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Abstract

Agent-based modeling of artificial societies allows for the validation and analysis of human-

interpretable, causal explanations of human behavior that generate society-scale phenom-

ena. However, parameter calibration is insufficient to conduct data-driven explorations that

are adequate in evaluating the importance of causal factors that constitute agent rules that

match real-world individual-scale generative behaviors. We introduce evolutionary model

discovery, a framework that combines genetic programming and random forest regression

to evaluate the importance of a set of causal factors hypothesized to affect the individual’s

decision-making process. With evolutionary model discovery, we investigated the farm plot

seeking behavior of the Ancestral Pueblo of the Long House Valley simulated in the Artificial

Anasazi model. We evaluated the importance of causal factors unconsidered in the original

model, which we hypothesized to have affected the decision-making process. Our findings,

concur with other archaeological studies on the Ancestral Pueblo communities during the

Pueblo II period, which indicate the existence of cross-village polities, hierarchical organiza-

tion, and dependence on the viability of the agricultural niche. Contrary to the original Artifi-

cial Anasazi model, where closeness was the sole factor driving farm plot selection,

selection of higher quality land, distancing from failed farm plots, and desire for social pres-

ence are found to be more important. Finally, models updated with farm selection strategies

designed by incorporating these insights showed significant improvements in accuracy and

robustness over the original Artificial Anasazi model.

Introduction

Exposing the mechanics of the human decision-making process that cause complex, society-

scale phenomena is a difficult endeavor. Decision-making processes are often driven by multi-

ple causal factors [1] with researchers having no direct means of measuring how these factors

contribute to society-scale phenomena. Abductive reasoning via data-driven modeling and
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simulation techniques can overcome these issues by ‘growing’ artificial societies [2] and adjust-

ing their configurations until adequate matches between simulation results and real world data

are achieved. Agent-based modeling (ABM) in particular, offers the benefit of representing

behaviors as human-interpretable rules. These rules are driven by the agent’s autonomous

evaluation of a variety of factors that are hypothesized by the modeler to be important in the

decision-making process being modeled, indicated by the ability of ABM to simulate real

world observations. However, a particular behavior rule only represents a single hypothetical

decision-making process contained within a large space of possible, alternate decision-making

processes. Exploring this vast space of rules requires the repeated re-implementation of multi-

ple versions of the same ABM with different embedded decision-making processes [3]; this is a

tedious task, involving the comparison of a massive number of combinations of causal factors.

Thus, researchers often resort to modeling the most intuitive decision-making processes, if not

process, which risks a subjective and inaccurate representation of the actual individual behav-

ior [4].

The current standard of ABM exploration, parameter calibration, is a black-box technique

and does not perform white-box rule exploration. Parameter calibration works on the assump-

tion of the correctness of a predefined rule and fine tunes the coefficients of its constituent fac-

tors, but cannot easily experiment with different structures and operators through which these

factors combine. Unless the importance of factors and how they are structured in the behavior

rule are established, the underlying behavior rule merely remains an untested hypothesis of

the actual individual behavior [2–4]. Parameter calibration tools are readily available for ABM

frameworks, such as BehaviorSearch [5] for NetLogo [6], and OptQuest [7] for AnyLogic [8].

Inductive games have been used to infer the decision-making of societies via game theory [9],

yet no established methodology exists for ABMs. As ABM rules are implemented as program

instructions, genetic programming [10] is a highly suitable technique for model discovery.

However, research into using genetic programming with ABMs for exploration of causality

has been limited [11–13].

To meet this need, we introduce evolutionary model discovery, a technique for agent rule

exploration and causal factor importance measurement, which combines the automated pro-

gram generation capability of genetic programming [10] with the factor importance evaluation

capability of random forest regression [14–19]. Unlike current standard techniques like pat-

tern-oriented modeling [3] and model selection [20], evolutionary model discovery has the

advantage of avoiding manual and repetitive re-implementation of models through automated

program generation, resulting in a greatly reduced risk of implementation errors. Agent rules

generated through genetic programming consist of functions of primitives that are easily com-

parable, as they follow a common representation. Using this representation, differences

between candidate models are isolated to the code implementing the decision under scrutiny,

to facilitate factor analysis and to avoid the need to compare two completely different imple-

mentations. The comparability of candidate models is important in drawing insights into the

causes of the society-level phenomena being simulated. The stochasticity of genetic program-

ming allows for the exploration of a vast space of possible agent rules, while selection of fitter

models for breeding the next generation of rules ensures the exploitation of stronger factor

interactions. Assumptions on agent behavior can be relaxed and rules with deeper factor inter-

actions evaluated. Genetic programming, random forest training, and factor importance eval-

uation are all easily parallelizable techniques, which is important considering the large search

space that can result even from a simple factor set.

In this study, we employ evolutionary model discovery to find causal factors that drive the

farm plot selection decisions of the Ancestral Pueblo community modeled in the Artificial

Anasazi model [21, 22]. The ABM simulates the population dynamics of the Long House
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Valley between the years 800 AD to 1400 AD during which there was a sudden population col-

lapse around 1350 AD. The original model demonstrated that this collapse was not caused by

environmental factors alone. The model is data driven and simulations attempt to match the

annual population time-series measuring households in the valley, which was estimated

through data gathered from archaeological digs [21]. The agents in the model represent house-

holds, and are dependent on the agricultural success of their farm plot for sustenance and

reproduction. The farm plot selection strategy originally implemented dictates that upon

depletion of a household’s current farm plot, the agent moves to the next closest available plot

of land. In other words, the sole factor influencing this decision is the minimization of distance

over the complete set of available plots of land in the valley.

We argue that this behavior does not capture the socio-agricultural decision-making of the

Ancestral Pueblo, which would have most likely been influenced by factors other than dis-

tance. Archaeological and paleoecological findings have suggested that during the Pueblo II

period (A.D. 890–1145) the Ancestral Pueblo organized into communities held together

through cross-village polities, governed in a hierarchical and non-egalitarian manner [23].

This is evidenced through power-law and log-normal distributions of settlement sizes, inter-

mittent power-law distribution in the Kiva (communal meeting sites, primarily used for cere-

monial and ritualistic practices) sizes, and inequality in the decoration and grandeur of burial

sites across the American Southwest at the time.

Evidence has shown that the periods of the Pecos classification [24], which defined the rise

and fall of successful Ancestral Puebloan communities, were characterized by phases of explo-

ration and exploitation [25]. During the exploration phases, locations suitable for farming

were scouted and different organizational forms were experimented with. A successful explo-

ration period would then result in a period of exploitation during which the discovered agri-

cultural niches were exploited and communities held together through ritualistic practices and

political force, particularly seen in the Great House system of Chaco Canyon during Pueblo II

[25].

Accordingly, we hypothesize that nine different factors and four different social structures

governing information flow may have driven the farm plot seeking behavior of the modeled

Pueblo society. Specifically, we hypothesize that the following factors could have had signifi-

cant importance: distance (FDist), dryness of the farm-land (FDry), quality of farm-land (FQual),
yield of the land in the previous year (FYield), water availability (FWater), social presence near

the potential farm land (FSoc), homophily by age (FAge), homophily by agricultural success

(FAgri), and inter-zone migration (FMig), under the following possible social connectivity con-

figurations: full information of the valley (SAll), information provided by family immediate

family members (SFam), information provided by the most productive households (SPerf), or

information from the nearest neighbors (SNhbr). We consider the coefficients of these factors

in the evolved agent behavior rules as the factors’ ‘presence’ in that particular behavior rule.

Each factor’s presence is then analyzed for its importance at predicting the ABM’s fitness

through feature importance analysis on a random forest trained on data generated by the

genetic program. Utilizing a random forest for this purpose allowed us to measure both main

effects of the factors’ presence and the joint contributions of factors towards the ABM’s fitness.

After identifying the most important factors, we determined the optimal presence for them.

With these insights we were able to construct causally accurate and robust farm selection

procedures.

Our results falsify the original assumption [21, 22] that closeness was the sole causal factor

governing farm plot selection of the Ancestral Pueblo society. Instead, evolutionary model dis-

covery reports the most important factors as quality, social presence, migration from zone, dis-

tance, and dryness in order of decreasing importance. In particular, the selection of higher
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quality land that either had a higher social presence or was located in a different zone was

shown to be more likely behavior and versions of the Artificial Anasazi with these farm selec-

tion strategies were significantly more robust against random initialization of parameters. Our

results indicate that the farm selection strategy was likely more human-like than that imple-

mented in original version of the model [21, 22].

Methodology

Farm plot selection in the Artificial Anasazi

The Artificial Anasazi is an agent-based model of the Kayenta Anasazi during the years of 800

AD to 1350 AD [21, 22]. This model was initially developed as part of a larger effort to study

the Ancestral Pueblo civilization that occupied the Long House Valley region. The ABM is

implemented in NetLogo [6, 22]. Archaeological excavations provide annual population time

series data as estimated counts of households that existed in the valley during the period of

study. The model attempts to match the historical population timeseries with its simulated

household count. Annual data on water sources and estimated soil dryness (Adjusted Palmer

Drought Severity Index) for each grid location on the map are provided. The model used a

normal distribution to map relative quality of soil over the map. The agent-based model simu-

lates the rise and fall of households over a geographic map of the valley over time and produces

a time series of annual household count. The original purpose of the Artificial Anasazi was to

test if environmental factors could have triggered the sudden disappearance of the Anasazi

from the Long House Valley around 1350 AD.

Critics of the Artificial Anasazi have argued that the agent-based model itself is but a single

candidate explanation of the social phenomenon at hand, the rise and fall of the Anasazi popu-

lation over time [4]. However, we view this as an advantage as the Artificial Anasazi can be

used as a test-bed to discover multiple plausible explanations of the population dynamics of

the Long Valley at the time. Testing combinations of hypothesized factors that may have influ-

enced actual decision-making processes of the individuals results in a vast search space of plau-

sible Artificial Anasazi behavior results. In particular, the individual-scale behaviors modeled

lack social factors and agricultural awareness, which could have generated the complex, hierar-

chical societies that have been shown to have existed in during the simulated period in the

American Southwest, by the Village Ecodynamics Project and studies that followed [23, 25–

27]. Societal complexity and hierarchical organization peaked during the Pueblo II (A.D. 890–

1145) period and gradually faded through the Pueblo III period (A.D. 1145–1285) [23], which

coincides with the period simulated by the Artificial Anasazi (A.D. 800–1350), making it cru-

cial to consider social factors and agricultural awareness when modeling the individual-scale

behaviors.

We concentrated on a particular sub-model of the Artificial Anasazi: the farm plot selection

strategy. The households perform farm plot selection under two conditions: 1) when a new

child household is hatched by a household that has enough resources to increase its family

size, or 2) when the current farm plot is unable to produce enough yield to satisfy the nutrition

needs of the household anymore. The original model, hypothesizes that the households simply

selected the next closest available farm plot to the household’s current farm plot during farm

plot selection, i.e., minimizing over distance. A patch must be free of farms or households and

not be located inside a water body to be available. Consequently, the original farm selection

strategy ignores other sensory data available to the households regarding the land and the state

of other households in the valley.
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Hypothesized alternate factors influencing farm plot selection

Human social behavior is rarely entirely rational. Accordingly, our hypothesis proposed that

the farm selection decisions of the Ancestral Pueblo were complex, and took into account the

state of the potential farm plots available to them and the social influences of other households

around them. Agent_Zero [2] models the human decision making process into three dimen-

sions: social, emotional and rational. Similarly, we defined factors that we hypothesized to

influence the farm plot selection process within these dimensions. The social component is

expressed through four mutually exclusive social connectivity configurations through which

the agent could receive information on a subset of potential farm plots, s, out of the entire set

of potential farm plots in the valley, SAll. The received information is then processed through a

utility function f(x) defined as a combination of factors and operators, F, which consider both

the internal state of the household and the conditions of the farm plot and its surroundings in

order to determine the next farm plot x0 2 s� SAll as in Eq (1).

x0 ¼ argmax
x2s�SAll

f ðxÞ ð1Þ

Households in the original Artificial Anasazi model consider a single factor, distance,

which we will refer to as FDist, and choose the potential farm plot with minimal distance to

their current farm location. No further factors are considered in the decision making process.

Furthermore, the original model assumes that the households have complete information of

the valley, and every potential farm plot is compared. Therefore, the farm selection process of

the original Artificial Anasazi can be represented as in Eq (1).

x0 ¼ argmax
x2SAll

ð� FDistðxÞÞ ð2Þ

Arguing that the farm selection decision may have been more complex, considering a vari-

ety of other factors, we proposed an extended factor set consisting of four social and five ratio-

nal factors, namely: homophily by age (FHAge), homophily by agricultural productivity (FHAgri),
social presence (FSoc), migration from current zone (FMig), comparison of quality (FQual),
comparison of dryness (FDry), comparison of yield (FYeild), comparison of water availability

(FWater), and comparison of distance (FDist). Additionally, the numerical operators + and − are

included in F, for the aggregation of sub-scores reported by the social/emotional and rational

factors.

Four hypothesized configurations of social connectivity were included F. These configura-

tions determined the subset of all viable farm plots that were to be considered by the house-

holds for comparison. 1) Full information (SAll): Households had complete knowledge of all

potential farm plots in the valley. Full information was used by agents in the original version of

the model, assuming that each household knew and compared every potential farm plot in the

Long House Valley. 2) Family inherited information (SFam): Households solely depended on

information available through their ‘family’. Families are defined as a household’s parent

household, sibling households, any surviving grandparents, and the household itself. 3) Near-

est-neighbor information (SNeigh): agents only consider the farm plots known to their neigh-

boring households within a fixed radius of their current location. 4) Best performers SPerf:
Households only consider potential farm plots known to the best performing households,

demonstrating a leadership dynamic.

Four social/emotional factors were included in F: two types of homophily (the tendency for

social entities to congregate among those with similar traits), need for social presence, and one

of fleeing/migration. Each social/emotional factor returned a sub-score representing the
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desirability of each evaluated farm plot. Sub-scores were normalized within the factors, to lie

in the range of 0 to 1, for fair comparison. 1) Homophily by age (FHAge): Households prefer to

select farm plots near other households that are of similar age, where age is measured as the

number of simulation steps the household has survived since splitting from its parent. 2)

Homophily by agricultural productivity (FHAgri): Households tend to select farm plots near

other households with a similar corn stock to itself. 3) Social presence (FSoc): Agents score

potential farm plots with many nearby households higher than those in isolation. 4) Fleeing/

migration (FMig): Agents score potential farm plots that are in a completely different zone than

the current one with a full sub-score, while patches in the same zone receive a sub-score of

zero.

Five Rational factors considered for the farm selection process were logical comparisons of

sensory data on the potential farm plots already available to the households in the original

model. Similar to the social/emotional factors, rational factors also returned a normalized sub-

score of farm plot desirability between 0 and 1. 1) Comparison of quality (FQual): Higher sub-

scores were reported for potential farm plots with higher quality of land. 2) Comparison of

dryness (FDry): Higher sub-scores were reported for potential farm plots with higher dryness of

land. 3) Comparison of yield (FYeild): Higher sub-scores were reported for potential farm plots

that were known to have higher yield in the previous year. 4) Water availability (FWater):

Higher sub-scores were reported for potential farm plots with more nearby water sources. 5)

Comparison of distance (FDist): Higher sub-scores were reported for potential farm plots that

were closer to the current farm plot location.

Evolutionary model discovery

Evolutionary model discovery allows agent-based modelers to explore the importance of a

hypothesized set of factors affecting individual-level decision making towards a macro, soci-

ety-level outcome. Accordingly, evolutionary model discovery requires the modeler to identify

the particular agent behavior rule being evaluated within the original agent-based model. The

modeler must also provide a set of hypothesized factors and combining operators that the

modeler hypothesizes to affect the decision-making process represented by the agent behavior

rule.

A factor Fi 2 F, where F is the modeler’s set of hypothetical factors and operators, is defined

as in Eq (3). Where C is the set of commands defined within F that are applied on the n num-

ber of input parameters P to produce an output return value R, where the type of each parame-

ter tPj and the type of the return value tR are each an element of the set T of all possible

parameter and return types defined by the modeler. A factor is considered an operator if C
resembles an operation on one or more factors, which it accepts as parameters, rather than

resembling a decision-making step. In order for a factor or operator Fi to accept another Fj as

an input, the condition Eq (4) must be met.

Fi ¼ ðC;R; P j tR; tPk 2 T 8k ¼ 1 . . . nÞ ð3Þ

9k; tRfi ¼ tPfj ;k ð4Þ

An agent behavior rule b 2 B is represented as a tree of factors combined under this condi-

tion. Depending on T and the factor definitions, the space of behavior rules B can be infinitely

large. To prevent the construction of such undesirably large trees, we specify a maximum

depth for all b. There must be at least one Fi of which tRFi is the return type expected by the

entire agent behavior rule.
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Given the ABM and F, evolutionary model discovery performs two stages of analysis. First,

models driven by alternate decision making processes consisting of combinations of elements

of F are evolved through genetic programming [10, 28, 29]. Genetic programming performs

automated program implementation and is a suitable approach towards automating the rule

discovery process [11–13, 30]. Genetic programming evolves generations of programs through

crossover and mutation operators performed on a representation consisting of primitives and

terminals that combine to define program statements. Primitives are defined as a set of func-

tions that encode program statements and may be strongly typed to only accept child and par-

ent primitives that are compatible with the arguments and return statements accepted by its

program statement. Primitives with no arguments are considered terminals. The syntax tree

representation is perhaps the most common representation used in genetic programming, and

arranges the primitives and terminals into a tree structure, a representation compatible with b.

Programs in a generation that have a closer fit to data are more likely to be selected for repro-

duction through crossover and mutation to populate the next generation of programs.

Second, factor and factor interaction importance was assessed by random forest feature

importance measurement. A random forest regressor was trained on the factor presence to fit-

ness data produced by the genetic program. Random forests are an ensemble learning algo-

rithm consisting of a forest of randomized decision trees [14–16]. The two most common

factor importance measurement techniques for random forests are gini importance (or mean

decrease in impurity), and permutation importance (or mean decrease in accuracy) [14–16].

However, both gini importance and permutation importance are unable to quantify the

importance of factor interactions, as they consider the global importance each factor has for

the random forest. Functional analysis of variance [19, 31] is able to quantify the importance

of factor interactions, yet lacked precision considering the inherent heteroskedasticity of the

data produced by the genetic program, caused by its tendency to explore and test models of

higher fitness. Instead, joint contribution [17, 18] was used for this purpose as it has been suc-

cessfully used to assess the importance of variable interactions in a large number of recent

studies [32–38].

Twenty genetic programming runs were executed with the objective of minimizing the

(RMSE) between the simulated household count to the actual household count over 550 simu-

lation ticks of the Artificial Anasazi. Details on the RMSE calculation can be found in [13]. In

order to ensure robustness of the evolved rules, the parameters of the ABM were randomly ini-

tialized with values ±5% about the optimal parameter values found through Stonedahl’s cali-

bration of the Artificial Anazasi through a genetic algorithm [5] (ie: water source distance =

(10.925, 12.075), death age span = (9.5, 10.5), min fertility = (0.1615, 0.1785), base nutrition

need = (175.75, 194.25), fertility span = (0.0285, 0.0315), min fertility ends age = (27.55, 30.45),

harvest variance = (0.418, 0.462), harvest adjustment = (0.608, 0.672), maize gift to child =

(0.4465, 0.4935), min death age = (38.0, 42.0), fertility ends age span = (4.75, 5.25)). The

genetic program was implemented with the Distributed Evolutionary Algorithms in Python

library (DEAP) [39] and parallelized by SCOOP [40]. Each genetic program run was executed

for 100 generations over populations of 50 individuals. Syntax trees of minimum depth 4 and

maximum depth 10 were used to avoid trees exhibiting bloat. The Half-and-Half tree builder

was used for initialization [10]. To accommodate the high computational cost, the genetic

program runs were distributed across a 48 vcpu Amazon Web Services EC2 instance. The ran-

dom forest and gini importance algorithm of Scikit-learn [41] were used, while ELI5 [42] was

used for permutation accuracy importance, and tree interpreter [18] for joint contribution

measurement.

Finally, new farm selection strategies were designed taking into account the insights gained

through evolutionary model discovery. The robustness of the Artificial Anasazi with these new
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strategies were tested against the original model by comparing the RMSE of 100 runs of each

model under randomized initialization of parameters within the ranges above.

Results

The resulting best farm selection strategies evolved by the genetic program by run are provided

in Table 1 along with their respective RMSE values. 15 of the runs produced RMSE values

lower than the current best RMSE in the literature obtained through parameter calibration of

the Artificial Anasazi model with the original farm plot selection by closeness (733.6) [43]. All

best scoring rules for each run utilized SAll, i.e., the model produced best results when the

agents had full information regarding available farm plots as shown in Fig 1, comparing SAll,
SFam, SNeigh, and SPerf over the complete factor presence to fitness data. One-tailed Mann-Whit-

ney U tests comparing the fitness of all rules by their social connectivity configurations con-

firmed that rules with SAll had significantly (α = 0.05) lower RMSE than the other three

Table 1. The candidate farm selection strategies of models produced by the evolutionary model discovery process

along with their best fitness as reported by the genetic programming search.

GP Run Best scoring rule Best Fitness

0 argmax
x2SAll

ðFMigðxÞÞ 753.430820

1 argmax
x2SAll

ð� FDistðxÞ � FDryðxÞ þ 2 � FMigðxÞÞ 755.270812

2 argmax
x2SAll

ðFYieldðxÞ þ FHAgriðxÞÞ 709.502643

3 argmax
x2SAll

ðFMigðxÞ � FHAgriðxÞÞ 738.949931

4 argmax
x2SAll

ðFMigðxÞÞ 730.475188

5 argmax
x2SAll

ðFDistðxÞÞ 752.519767

6 argmax
x2SAll

ðFDistðxÞÞ 728.293210

7 argmax
x2SAll

ðFYieldðxÞÞ 714.205153

8 argmax
x2SAll

ðFDistðxÞ � FDryðxÞÞ 734.249957

9 argmax
x2SAll

ð4 � FDistðxÞ þ FDryðxÞ þ FQualðxÞ þ FWaterðxÞ þ FSocðxÞ þ FHAgeðxÞÞ 701.208243

10 argmax
x2SAll

ðFDistðxÞ þ FQualðxÞ þ FWaterðxÞ � FYieldðxÞ þ FMigðxÞ þ FSocðxÞÞ 720.281195

11 argmax
x2SAll

ðFMigðxÞÞ 723.633194

12 argmax
x2SAll

ðFDistðxÞ þ FQualðxÞ þ 2 � FYieldðxÞ þ 2 � FMigðxÞ þ FSocðxÞ þ FHAgriðxÞÞ 687.122260

13 argmax
x2SAll

ðFDistðxÞ þ FSocðxÞÞ 732.189183

14 argmax
x2SAll

ðFQualðxÞÞ 728.772255

15 argmax
x2SAll

ðFQualðxÞÞ 706.282521

16 argmax
x2SAll

ðFDistðxÞ þ 2 � FQualðxÞ þ FYieldðxÞ þ FSocðxÞ þ 3 � FHAgeðxÞÞ 715.957401

17 argmax
x2SAll

ðFMigðxÞÞ 715.468378

18 argmax
x2SAll

ð� FDistðxÞ þ FSocðxÞ � FHAgriðxÞÞ 701.438522

19 argmax
x2SAll

ðFQualðxÞ þ FMigðxÞ þ FSocðxÞÞ 701.300934

https://doi.org/10.1371/journal.pone.0239922.t001
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configurations: argmaxx2SAll f ðxÞ < argmaxx2SFam f ðxÞ (p = 2.045 × 10−113), argmaxx2SAll f ðxÞ <

argmaxx2SNeigh f ðxÞ (p = 4.856 × 10−154), argmaxx2SAll f ðxÞ < argmaxx2SPerf f ðxÞ (p = 1.983 × 10−57).

Also, rules with SNeigh were shown to have significantly (alpha = 0.05) lower RMSE than those

with SFam and SPerf: argmaxx2SNeigh f ðxÞ < argmaxx2SFam f ðxÞ (p = 3.535 × 10−14),

argmaxx2SNeigh f ðxÞ < argmaxx2SPerf f ðxÞ (p = 2.339−24). Finally, rules with SFam were shown to

have significantly (alpha = 0.05) lower RMSE than rules with SPerf: argmaxx2SFam f ðxÞ <

argmaxx2SPerf f ðxÞ (p = 0.012). Accordingly, the rest of the analyses detailed in this paper were

performed on rules where the social connectivity configuration was SAll.
Fig 2 displays the distribution of RMSE against factor presence, for presence values that

were recorded in at least 200 rules across the 20 genetic program runs. Negative correlations to

RMSE (higher fitness) were seen between FDist, FQual, FWater, FYield, FMig, FSoc, and FAge, and in

general the genetic program favored the positive presence of these factors, and evolved more

rules with these factors having a positive effect on farm selection. FDry on the other hand had a

negative correlation to RMSE for presence less than 2.

The random forest fit the factor presence to fitness data best for a forest of 520 regression

trees, testing from 10 to 1000 trees with a train/test split 90%-10%. Accordingly, a forest of 520

trees was used for factor importance determination. Factor importance under SAll obtained

Fig 1. Best fit to data was obtained under SAll. Comparison of the RMSE produced by the Artificial Anasazi model when agents had full information (SAll),
information through family households (SFam), information through the households with most agricultural success (SPerf), or information through neighboring

households (SNeigh). Models that used SAll produced the lowest RMSE overall argmaxx2SAll f ðxÞ < argmaxx2SFam f ðxÞ (p = 2.045 × 10−113), argmaxx2SAll f ðxÞ <
argmaxx2SNeigh f ðxÞ (p = 4.856 × 10−154), argmaxx2SAll f ðxÞ < argmaxx2SPerf f ðxÞ (p = 1.983 × 10−57).

https://doi.org/10.1371/journal.pone.0239922.g001
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through both the gini importance and permutation accuracy importance techniques can be

seen in Fig 3. Gini importance generally had less precise estimations than permutation accu-

racy importance. Yet both techniques indicated FQual as the factor of highest importance

towards RMSE prediction. FSoc, FMig, and FDist also scored higher importance values than the

other factors hypothesized. Fig 4 displays the p-values of one-tailed Mann Whitney U tests

(alpha = 0.05), comparing the permutation importance of each factor A against every other

factor B, testing the alternate hypothesis: importance of A> importance of B. According to

the results, 7 of the 9 factors showed significant difference and could be ordered in terms of

permutation accuracy importance as FQual, FSoc, FDist, FMig, FWater, FYield, FHAgri, FHAge, and

FDry.
Fig 5 compares the top ten joint contributions towards RMSE prediction of the random for-

est by individual factors, and joint contributions of factors considered in pairs and triples.

Again, FQual demonstrated far higher importance than any other factor or factor interaction.

The factor pairs (FQual, FMig) and (FQual, FSoc) also demonstrated high importance, followed by

(FQual, FMig, FSoc), (FDry, FQual, FMig), and (FDist, FQual, FSoc). Overall, FQual was present in all

highest scoring joint contributions. Despite FDry having very low individual importance, FDry
showed higher importance when considered in combination with FQual and FMig.

Considering the evidence of FQual, FSoc, FMig, FDist, and FDry as important factors, Fig 6 dem-

onstrates Mann Whitney U tests conducted for each factor Fi, for the alternate hypothesis that

Fig 2. RMSE vs factor presence under SAll. RMSE distributions by factor presence produced by evolutionary model discovery of the farm selection strategy of

the Artificial Anasazi under SAll. Only presence values that appeared at least 200 times in the genetic program are displayed. Most factors displayed negative

correlations to RMSE, while FDry showed a positive correlation.

https://doi.org/10.1371/journal.pone.0239922.g002
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RMSE when presence of Fi was A, is less than the RMSE when presence of Fi was B in rules

with SAll. Models with positive presence of FQual, FSoc, FDist, and FMig showed significantly

higher fitness (with the exception of when presence of FMig = -2). Models with strong positive

or negative presence of FDry showed lower RMSE overall, most likely a result of FDry’s interac-

tion with FQual, FSoc, or FMig. The lowest median RMSE for (FQual, FSoc) was 985 at presence of

FSoc at 5 and presence of FQual at; the lowest median RMSE for (FQual, FMig) was 997 at presence

of FMig at 3 and presence of FQual at 5.

Finally, rules following the three highest joint contributions were constructed using the best

values for each factor concerned: argmaxx2SAllðFQualðxÞÞ, argmaxx2SAllð5FSocðxÞ þ 6FQualðxÞÞ, and

argmaxx2SAllð3FMigðxÞ þ 5FQualðxÞÞ, and RMSE was compared against the original farm selec-

tion strategy argmaxx2SAllð� FDistðxÞÞ for 100 runs each under random initialization of parame-

ters within the ranges specified in section. Fig 7 shows that all three of these rules derived

through evolutionary model discovery had significantly lower RMSE than that of the original

farm selection strategy under randomized parameter initialization.

Discussion and conclusion

ABMs are an excellent tool for simulating and analyzing individual-scale, human-interpretable

explanations of complex social phenomena. However, the design of agent rules is at the model-

er’s discretion and may not accurately represent the decision-making strategies of the individ-

uals being modeled. Modelers may lack sufficient individual-scale data or observations

required to identify individual-scale causal factors, and fail to provide a complete and repre-

sentative design of the decision-making strategies at work. Treating the ABM as a black-

box and performing parameter calibration alone, cannot adequately explore the vast space of

possible interactions of causal factors and operators that may combine to form more realistic

Fig 3. FQual, FSoc, FDist, and FMig had highest gini and permutation accuracy importance. Gini importance and permutation accuracy importance of the

hypothesized factors towards a random forest’s ability to predict the models’ RMSE. Gini importance results were less decisive than permutation accuracy

importance. Both techniques agreed that FQual, FSoc, FDist, and FMig were the most important factors.

https://doi.org/10.1371/journal.pone.0239922.g003
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representations of the actual decision-making processes of interest. Instead, a white-

box exploration of the agents’ behavior rules must be performed, which treats the ABM as a

sandbox upon which different combinations of hypothesized causal factors and operators are

tested in order to identify important factors and their interactions. We address this issue with

the introduction of evolutionary model discovery, which is able to distinguish, out of a hypoth-

esized set of causal factors, those causal factors that are important towards the generation of

the behavior of interest and their role in the decision-making process. By combining auto-

mated program generation via genetic programming with feature importance evaluation via

random forests, evolutionary model discovery is able to quantify the importance and optimal

presence of these factors in the decision-making process that result in society-level phenomena

simulated by the ABM. This allows for the construction of agent rules that more accurately

represent the real-world decision-making process of individuals and result in more robust

models. In addition to discovering the Ancestral Puebloan socio-agricultural behaviors in this

study, evolutionary model discovery has been successful in exposing causal factors of several

agent-based models of complex social phenomena; these include factors driving residential

Fig 4. Statistical confirmation of the existence of order by importance among causal factors. Results from systematic Mann-Whitney U tests on the

permutation accuracy importance results. The cells contain p-values for the alternate hypothesis that A> B (null hypothesis A = B). Green cells indicate

agreement of the alternate hypothesis. The results indicated a clear ordering of the factors by importance.

https://doi.org/10.1371/journal.pone.0239922.g004
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Fig 5. FQual, [FQual,FMig], and [FQualFSoc] have highest joint contribution to farm plot selection. Ordered barchart of highest normalized joint contribution

scores of factors and interactions of three or less under SAll. Again, FQual showed a far larger contribution to the random forest’s ability to predict model RMSE

than other factors and factor interactions, and was present in all of the highest contributing interactions. Interactions [FQual, FMig] and [FQual, FSoc] also

demonstrated high joint contribution.

https://doi.org/10.1371/journal.pone.0239922.g005

Fig 6. Optimal presence scores for causal factors with highest importance. Results from systematic one-tailed Mann-Whitney U tests between presence values

of the 5 most important factors for the alternate hypothesis: RMSE for presence A< RMSE for presence B (null hypothesis: RMSE for presence A = RMSE for

presence B) for α = 0.05. Green cells indicate agreement of the alternate hypothesis. Results indicated that for FQual, FSoc, FMig, and FDist RMSE was generally lower

for higher, positive presence. For FDry, both negative and higher positive presence provided low RMSE scores.

https://doi.org/10.1371/journal.pone.0239922.g006
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segregation and integration, and factors governing the prioritization of response under infor-

mation overload on online social media [45].

Evolutionary model discovery provided several advantages in the discovery of individual-

scale behaviors in this study. Automation of rule design and model implementation through

genetic programming eliminated the likelihood of programmatic error under manual re-

implementation and made it possible to search the vast space of possible behavior rules. Being

an optimization algorithm, the genetic program identified and searched the space of relevant

behaviors thoroughly. The grammatical representation used ensured that hypothesized factors

were specified as multiple reusable, human-interpretable units of causality, which were then

easily analyzed. Both the genetic program and random forest were easily parallelized and run

on high-performance cloud computing environments. Finally, the random forest was compu-

tationally inexpensive, with the time complexity of training increasing linearly with the num-

ber of unique hypothesized factors evaluated [45]. There were some limitations to the use of

evolutionary model discovery in this study. It was assumed that the entire population of agents

embodied the same behavior rule. This made it unable to distinguish between archetypes of

individuals that might have embodied competing strategies. Additionally, evolutionary model

discovery did not perform a systematic selection of features by their ability to fit multiple pat-

terns organized in a hierarchical ordering of complexity, as recommended in pattern-oriented

modeling [3]. Finally, the ability to reproduce 2D spatial patterns of the households was not

tested as is typical of pattern-oriented modeling, which may have provided more insight into

formation of meso-scale aggregations and expose preferred locations of the simulated space.

Applying evolutionary model discovery on the Artificial Anasazi, we show that the socio-

agricultural behavior of the Ancestral Puebloans of the Long House Valley was more delibera-

tive and informed than assumed in the original Artificial Anasazi model. Instead, these results

concur with several other archaeological and paleoecological findings in the literature regard-

ing the Ancenstral Puebloan societies of the American Southwest during the Pueblo II period.

Fig 7. Models designed through evolutionary model discovery insights are significantly more robust. Comparison between the RMSE of 100 runs of three

models with farm selection strategies designed taking into consideration the insights from evolutionary model discovery, 1) argmaxx2SAll ðFQualðxÞÞ, 2)

argmaxx2SAll ð5FSocðxÞ þ 6FQualðxÞÞ, and 3) argmaxx2SAll ð3FMigðxÞ þ 5FQualðxÞÞ, against 100 runs of the original farm selection strategy argmaxx2SAll ð� FDistðxÞÞ in [21, 22,

43, 44], under random initialization of parameters. The three farm selection strategies derived from evolutionary model discovery were far more robust under

random parameter initialization and showed significantly better RMSE scores compared to the original model.

https://doi.org/10.1371/journal.pone.0239922.g007
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Bocinsky et al., highlight the importance of the viability of the agricultural niche for the growth

of rain-fed maize dependent Ancestral Pueblo communities [27]. Similarly, our results indicate

that, contrary to the original farm selection behavior of the Artificial Anasazi model, where

households would select the next closest possible plot of land once their present farm was

depleted, the households most likely selected potential farming land with higher soil quality

(FQual), an indicator of the viability of the agricultural niche in the area. Furthermore, instead

of choosing farm plots closer to the current, failed plot (−FDist), choosing farm plots that were

farther away from the household’s current, failed farm plot (FDist) or moving to a completely

different zone in the region (FMig) was found to be a more likely behavior. These results agree

towards a significant degree of awareness and consideration towards the viability of the agri-

cultural niche.

Bocinsky et al. discover that phases of exploration preceded the exploitation phase [25]. The

exploration phase would thus ensure that there was considerable knowledge of the region and

resource distribution among the communities when deciding their next farming location.

Interestingly, our results agree that it was highly likely that the households had near-complete

knowledge of the potential arable land throughout the valley, since SAll was the best social con-

nectivity configuration for information spread.

Archaeological studies show that the periods of exploitation were likely characterized by

cross-village polities, social organization, ritualistic practice, and political force [23, 25]. Simi-

larly, our results indicate the desire to congregate into communities was strong, as positive

desire for social presence (FSoc) was the second most important factor, and acting on informa-

tion on arable land known to neighboring households (SNeigh) was the second most successful

social connectivity configuration.

Overall, versions of the Artificial Anasazi where farm plot selection was driven by seeking

either higher quality land, higher quality land with more social presence, or higher quality land

in different zones, all proved to be significantly more robust than the decision to move to the

next closest available plot of land (Fig 7). An interesting extension of this work would be to

incorporate the decision-making strategies discovered in this paper into the agent-based

model of the Village Ecodynamics Project’s agent-based model, in order to test the generaliz-

ability of the behaviors found on the data of the Long House Valley used in the Artificial Ana-

sazi model to other Puebloan communities at the time.

Supporting information

S1 File. Evolutionary model discovery Artificial Anasazi. This archive contains the Evolu-

tionary Model Discovery Python source code. This Python package is also being actively main-

tained at: https://github.com/chathika/evolutionarymodeldiscovery and documentation is

available at https://evolutionarymodeldiscovery.readthedocs.io/en/latest/.

(ZIP)

S1 Table. Factor scores. Factor presence to model fitness data produced by the 20 genetic pro-

gramming runs on the Artificial Anasazi.

(CSV)
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