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Abstract

In poultry production, birds are raised under intensive conditions, which can enable rapid

spread of infections, with Clostridium perfringens-caused necrotic enteritis (NE) being one

of the most devastating for the industry. The current investigation was conducted to evaluate

the effectiveness of Bacillus subtilis PB6 probiotic supplementation on bird’s post NE recov-

ery, based on chicken performance, cecal microbiota composition, ileum histomorphometric

measurements, and short-chain fatty acid production in the cecum of the birds that were

challenged with NE mid-production. Birds were split into four groups, including a negative

control, positive control challenged with C. perfringens, group supplemented with B. subtilis

probiotic, and NE challenged birds supplemented with B. subtilis probiotic. Following NE

challenge birds were allowed to reach the end of production time at 40 days, and samples

were collected to estimate if probiotic supplementation resulted in better post-NE recovery.

Intestinal lesion score across the duodenum, jejunum, and ileum indicated that at the end of

production timeline NE challenged birds supplemented with B. subtilis probiotic had lower

intestinal lesion scores compared to NE challenged birds without probiotic supplementation

implying improved recovery. Probiotic supplementation improved performance of NE chal-

lenged birds only in the post-NE recovery stage. NE challenged birds had a significant

increase in cecal propionic acid, which was not observed in NE challenged birds supple-

mented with B.subtilus. Both B. subtilis supplemented groups (challenged and unchanged)

were characterized by a significant rise in cecal acetic and butyric acid. Our results demon-

strate that B. subtilis supplementation can assist the birds in dealing with NE outbreak and

long term recovery.

Introduction

Decades of research and genetic selection have resulted in today’s broiler chicken consuming

three times less food to reach the required market weight compared to broilers commonly
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raised in the 1950s [1]. The poultry industry is the fastest-growing meat production industry

(USDA ERS), propelled by a relatively low cost of poultry meat and eggs compared to other

sources of animal protein. To reach the substantial consumer demand for poultry products,

birds are raised under intensive farming conditions with up to 100,000 birds per flock, facilitat-

ing the swift spread of infections [2] which remains the major issue for the rapidly growing

industry.

Since the early 1950s when the growth-promoting effects of antibiotics use in animal feed

were first used, antibiotic growth promoters (AGPs) were regularly added to feed to enhance

growth, reduce the cost of production, and decrease mortality [3, 4]. In the last decade, multi-

ple studies have reported that AGPs use has been associated with the rapid emergence of anti-

biotic-resistant microorganisms and high antibiotic residue levels in the consumable poultry

products [5–10]. It has been suggested that the majority of antibiotic-resistant E. coli strains

circulating in the community have been acquired from food animals, mainly from poultry

[11]. The magnitude of these reports has raised numerous concerns and led to AGP restricting

or banning action by several governments [12].

There is ample evidence of the chicken’s intestinal microbiota role in suppressing pathogen

colonization through the modulation of the intestinal mucosa environment and the synthesis

of antimicrobial compounds such as bacteriocins [13], short-chain fatty acids (SCFA) and

hydrogen peroxide (H2O2) [14]. For instance, Enterobacteriaceae and other acid-sensitive

pathogens are inhibited by SCFA production in the cecum, affecting the pH levels of the intes-

tine and promoting dissipation of the proton motive force across the bacterial cell membrane

[15]. Numerous studies show that the addition of dietary supplements such as probiotics,

organic acids, and phytobiotics can positively modulate gut microbiota [16].

One of the promising alternatives to AGPs are probiotics (direct-fed microbes). The admin-

istration of probiotics in animal feed was reported to control intestinal pathogens [17, 18],

enhance the intestinal health, and improve performance [19]. The potency of probiotics is

linked to a strain and dose-specific relationship. In poultry production, the most frequently

used bacterial probiotics include species of genera such as Bacillus, Bifidobacterium, Enterococ-
cus, Escherichia, Lactobacillus, Lactococcus, Streptococcus, and a combination of undefined cul-

tures [14, 20–22].

As with many application approaches, the mode of action of probiotics is not always clear.

The mechanisms of probiotic action include competition with enteric pathogens for attach-

ment sites, mucin secretion induction, immune modulation, cross-feeding, stabilization of the

epithelial barrier, and the production of some inhibitory substances such as short-chain fatty

acids, hydrogen peroxides and bacteriocins [16, 23, 24]. Studies on Bacillus subtilis PB6 probi-

otic show promising results. Bacillus subtilis PB6 significantly improves the intestinal mor-

phology, growth performance, carcass traits, and controlled Necrotic Enteritis (NE) in broilers

[19, 25]. However, the interactions of B. subtillus and C. perfringens with intestinal microbiota

and gut health remain unexplored. NE is considered as one of the most devastating poultry

diseases. An outbreak of NE in a flock may have a mortality rate as high as 50% [26]. The bur-

den of NE in poultry is on the rise again after the forced exclusion of AGPs from the poultry

feed and industry is now urging the scientific community to look for organic alternatives.

To date, most of the studies have focused on the immediate effect of NE challenge. The

birds in industrial production often get NE approximately mid-production around day 18–20;

however, this can be highly unpredictable. Studies that focus on controlling the clinical effects

of NE closely post-challenge while the birds are showing clinical symptoms. Despite the high

NE mortality rate, surviving birds recover relatively quickly and continue to grow to the end of

the production cycle [27–28]. The effects continual probiotic supplementation has on the flock

are cumulative and include post-NE recovery. There were studies investigating the influence
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of variables across the whole production cycle, including post-NE recovery, to observe and

report long term adverse effects of NE challenge on performance measures [27–28].

The current study aims to present novel insights on the effectiveness of continual supple-

mentation of a commercial AGP alternative B. subtilis probiotic on birds that suffered NE dur-

ing production. We also used culture-free sequencing-based microbiota analysis combined

with histomorphometric measurements and SCFA analysis to observe the long term effects of

B. subtilis administration in NE challenged broiler model.

Materials and methods

Chicken management and housing

A total of 100 day-old broiler chicks (Ross 308) of mixed-sex were used in this trial. The chicks

were randomly allocated into four dietary treatments and raised in a cage system; each treat-

ment was further divided into five replicates with five birds per cage with a total of 25 birds per

treatment. The experiment was performed for 40 days, with standard starter (0–21) and fin-

isher diet (21–40 days). Broilers were raised in temperature and light controlled room under

similar managerial and hygienic conditions. Birds had ad libitum access to water and feed and

were maintained on a 24 h light schedule.

Dietary treatments

Standard starter and finisher diets with isocaloric and isonitrogenous contents were offered in

mashed form. Corn and soybean meal diet (corn-SBM) was formulated as recommended by

the strain recommendation to meet or exceed recommendations in commercial practice in

Saudi Arabia (S1 Table). All additives were supplemented by top dressing and were not

included in the nutrient matrix. Bacillus subtilis PB6 probiotic was sourced by using commer-

cial product (CloStat, Kemin Industries). Upon arrival, chicks were randomly distributed to

one of the four treatments with 25 birds/treatment as follows: Treatment 1 (T1): negative con-

trol (No challenge, no B. subtilis); Treatment 2 (T2): positive control (C. perfringens challenge);

Treatment 3 (T3): probiotic (B. subtilis, 0.5 g/kg); Treatment 4 (T4) probiotic and challenge:

B. subtilis (0.5 g/kg) + (C. perfringens challenge). Necrotic enteritis was induced in broiler

birds by a series of inoculation as described earlier [29] with minor modifications. Briefly, on

the day 23, birds from NE challenged Treatments 2 and 4, were orally gavaged with Eimeria
sp. using the Coccidia™-D vaccine at 13 times the recommended dose per bird, followed by C.

perfringens type A strain inoculation at the rate of 4× 108 CFU for three days on day 26, 27,

and 28. The success of the NE model in challenged groups was confirmed through the necrop-

sies of all infected birds starting from the day of C. perfingens inoculation onwards, carried out

to confirm mortality cause. Characteristic signs of confluent necrosis and sloughing epithe-

lium of the intestinal tract were recognized as caused by NE.

Performance measurements

Broilers feed intake (FI) was calculated weekly by subtracting the amount of feed rejected from

the total offered feed. Average body weight gain (BWG) was measured weekly, and average

feed conversion ratios (FCR) were adjusted for mortality and computed for each experimental

unit. Production efficiency factor (PEF) was determined by using the formula:

PEF ¼
Livability � Live weightðkgÞ

Age in days� FCR
� 100
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Sample processing

At the end of the trial (day 40), cecum contents were collected aseptically, 14 birds from each

of the different treatments were chosen randomly for microbiota and SCFA analysis. Samples

were immediately placed on ice, transferred to the lab and stored at -80˚C. For histological

analysis, tissue from six birds per treatment selected randomly from all pen replicates was

removed aseptically from ileum mid-section, washed in phosphate-buffered saline (PBS) and

fixed in 10% buffered formaldehyde.

16S rRNA-based analysis of broilers cecal microbiota composition

Total DNA for microbiota analysis was extracted using a protocol described by Stanley et al.,

[30] and Yu and Morrison [31] with minor modification by including additional column

wash. Quantity and quality of DNA were measured using a Nanodrop spectrophotometer. The

microbiota composition of broilers was determined by amplification and sequencing of 16S

ribosomal RNA (rRNA) genes and was performed using specific primers targeting the V3–V4

hypervariable regions; forward ACTCCTACGGGAGGCAGCAG, and reverse GGACTACHVGGGT
WTCTAAT. Primers contained barcodes, spacers and Illumina sequencing linkers applying the

method that has been previously proposed by Fadrosh et al., [32]. Subsequently, the sequenc-

ing library was prepared following the manufacturer’s protocol (Illumina Inc., San Diego, CA,

USA). Sequencing was performed on the Illumina MiSeq platform using 2x300 bp paired-end

sequencing.

Sequencing and statistical analysis

Sequencing reads generated by Illumina MiSeq were initially processed and analyzed using

Quantitative Insights into Microbial Ecology (QIIME v.1.9.1) [33]. Paired-end joining Fastq-

Join algorithm allowed no mismatches within the region of overlap. Sequences with Phred

quality threshold greater than 20 were retained in the analysis. The assembled sequences were

clustered into operational taxonomic units OTUs at 97% similarity using UCLUST algorithm

[34] and investigated for chimeric sequences using Pintail [35]. All taxonomic assignments

were done in QIIME against the GreenGenes reference OTU database and QIIME default

arguments [36]. Weighted and unweighted Unifrac matrixes were calculated in QIIME, with

99,999 permutations and OTUs with a relative abundance of lower than 0.01% were filtered

out. After quality filtering, 52 cecum samples were successfully sequenced. The data analysis

was performed using Hellinger transformed rarefied data [37], square-root transformed, and

TSS normalized. Further data exhibitions and visualization were done using Calypso (http://

cgenome.net/calypso/) [38]. Alpha diversity was evaluated using Chao1, Shannon, Richness,

Evenness, and Simpson indexes. The figures comparing relative abundance show untrans-

formed data. 2-way PERMNAOVA (Primer 7e) was used to inspect the influence of the two

factors (NE challenge and B. subtilis) and their interactions. ANOVA was used to detect the

significance of the differences between the groups. Multivariate data visualization and multi-

variate statistical testing were examined by implementing the supervised multivariate redun-

dancy analysis (RDA) using 999 permutations. The complete sequencing dataset is publicly

available on the MG-RAST server (http://metagenomics.anl.gov/) with library ID mgl758080.

Short-chain fatty acid extraction and analysis

SCFAs were extracted from the cecal contents using an acidified water-extraction method

described by Zhao et al., [39] with some modifications. Briefly, 0.2 g of cecal content was sus-

pended in at 5 mL of water and homogenized by vortexing. Subsequently, the pH of the
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suspension was adjusted to 2–3 by adding 5M hydrochloric acid (HCl), and then 1 mL of Ace-

tonitrile chromatography grade (Sigma–Aldrich) to enhance the perception of other contami-

nants. Samples then were kept at room temperature for 10 min with occasional shaking,

followed by centrifuging for 20 min at 5000 rpm, resulting in a clear supernatant. One mL of

the final extract was filtered using a 0.2 μm cellulose regenerated PTFE syringe filter and trans-

ferred to glass auto-sampler vials. Filtered samples were evaporated to dryness at 70 ˚C for 48

hours, then re-dissolved in acetonitrile, vortexed for 1 min and the volume of the extract was

adjusted to 50 μl by a gentle stream of high purity N2 gas before injection into Agilent 7890A

GC system gas chromatography-5975 C inert MSD model mass spectrometer (GC–MS) (Agi-

lent Technologies, Palo Alto, CA). Acetic acid (C2) (99.9%), Propionic acid (C3) (99.9%),

Butyric acid (C4) (99.5%), i-butyric acid (i-C4) (99.0%), n-valeric acid (C5) (99.3%) and i-vale-

ric acid (i-C5) (99.0%) were purchased from Dr. Ehrenstorfer (Augsburg, Germany). All stan-

dards concentrations were adjusted to 1000 ug/ml (ppm) in methanol. GC-MS on an Agilent

(Palo Alto, CA) 7890A was used and operated in total ion chromatogram (TIC) scan mode to

determine the retention time of each SCFA compound and the mixture of SCFAs. The GC-MS

was equipped with an Agilent350 ˚C column (30 m x 250 μm x 0.25 μm). Separation of the

SCFAs was done as previously described [40–43]. GC/MS was operated in a single ion moni-

toring (SIM) mode according to the following instrumental parameters. The oven program

was 50 ˚C for 1 min, then 6 ˚C/min to 100 ˚C for 1 min, then 25 ˚C/min to 270 ˚C for 1 min,

(a total of 18.133 min run program), and 2 min (Post Run) 300 ˚C. Sample volume of 2 μL was

injected at heater on 250 ˚C using helium as a carrier gas in a split-less mode. The pressure was

maintained at 11.747 psi at 24.4 mL/min total flow. Calibration curves were constructed using

standard stock solutions that were prepared from a stock concentration of 1000 ppm for acetic

acid, propionic acid, butyric acid, i-butyric acid, n-valeric acid and i-valeric acid.

Histological analysis

Two-centimetre tissue samples were collected from the ileum (mid-section), fixed in 10% (vol/

vol) buffered formaldehyde for approximately 72 h, followed by dehydration in graded alcohol,

and embedded in paraffin. The 5 μm sections were cut using a microtome and stained with

hematoxylin and eosin (H&E) stain following Samanya and Yamauchi [44]. Histological

images were scanned using a Nikon Eclipse Ni-U microscope with a camera (Nikon, Tokyo,

Japan) at magnifications of (4x, 10x, 40x). Histomorphometric indices included villi height,

villi width, and total villi area was estimated based on a minimum of 10 well-oriented longitu-

dinal villi were assessed per intestinal section of the small intestine per bird using an IX71

Inverted Olympus Microscope (eyepiece: WH10x; objective lens: 4x), digitalized using image

(Olympus DP72 microscope digital camera (Olympus NV, Aartselaar, Belgium) and analyzed

using CellSens digital imaging software for research application) tools. Morphometric analyses

were performed from six individual birds as replicates per treatment group. Villus height and

width data were used to calculate villus surface area using the formula:

Villus Surface Area : ½2p� ðvillus width=2Þ � villus length�

Macroscopic intestinal lesion scores

Inspection of broilers carcasses for necrotic enteritis (NE) lesions in the duodenum, ileum,

and jejunal regions of the intestine was performed using the grading method described by

Gholamiandehkordi et al., [45]. The lesions were graded from 0 to 3 based on their severity.

Grade 0 = clear intestine with no lesions, 1 = focal necrosis with ulceration, 2 = patches of

necrosis from 2 to 3 centimeters’ long, and 3 = diffuse necrosis representative of field cases.
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Collected data was evaluated using ANOVA for a complete randomized block design, using

the general linear models (GLM) procedure of SAS software (SAS, 2009). Least significant dif-

ference (LSD) test was applied to compare the treatment groups means when the treatment

effect was significant at P-value<0.05. Both histological analysis and lesion grading were done

by the same histopathology expert who was blinded to the treatments and had only bird num-

ber ID associated with the slide or tissue sample.

Ethics statement

The study was approved by the Research Ethics Committee, Deanship of Scientific Research,

Vice-Rectorate for Graduate Studies & Scientific Research at King Saud University project

approval number KSU-SE-18-38. All methods were performed in accordance with the

Gloucestershire County Council’s (GCC) Animal Welfare Act endorsed by Saudi Arabia and

were approved in Royal Decree No. (M / 44). The birds were euthanized by quick decapitation

away from the other birds.

Results

Effect of dietary treatments on growth performance

Mortality was present only in NE challenged treatments, T2: positive control (NE challenge)

with 9 mortalities and T4 (B. subtilis probiotic and NE challenge) with 4 mortalities. Neither

T1 (no NE, no B. subtilis) nor T3 (B. subtilis only) had any mortalities. Broiler’s growth perfor-

mance was calculated and analyzed following different stages of the trial; pre-infection (0-

21d), NE (21-28d), post-infection (28-35d), and cumulative performance (0-35d) (Table 1).

During the pre-infection period, there was no significant difference between all groups

(T1-T4) in all measured parameters. Significant variation was observed in NE period where

birds belonging to T2, T4, and T3 had the highest FCR values respectively (1.55.6, 1.542,

1.473) (P = 0.003); however, probiotic supplementation did not significantly improve FCR in

challenged birds as no significance between T2 and T4 was seen. Following the post-infection

period, FCR exhibited highly significant variations (P = 0.0001), with negative control (T1)

and B. subtilis PB6 based-probiotic (T3) showing the lowest FCRs. Birds in NE challenge (T2)

had the highest FCR value. Noteworthy, birds that underwent NE challenge and had their diet

supplemented with B. subtilis PB6 (T4) showed significantly lower FCR compared to NE chal-

lenged without probiotic supplementation. This difference was observed only in the post-NE

period. Overall, the highest final body weight values were observed in B. subtilis PB6 based-

probiotic (T3), followed by T1, while the lowest values were scored in T2 and T4 (P = 0.042).

Effect of dietary additives on ileum histomorphological measurements

The impact of different nutritional additives on ileum histomorphometric measurements,

including villus length, width, and surface area in broiler chickens at (40 d) are presented in S2

Table. Positive control group T2 (C. perfringens challenge) represented the narrowest villi,

wherein, the largest average villi width (88.8 μm), was observed in T3 (B. subtilis PB6 based-

probiotic; B. subtilis) (P = 0.052). Figs 1 and 2 represent the histopathological changes observed

in the ileum from positive control group T2 (NE challenged) and T4, B. subtilis supplemented

/NE challenged group. Birds that were challenged with NE (T2) exhibited multiple mild micro-

scopic presentations of necrotic enteritis starting with disorganized villi with fusion and flat-

tening, infiltration of lymphocytes and polymorphonuclear cells, crypt hyperplasia, edema,

separation of the epithelial cells from the basement membrane, various cells showing necrotic

cell death signs such as cytoplasmic vacuolization, karyorrhexis, nuclear pyknosis, and goblet
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Fig 1. Ileum photomicrograph of NE challenge (T2), (A) illustrating disorganized villi with fusion and flattening (blue

arrows), and (B) crypt hyperplasia (red arrows). (C) Edema spreading throughout the structure of the lamina propria

with the edematous spaces clearly defined by deposition of light pink stained material (black arrows), mild infiltration

of lymphocytes and polymorphonuclear cells (heterophil influxes) (thin red arrows). Noteworthy is a marked

separation of the epithelial cells from the basement membrane (thin black arrows). Several cells in the lamina propria

show signs of necrotic cell death, as well as enterocytes, show more advanced signs of necrosis such as cytoplasmic

vacuolization, karyorrhexis, nuclear pyknosis, and goblet cells metaplasia (thin blue arrows). Haematoxylin and Eosin

(H&E) stain.

https://doi.org/10.1371/journal.pone.0232781.g001

Fig 2. Ileum photomicrograph of broilers under NE challenge and B. subtilis PB6 probiotic supplementation (T4), (A)

Illustrating some separation and presence of necrosis coagulation on villus superficial tips (black arrow). (B) and (C)

Less inflammation and edema observed through the structure of the lamina propria, Broad and thickened villus tips

showing relatively tall organized intestinal villi (blue arrows).

https://doi.org/10.1371/journal.pone.0232781.g002
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cells metaplasia (Fig 1). However, broilers under NE challenge and probiotic supplementation

(B. subtilis) (T4) represented broad and thickened villus tips showing relatively tall organized

intestinal villi and necrosis coagulation present on superficial villus tips, with milder inflam-

mation and edema (Fig 2).

Effect of dietary supplements on intestinal lesion scores

The result of lesion scores in duodenum, jejunum, and ileum regions at 40 days is presented in

Table 2. Highly significant variations were observed across duodenum, jejunum, and ileum

sections, between T2 (NE challenged) and T4 (NE challenged and supplemented with B. subti-
lis) where T4 group had significantly lower intestinal lesions scores compared to T2 in duode-

num, jejunum and ileum (Table 2). There were no significant differences in lesion scores in

other group comparisons.

Overview of microbiota structure

Overall microbiota of birds used in this trial was characterized by the dominance of five major

phyla, where Firmicutes was the most dominant, followed by a high number of sequences

assigned to Bacteroidetes, in addition to Actinobacteria, Tenericutes, and Proteobacteria (S1

Fig). Among classified culturable genera, cecal microbiota profile was composed mostly of

high abundance of Faecalibacterium (approximately 40% of total reads), and Ruminococcus
followed by Oscillospira, Coprococcus, Bacteroides, Lactobacillus, Blautia, Eubacterium, Dorea,

Coprobacillus, and Eggerthella. The remaining identified microbes were unclassified and

unculturable genera, as shown in S1 Fig.

Influence of probiotic supplementation and NE challenge on broilers cecal

microbiota composition

We performed 2-way PERMANOVA analysis with 99999 permutations at a phylum, genus

and OTU level. The tables with a direct screen capture of Primer 7e outputs that include details

of both analysis and results are given in S3A–S3C Table at a phylum, genus and an OTU level.

At a phylum level, NE challenge (P = 0.011) and interaction between probiotic supplementa-

tion and NE challenge (P = 0.034) were significant while the effects of B. subtilis probiotic addi-

tive were not (P = 0.42). At the genus level, there were no significant differences; however, NE

challenge was marginally affected (P = 0.064). At an OTU (most comparable to species) level,

NE challenge (P = 0.0079) and interaction between probiotic supplementation and NE chal-

lenge (P = 0.032) were significant while the effects of B. subtilis probiotic additive were mar-

ginal (P = 0.065).

Table 2. Effect of B. subtilis supplementation and C. perfringens challenge on intestinal macroscopic necrotic

enteritis lesion scores (0–3) of broilers at 40 d.

Treatment group Macroscopic NE Lesion Scores (points)

Duodenum Jejunum Ileum

T 2: Positive Control, C. perfringens Challenge 1.86a 1.21a 1.07a

T 4: B. subtilis, C. perfringens Challenge 0.86b 0.40b 0.50b

SEM1 ±0.188 ±0.158 ±0.108

p-Value 0.0001��� 0.0001��� 0.0001���

1 SEM: standard error of the mean ab Means values within a column with different superscripts are significantly

different �, P <0.05; ��, P <0.01; ���, P <0.001, NS, not significant.

https://doi.org/10.1371/journal.pone.0232781.t002
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In addition to 2-way PERMANOVA that allows for an investigation of factors interaction,

we performed other multivariate analysis such as RDA that allows visualizing of the group to

group similarity as well as providing a measure of the significance of each factor but not their

interactions. RDA illustrated significant variations in microbiota composition at a phylum

level between the four selected treatment groups (P = 0.002) with no significant influence

of probiotic on the microbiota composition (P = 0.227). However, a significant difference

(P = 0.019) was observed between NE challenged (T2 and T4) and NE unchallenged birds (T1

and T3). At the genus level, the RDA analysis showed significant variability in the microbiota

between the 4 groups (P = 0.039) and NE challenge effect (P = 0.02). Finally, at an OTU level,

multivariate RDA analysis indicated a significant variation between the treatment groups

(P = 0.029) and in the NE challenge (P = 0.011). As in 2-way PERMANOVA, there were no

significant differences in microbiota due to the presence of a probiotic supplement at any of

the taxonomic levels (Fig 3).

Comparing the alpha diversity showed that no significant differences were observed

between the 4 treatments inspecting various diversity matrices such as Shannon, Richness,

Chao1, Evenness, and Simpson indexes. Moreover, when we separated the birds into two cate-

gories based on whether they received B. subtilis probiotic as a dietary supplement (T3 and T4)

or not (T1 and T2), we also observed no significant differences. However, when we investi-

gated the influence caused by NE challenge on diversity (T1 and T3), we found that broilers

inoculated with the pathogen had significantly lower Richness (P = 0.047) while it did not

affect other parameters (S2 Fig).

We then proceeded to investigate the individual influence of taxa at these different taxo-

nomic levels (phylum, genus, and OTU) using one-way ANOVA test between the four treat-

ment groups, illustrating that major differences were caused by changes in Firmicutes and

Bacteroidetes phyla (P = 0.0075 and 0.02, respectively). There was an increase in Bacteroidetes

at the expense of Firmicutes, and marginally decreased Actinobacteria in challenged groups

(Fig 4). Comparing probiotic administered groups (T3 and T4) to non-supplemented groups

(T1 and T2) revealed a significant decrease in the phylum Proteobacteria (P = 0.019).

At the genus level, the abundance of Dehalobacterium was significantly higher in control

group T1 (P = 0.0028) while Dorea, Bacteroides, Eubacterium, Caldanaerocella, and Enterococ-
cus were increased in challenged birds (T2 and T4). Probiotic supplemented groups showed a

decrease in Dorea, Ruminococcus, and several unclassified genera (T1 and T3) (Fig 5). Linear

discriminant analysis and effect size method (LEfSe) singled out the genera that are most likely

to describe the differences between groups (S3 Fig).

Dietary supplementation and bacterial challenge influence on short-chain

fatty acid production

There was a significant increase in cecum propionic acid with C. perfringens challenge (T2).

Both of the B. subtilis supplemented groups (T1 and T3) were characterized by a significant

rise in acetic acid concentration, while n-valeric acid was significantly higher in the control

group (T1). Further, B. subtilis administration was associated with a significant increase in

butyric acid (P<0.0001) (Fig 6).

Discussion

We performed an in-depth investigation of a promising AGP alternative, B. subtilis commer-

cial probiotic. B. subtilis supplementation demonstrated its capacity in improving bird’s per-

formance in the recovery stage following NE challenge. Dietary probiotics have previously

shown an association with increased broilers productivity, including improved body weight
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gain, better FCR, improved the intestinal morphological status, and decreased mortality [27,

46, 47]. The inhibitory capacity of B. subtilis PB6 against some enteric pathogens invasion in

chicken is well documented [48]. Our results are in agreement with Jayaraman et al., [49] who

reported that B. subtilis PB6 supplementation reduced FCR and improved body weight, espe-

cially in broilers challenged with C. perfringens. The supplementation with B. subtilis PB6

reduced NE intestinal lesion scores, which might be attributed to the production of previously

reported anti-clostridial factors produced by B. subtilis PB6 [48] and improved post-NE recov-

ery. Additionally, according to the data presented in Table 1, FCR was not different between

challenged (T2) and challenged with probiotic supplemented (T4) groups before or during NE

Fig 3. The treatment differences in cecal microbiota composition. Multivariate redundancy analysis RDA plots at a

phylum (P = 0.002), genus (P = 0.039), and OTU (P = 0.029) levels showing all 4 groups (left). RDA plots showing the

effect of NE challenge on broilers beta diversity at a phylum (P = 0.019), genus (P = 0.02), and OTU (P = 0.011) levels

(right). C. p: C. perfringens; CT: control groups.

https://doi.org/10.1371/journal.pone.0232781.g003

PLOS ONE Microbiota and Bacillus subtilis PB6 interactions in necrotic enteritis

PLOS ONE | https://doi.org/10.1371/journal.pone.0232781 June 18, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0232781.g003
https://doi.org/10.1371/journal.pone.0232781


Fig 4. Most significant univariate alterations observed at the phylum level at the end of the production cycle in

birds recovered from NE. C. p: C. perfringens; NC: non-challenged. Top four-bar boxes represent ungrouped data.

https://doi.org/10.1371/journal.pone.0232781.g004

Fig 5. Genera showing significant changes between the selected treatment set and in correlations with the

presence of NE challenge or probiotic administration, C.p: C. perfringens; NC: Non-challenged. Top four-bar boxes

represent ungrouped data.

https://doi.org/10.1371/journal.pone.0232781.g005

PLOS ONE Microbiota and Bacillus subtilis PB6 interactions in necrotic enteritis

PLOS ONE | https://doi.org/10.1371/journal.pone.0232781 June 18, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0232781.g004
https://doi.org/10.1371/journal.pone.0232781.g005
https://doi.org/10.1371/journal.pone.0232781


challenge, nor using total cumulative trial data. The significant difference existed only during

post-NE recovery period where probiotic supplemented challenged group had significantly

better FCR.

High richness estimates are associated with good health and indicate the availability of a

niche and nutrient resources for maintaining a large number of species. Wherein, decreased

richness and diversity of intestinal microbiota is considered as a risk factor for dysbiosis and

several gastrointestinal complications [50]. In the current trial, we observed a significant

decline in richness in birds under NE challenge, reflecting the negative effects on bird’s health

[51]. This reduction in richness was not ameliorated with B. subtilis substitution.

Both 2-way PERMANOVA and an RDA analysis agreed that B. subtilis supplementation

does not affect microbiota per se; however, significant PERMANOVA interactions indicate

that B. subtilis supplementation does have an influence on NE challenge induced changes in

the microbiota which are substantial at all taxonomic levels. Gram-positive Firmicutes phylum

harbors many health-promoting bacterial groups such as Lactobacillus and is recognized as a

primary pool of probiotic species [52] while also being a host of some pathogens, including C.

perfringens. Some members of gram-negative Bacteroidetes phylum are known for their ability

to degrade high molecular weight compounds such as carbohydrates and proteins, thereby

supporting the host in acquiring higher nutrients [53]. One of the major shifts observed in the

infected bird’s microbiota was a significant increase of Bacteroidetes and reduction of Firmi-

cutes, however, as both these phyla are predominantly beneficial commensals, the major effect

on this shift is inconclusive. B. subtilis supplementation significantly reduced pathogen-har-

boring phylum of Proteobacteria, which may have a major significance. The abundance of evi-

dence that expansion of Proteobacteria highly compromises the ability of the host to maintain

intestinal and overall health was explored to detail previously [54]. The study suggested that

increase in Proteobacteria should be used as a marker of dysbiosis, a pre-disease state of micro-

biota imbalance or maladaptation characterized by the lack of ability of the microbiota to con-

trol pathogen overgrowth and waste product accumulation. Our data demonstrate the ability

of B. subtilis to ease dysbiosis, which might be an additional benefit in a range of challenging

intestinal situations.

Fig 6. Effect of NE challenge and B. subtilis PB6 based-probiotic supplementation on six SCFA concentrations in

broiler chicken cecum. abc Means in the bar with different superscripts differ significantly. ns: not significant. Error

bars represent standard deviation (SD).

https://doi.org/10.1371/journal.pone.0232781.g006
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We observed a sharp decline in the abundance of Dehalobacterium, a novel, and underex-

plored genus, during the C. perfringens challenge. Dehalobacterium decrease was suggested as

a biological marker in patients at high risk of developing bloodstream infections in humans

undergoing chemotherapy [55]. However, the casual connection of Dehalobacterium reduc-

tion and the role it may play in the onset of NE warrants further investigation.

Chicken feed is mainly grain-based and fibrous, and cannot be completely metabolized by

the host. It has been reported that 20% of poultry intestinal microbiota functional genes were

associated with carbohydrate metabolism [56], resulting in the production of multiple SCFAs

in the chicken gut, primarily acetate, propionate, and butyrate [57]. Thus, SCFAs levels might

be used as an indication of health-related bacterial groups and a contributor to enhanced

chicken growth performance [58]. B. subtilis administration was found to be associated with a

significant increase in acetic acid and butyric acid concentrations (P<0.0001). Butyric acid has

been reported in several studies to be of considerable benefit in the bird’s energy status, growth

performance, and villus development [59, 60]. These reports support the data obtained in this

study where we observed an improvement in post-NE performance and increased surface area

of intestinal villus of probiotic-supplemented birds. Probiotic supplementation increased the

concentration of butyric acid in both challenged and not challenged supplemented groups.

Interestingly, Timbermont et al., [61] reported that supplementing chicken feed with butyric

acid contributed to the prevention of NE in NE challenged broilers, which could contribute to

the B. subtilis protective effect.

In conclusion, based on intestinal condition in NE recovered birds, our results demonstrate

that B. subtilis supplementation did assist the birds in dealing with NE outbreak long term

recovery. B. subtilis supplementation improved SCFA profile without causing major distur-

bance to microbiota. However, subtle changes to microbiota profile introduced by probiotic

supplement were beneficial with reduction of the major pathogen, disease and dysbiosis

related phylum Proteobacteria and with significant interaction and influence on the effects of

NE challenge on intestinal communities based on PERMANOVA interaction significance.

More research is suggested to further investigate the mechanisms involved.
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