 2021, and each of the 663 samples was amplified using the V3 and V4 primers.
SARS-CoV-2 nucleic acid present in the samples was amplified by methods described
previously (5, 6). Samples were sequenced with an Illumina NovaSeq 6000 instrument.
Paired-end reads for both the V3 and V4 amplified samples were assembled with the
assembly service of the National Institute of Allergy and Infectious Diseases (NIAID)-
funded Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv
-brc.org), which follows the One-Codex workflow (https://github.com/onecodex/sars-
cov-2). The workflow uses seqtk version 1.3-r116 for quality trimming (https://github
.com/lh3/seqtk.git); minimap version 2.143 for aligning reads against Wuhan-Hu-1
(NC_045512.2) (7); samtools version 1.11 for sequence and file manipulation (8); and
iVar version 1.2.2 (9) for primer trimming and SNP calling. Default parameters were
used in all cases except that the maximum read depth in mpileup was limited to 8,000,
and the minimum read depth for a variant call in iVar was set to 3. Lineages were
assigned with Pangolin version 3.1.11 using pangoLearn module 2021-08-24 (https://
cov-lineages.org/resources/pangolin.html) (10). All sequencing reads are available at
SRA under bioproject, PRJNA767338.

Overall, we observed considerable improvement in sequence quality of the V4
assemblies relative to V3. The median read depths tended to be higher at each nucleo-
tide position (Fig. 1A) and at each primer position (Fig. 1B and C). Notably, the V3
region of low coverage spanning approximately nucleotide positions 22,320–22,530
(corresponding to V3 primer pair 74) located in the spike gene, is corrected in V4.
Consistent with previous analysis of ARTIC V4 (https://community.artic.network/t/sars
-cov-2-version-4-scheme-release/312), we observe an area of slightly lower coverage in
the V4 sequences at approximate nucleotide positions 26,950–27,180 (corresponding
to V4 primer 90), but this was less problematic because we observed fewer assemblies
with runs of ambiguous base calls in the V4 set.

Among the 663 samples, 53 had different pangolin calls in the V3 versus V4 assemblies
(Table 1). None of these 53 sample pairs had identical spike protein sequences. The most
common nucleotide difference occurs at nucleotide position 21,987, which is the G to A
transition that causes the G142D amino acid spike variant. The second most common SNP
occurs in position 24,410, which causes the D950N amino acid variant. Three hundred
sixty-eight of the V3 assemblies had an ambiguous base at this position compared with
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only 3 of the V4 assemblies. Except for the ends of the assembled sequences which can be
jagged, and therefore ambiguous, 3 samples (MCoV-49081, MCoV-50268 and MCoV-
49000) differed only at position 21,987 (G142D) SNP in the V3 versus V4 assemblies. These
three V3 assemblies were classified by pangolin as being either AY.15 or AY.24. When
sequenced by V4, they were all classified as B.1.617.2. A fourth sample (MCoV-50188) dif-
fered only at positions 21,987 (G142D) and 24,410 (D950N). This also changed the pango-
lin classification from AY.15 in V3 to B.1.617.2 in V4. The remaining 53 samples with differ-
ing pangolin lineages had 3 or more SNPs in the V3 versus V4 run. In this set of 663
genomes, none of the V4 assemblies with a complete spike protein that are classified as
being a Delta or a Delta sublineage have the ancestral glycine at position 142.

FIG 1 Sequencing artifact analysis of spike protein amino acid position 142. (A) Median read depths at each nucleotide position for the assembly of the set of
663 V3 (blue) and V4 (red) samples. (B) Median read depth at each primer for the set of 663 V3 assemblies. (C) Median read depth at each primer for the set
of 663 V4 assemblies. Orange squares are right primers and blue circles are left primers. (D) The fraction of B.1.617.2 sequences in GISAID with (blue) and
without (orange) G142D through August 31, 2021. (E) Frequency of L452R (gray), D950N (blue), and G142D (orange) amino acid substitutions observed in
SARS-CoV-2-positive samples from April through August of 2021. L452R, D950N, and G142D are hallmark amino acid substitutions of the Delta variant.
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Public repositories such as GISAID (11) and the INSDC resources (12) host SARS-
CoV-2 genome sequences collected globally. These databases have been indispensable
for epidemiological analyses, early identification of variants of concern, and down-
stream translational research activities such as vaccine formulation. From June 2021
through August 2021, the rapid increase in the G142D amino acid substitution present
in Delta variants in public repositories appeared to indicate a rapid evolutionary sweep
(Fig. 1D), bearing resemblance to previous evolutionary sweeps, including the D614G
substitution in 2020 (13), B.1.1.7 (Alpha) last fall and winter (2, 5), and Delta this spring
and summer (3, 4) (GISAID acknowledgment table can be found at doi: https://doi.org/
10.1101/2021.09.27.461949). However, our data lead us to conclude that the sharp
uptick in spike protein G142D was caused by community adoption of the V4 primers.
Indeed, when we examine 12,441 samples from Houston Methodist patients collected
since April of 2021, comparing the occurrence of G142D with L452R (another hallmark
Delta substitution in spike), it becomes clear that the G142D uptick is an artifact that
corresponds precisely with our adoption of the V4 primers in mid-July 2021 (Fig. 1E).
Indeed, only 2 Delta variant genomes collected after July 1, 2021 had the ancestral gly-
cine at position 142 (4).

Conclusion. The results of this study are consistent with those published by the ARTIC
network (https://community.artic.network/t/sars-cov-2-version-4-scheme-release/
312). We observe substantially improved sequence quality, including higher me-
dian read depths and fewer regions of ambiguous base calls in the V4 assemblies
compared with V3. We also observe that the ancestral glycine at spike position 142 is
extremely rare in Delta variants collected in Houston. This study indicates that the primer
scheme used for amplifying and sequencing SARS-CoV-2 genomes is an important consid-
eration for interpreting epidemiological data and identifying variants of concern.

TABLE 1 Distribution of Pangolin lineages in the set of 663 samples that were sequenced
using either the ARTIC version 3 or version 4 primers

Lineage ARTIC version 3 ARTIC version 4
AY.10 2 1
AY.12 4 0
AY.13 2 2
AY.14 1 1
AY.15 5 0
AY.2 4 7
AY.20 3 3
AY.21 1 0
AY.24 5 1
AY.25 124 126
AY.3 40 36
AY.3.1 6 7
AY.4 4 0
B.1 0 1
B.1.1 0 1
B.1.1.7 40 40
B.1.575 1 0
B.1.617.2 375 398
B.1.621 4 4
B.1.621.1 1 1
B.1.625 0 1
B.1.628 11 11
B.1.637 1 1
C.37 4 3
P.1 9 9
P.1.10 1 1
None 15 8
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