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Abstract

Sensor devices, such as accelerometers, are widely used for measuring physical activity (PA). 

These devices provide outputs at fine granularity (e.g., 10–100 Hz or minute-level), which while 

providing rich data on activity patterns, also pose computational challenges with multilevel 

densely sampled data, resulting in PA records that are measured continuously across multiple 

days and visits. On the other hand, a scalar health outcome (e.g., BMI) is usually observed only 

at the individual or visit level. This leads to a discrepancy in numbers of nested levels between 

the predictors (PA) and outcomes, raising analytic challenges. To address this issue, we proposed 

a multilevel longitudinal functional principal component analysis (mLFPCA) model to directly 

model multilevel functional PA inputs in a longitudinal study, and then implemented a longitudinal 

functional principal component regression (FPCR) to explore the association between PA and 

obesity-related health outcomes. Additionally, we conducted a comprehensive simulation study to 

examine the impact of imbalanced multilevel data on both mLFPCA and FPCR performance and 

offer guidelines for selecting optimal methods.
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1 ∣ Introduction

Accelerometer-based devices are commonly used to characterize physical activity (PA) in 

health behavior research, including in longitudinal studies and clinical trials [1]. These 

devices, such as Actigraph GT3X, are able to provide estimates at minute-level or even 
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Hz-level. In order to acquire sufficient information to characterize an individual’s typical 

weekly activity, participants are required to wear the device at least 10 h per day for 5–7 

consecutive days at each visit [2-6]. However, other characteristics, such as related health 

outcomes, are normally measured once per subject or visit. Therefore, the flexibility of 

accelerometer-based devices allows for a rich amount of data to be collected, but also 

brings challenges when more frequent high-dimensional PA data are acquired, yet outcomes 

are measured relatively infrequently. In this article, we aim to address this challenge. We 

propose a multilevel longitudinal functional principal component analysis (mLFPCA) model 

to address the case when PA is measured more frequently than related health outcomes in a 

longitudinal study.

The motivating dataset comes from the Metabolism, Exercise, and Nutrition at UCSD 

(MENU) trial, a 12-month behavioral intervention longitudinal study consisting of 245 

overweight nondiabetic women [5, 6]. PA was recorded with GT3X+ Actigraph monitors, 

set to collect data at 30 Hz [7], for about a week per subject at each clinical visit. Each 

day’s PA record for a subject and a visit is a densely and finely sampled function across 

the time interval. Therefore, these PA data are considered to have a three-level hierarchical 

structure under a longitudinal study design. Figure 1 displays an example of one subject’s 

daily PA records on three random days obtained at baseline, 6 and 12 months. Scalar 

health outcomes, such as body mass index (BMI), were acquired at subject and visit level, 

thus having a two-level structure. In fact, the study is one example of many biomedical 

studies, either having cross-sectional or longitudinal study designs, where the predictors 

are more frequently observed than the outcomes. The goal of this study is to explore 

approaches for analyzing studies with these types of unbalanced study designs, typically 

with accelerometer-measured functional predictors and scalar outcomes.

There are several existing statistical approaches for analyzing accelerometer data. The most 

common one is to derive algorithms that can translate the dense signals into summary 

metrics, such as total (or average) daily time spent being active or minutes of activity with 

varying intensities [8-10]. For instance, sedentary behaviors are defined as activity with 

less than 100 counts/min [11] and moderate to vigorous physical activity (MVPA) time is 

defined as minutes with activity counts >2020 [9]. As such, it is common in health behavior 

studies to retain the original input data but aggregate the daily inputs over a week to obtain 

weekly averages or summary statistics, such as the average daily intake of dietary fat [12] 

or minutes of PA [13]. As one example, Bürgi et al. [14] investigated the cross-sectional 

and longitudinal relationship of PA with body fat and other health outcomes for preschool 

children, using total PA, moderate PA and vigorous PA summarized from at least 3 days of 

PA recording. Although these metrics provide useful summaries of overall activity, they lose 

the ability to capture the correlation over time within a subject’s activity profile. Specifically, 

while this summary can provide a representation of an individual’s overall behavior, it 

ignores the temporal patterns of PA accumulation and inevitably results in some loss of 

information.

Functional data analysis (FDA) is a set of powerful statistical techniques for exploiting the 

rich and dense time-series accelerometer outputs such as the minute-by-minute temporal 

patterns of PA. As was summarized in Ramsay and Silverman [15], FDA treats a sequence 
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of observations, such as the daily activity profile curve in our case, as a single unit rather 

than disjoint minutes spent in varying types of activity. Advancements in FDA methodology 

and applications have increased over the last decade given the novel imaging and wearable 

sensor technologies that are now available. Works by Wang, Chiou, and Müller [16] and 

Shang [17] provide insightful and comprehensive reviews. Our proposed model is based on 

functional principal component analysis (FPCA), which is performed on densely-sampled 

PA data to obtain the principal directions of variation and achieve dimension reduction 

[18, 19]. Current studies of FPCA have extended its application in modeling multilevel 

functional data [20, 21], longitudinal functional data [22] and longitudinal associations with 

scalar outcomes [23, 24], based on the corresponding study design or data structure. Our 

previous works [25, 26] have implemented these methods on the MENU study. For example, 

Xu et al. [25] applied a two-level FPCA model and explored the cross-sectional association 

between extracted principal component scores and health outcomes. Lin et al. [26] further 

explored the longitudinal association by means of longitudinal FPCA modeling. However, 

neither of these approaches is optimal for the study design, since the PA data have repeated 

(daily) measures across multiple visits. The issue was previously addressed by taking the 

average of the daily records or selecting one single day at each visit, which may cause a 

loss of information within the corresponding level. Therefore, we propose the mLFPCA 

approach by extending the longitudinal FPCA model in Greven et al. [22] to accommodate 

the situation where additional levels of predictor inputs were observed in a longitudinal 

study.

Another research question of interest in this article is to assess the regression performance 

of functional predictors with health outcomes when functional predictors are measured 

more frequently than scalar outcomes. In data applications, models are often misspecified 

due to lack of background information or the preference for simplified models (e.g., 

taking averages or summary statistics of PA). In particular, misspecification may happen 

at the stage of model construction or data preprocessing. To our knowledge in the context 

of longitudinal multilevel functional data, no prior work has addressed the effects of 

misspecification on model performance, in both cross-sectional and longitudinal studies. 

In this paper, we provide a comprehensive investigation of this question using both 

mathematical derivation and simulation studies.

We organize this article as follows. Section 3 describes existing methods in the field of 

FPCA modeling, Section 4 then provides our proposed mLFPCA. Sections 5 and 6 illustrate 

the estimation procedure of our model and its comparison with misspecified models. Section 

7 shows the performance of our model and existing methods with extensive simulation 

studies. Section 8 presents the application of the multilevel longitudinal FPCA methods to 

the MENU study, Section 9 concludes the article with a discussion.

2 ∣ Notation

The observed PA records are functional data Xijk = {Xijk(t), t ∈ D}, which are random 

functions in L2[0, 1] measured at minute-level time t on a set of grid points D with length 

D, for subject i = 1, 2, … , n at visit j = 1, 2, … , ni and day k = 1, 2, … , nij. The total number 

of observations are denoted as I = ∑i, j nij and the number of observations for subject i is 
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Ii = ∑j nij. In general, this subject-visit-day structure can be extended to other types of data 

which have similar nested structures.

3 ∣ Overview of Existing FPCA Models

In this section, we summarize previous work by Di et al. [20], Greven et al. [21], and Shou 

et al. [22], to illustrate the development of FPCA models when more complex data structures 

were involved. In later sections, we also implemented these models in our simulation studies 

and compared them with our proposed method. FPCA plays an important role in FDA, 

whose basic purpose is to decompose the functional curves into principal directions of 

variation. For notational simplicity, we use Xi(t), Xij(t) and Xijk(t), t ∈ D, to denote the one-, 

two-, and three-level functional inputs, respectively, where the hierarchical structure of the 

data can be analogous to subject i, visit j and day k.

Assuming no measurement error, in the simplest one-level setting, Xi(t) can be represented 

as,

Xi(t) = μ(t) + Ui(t)

(1)

where μ(t) is the overall population mean function at t and Ui(t) is the subject-specific 

deviation from the overall mean function. Specifically, μ(t) is a deterministic function and 

Ui(t) are assumed to be i.i.d. stochastic processes with mean zero and covariance function 

KU(s, t) = cov{Ui(s), Ui(t)}. By Mercer’s theorem [27], the spectral decomposition is provided 

as KU(s, t) = ∑l = 1
∞ λlϕl

U(s)ϕl
U(t), where λ1 ≥ λ2 ≥ … are ordered non-negative eigenvalues and ϕl

U

are corresponding orthogonal eigenfunctions. Using the Karhunen–Loève (KL) expansion 

[28], Model (1) becomes Xi(t) = μ(t) + ∑l = 1
∞ ξilϕl

U(t), where ξil = ∫ Ui(s)ϕl
U(t)dt are uncorrelated 

principal component scores with mean zero and variance λl.

Di et al. [20] expanded the one-level FPCA model to a two-level FPCA when the data Xij(t)
are measured at both subject- and visit-level. The decomposition has the form

Xij(t) = μ(t) + Ui(t) + V ij(t)

(2)

where Ui(t) is the subject-specific (Level 1) deviation from the overall mean function and 

V ij(t) is the subject- and visit-specific (Level 2) deviation from the subject-mean function. 

It is assumed that Ui(t) and V ij(t) are uncorrelated stochastic processes with zero mean and 

continuous covariance functions. KU(s, t) = cov{Ui(s), Ui(t)} and KV (s, t) = cov{V ij(s), V ij(t)} are 

covariance functions for the above random processes. Therefore, the proposed two-level 

FPCA model extended the original FPCA methods to fit data with multilevel structure.

Greven et al. [22] further extended the two-level FPCA to longitudinal FPCA (LFPCA-lv2), 

analogous to a classical longitudinal model but in functional format, which has the form,
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Xij(t) = μ(t) + Ui0(t) + Ui1(t)T ij + V ij(t)

(3)

where Ui0(t) is the random functional intercept and Ui1(t) is the random functional slope 

for subject i, respectively, and T ij is the time at visit j for subject i, which can be either 

the visit indicator with T ij = j or a continuous time variable. One major difference between 

the longitudinal FPCA and multilevel FPCA is the construction of the subject-specific 

variation KU(s, t), which in the longitudinal setting is the covariance function between the 

bivariate process Ui(t) = (Ui0(t), Ui1(t)) and has two parts: the auto-covariance KU0(s, t), KU1(s, t)
and the cross-covariance KU01(s, t). By incorporating both the random intercept and slope 

processes, the longitudinal FPCA model can be considered as the longitudinal generalization 

of previous models.

Additional levels of data structure were considered by Shou et al. [21], referred to as 

structured FPCA or multilevel FPCA (MFPCA). Specifically, with three-level data Xijk(t), the 

three-way FPCA model decomposes the data into three parts, subject-specific process Ui(t), 
visit-specific process V ij(t) and day-specific process W ijk(t), which can be written as,

Xijk(t) = μ(t) + Ui(t) + V ij(t) + W ijk(t)

(4)

where Ui(t) is the subject-specific (Level 1) process, V ij(t) is the subject-visit-specific (Level 

2) deviation and W ijk(t) quantifies the daily (Level 3) deviation from the subject- and 

visit-mean function. Ui(t), V ij(t), and W ijk(t) are mutually uncorrelated random processes with 

mean zero and covariance functions KU, KV  and KW  respectively. Therefore, the variability 

of Xijk(t) is fully determined by processes Ui(t), V ij(t), and W ijk(t), that is, KX = KU + KV + KW . 

The MFPCA models provided a set of efficient tools to analyze data with any number of 

levels of nested designs.

We note that μ(t), the overall population mean in the models described in Equations (2), 

(3), and (4) could be generalized to a mean surface that incorporates the nested levels (e.g., 

μ(t, T ij) representing the mean surface over t and visit), but for simplicity we suppress this 

term, although it can be easily incorporated as needed when fitting models.

All of the above mentioned methods and related papers provided an extensive exploration 

of functional data with multilevel or longitudinal structures. However, these models do not 

address the issue where both longitudinal and multilevel (more than two levels) data coexist 

in the study. We proposed our mLFPCA model by extending the previously introduced 

FPCA models, for accommodating data structures that are common in health behavior 

studies (including our MENU study), that is, a longitudinal study with repeated day-level 

records, that is, day k at visit j, for each subject i. In the proposed model, we incorporated 

both subject-level random intercept and slope processes as longitudinal components, as well 

as uncorrelated visit- and day-level processes as additional hierarchical components.
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4 ∣ Multilevel Longitudinal Functional Principal Component Model

In this section, we describe the analytic details of the proposed mLFPCA model. Let 

Ui(t) = (Ui0(t), Ui1(t)), V ij(t) and W ijk(t) be mutually uncorrelated random processes with mean 

zero as described in Section 3.

We assume that Ui0(t) and Ui1(t) have covariance functions KU0(s, t) and KU1(s, t), respectively, 

and cross-covariance function KU01(s, t) with KU(s, t), representing the covariance function of 

Ui(t); V ij(t) has covariance function KV (s, t) and W ijk(t) has covariance function KW (s, t). The 

proposed mLFPCA model is,

Xijk(t) = μ(t) + Ui0(t) + Ui1(t)T ij + V ij(t) + W ijk(t)

(5)

which in fact is a natural generalization of the longitudinal FPCA and MFPCA models, since 

the proposed model simultaneously decomposes the multilevel data both longitudinally and 

hierarchically. Similarly, we obtain the KL expansion as,

Xijk(t) = μ(t) + ∑
l = 1

∞
(1, T ij)ξilϕl

U(t) + ∑
m = 1

∞
ζijmϕm

V (t) + ∑
r = 1

∞
ηijkrϕr

W (t)

(6)

where ϕl
U(t) = (ϕl

U0(t), ϕl
U1(t))′, ϕm

V (t), and ϕr
W (t) are the eigenfunctions of the covariance 

operators associated with the covariance functions KU, KV , and KW , with 

corresponding eigenvalues λl
U, λm

V , and λr
W , respectively. ξil = ∫ Ui0(s)ϕl

U0(s)ds + ∫ Ui1(s)ϕl
U1(s)ds, 

ζijm = ∫ V ij(s)ϕm
V (s)ds, and ηijkr = ∫ W ijk(s)ϕr

W (s)ds are uncorrelated random variables with mean 

zero and variance λl
U, λm

V , and λr
W , respectively. Since writing out an infinite expansion is not 

feasible, we consider finite-dimensional approximations of processes U, V , and W , such that 

most of the variability of each process is captured by the first NU, NV , and NW  principal 

components,

Xijk(t) = μ(t) + ∑
l

NU
(1, T ij)ξilϕl

U(t) + ∑
m

NV
ζijmϕm

V (t) + ∑
r

NW
ηijkrϕr

W (t)

(7)

5 ∣ Estimation

Having defined the mLFPCA model, the next step is estimation of the various model 

components, which we describe in the next few subsections. We assume Xijk(t) are measured 

on a set of grid points D with finite length D. Missing data, either in terms of visits or days, 

can be easily handled with our method. Estimation can be achieved via the following steps, 

and more details are provided in the next few sections.
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Step 1. Estimating the mean function μ(t) by the sample average μ(t) = 1
I ∑i, j, k Xijk(t). 

Denote the centered data as Xijk(t) = Xijk(t) − μ(t).

Step 2. Estimating the covariance function KW  for the W  process from Xijk(t) via 

method of moment (MoM) estimators [21, 28].

Step 3. Estimating the covariance functions KU for Ui = (Ui0, Ui1) and KV  for V ij via 

mixed linear regression models.

Step 4. Performing eigen decompositions of the estimated covariance functions to 

provide bases for representing Ui = (Ui0, Ui1), V ij and W ijk.

Step 5. Estimating the best linear unbiased prediction (BLUP) to provide subject-, 

visit- and day-specific principal component scores.

5.1 ∣ Estimation of the Mean and Covariance Functions

The fixed population mean function μ(t) is estimated by taking the sample mean in our 

implementation. More generally, when the observations across visits and subjects are 

relatively dense, a bivariate smoother in t (time in minutes) and T  (visit) may be considered 

to form the mean surface μ(t, T ), such as penalized spline smoothers [22]. Similarly, for 

sparser collection of T ij, μ(t) can be approximated via the univariate smoother μj(t) for visit 

j. With the estimated mean function μ(t) from any of the aforementioned methods, data are 

centered via Xijk(t) − μ(t) and without loss of generality, we assume that Xijk(t) has mean zero.

The main challenge of our proposed method is to estimate the covariance functions 

KU =
KU0 KU01

KU01 KU1
, KV , and KW . Under the setup and assumptions of Model (5), for all i, j, 

j′, k, k′, s, t, we have

Cov(Xijk(s), Xij′k′(t)) = E(Xijk(s)Xij′k′(t))
= Cov(Ui0(s), Ui0(t))

+ T ijCov(Ui0(s), Ui1(t))
+ T ij′Cov(Ui0(t), Ui1(s))
+ T ijT ij′Cov(Ui1(s), Ui1(t))
+ Cov(V ij(s), V ij′(t))
+ Cov(W ijk(s), W ij′k′(t))

(8)

The estimation of these covariance functions is not straightforward, and we cannot simply 

apply the method of Greven et al. [22], that is, linearly regressing the left side “outcome” 

Xijk(s)Xij′k′(t) on the right side “covariates.” This is because the total number of the 

observations I = ∑i, j nij in the three-level model can be much larger than that in a two-level 

setup. Let δ denote the Kronecker’s delta, defined as δkk′ = 1, if k = k′
0, otherwise . Specifically, to 

compute least squared estimates for these covariance matrices, a matrix H = F ′(FF ′)−1

needs to be constructed, where F6 × m has the column equal to fijj′kk′ = (1, T ij, T ij′, T ijT ij′, δjj′, δkk′)′
and m = ∑i = 1

n ni
2∑j, j′ nijnij′. Hence it is impractical and computationally inefficient to fit a 

regression model at once. Therefore, we proposed a two-step procedure to estimate these 
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covariance estimators, combining the MoM estimators and regression strategy. Equation (8) 

can be rewritten as,

E(Xijk(s)Xij′k′(t))

=

KU0(s, t) + 2T ijKU01(s, t) + T ij
2KU1(s, t)

+KV (s, t) + δkk′KW (s, t), if j = j′
KU0(s, t) + T ijKU01(s, t) + T ij′KU01(t, s)
+T ijT ij′KU1(s, t), otherwise

(9)

We first estimate the day-level covariance function KW  using a MoM estimator,

KW = 1
∑i, j nij(nij − 1) ∑i, j

∑
k, k′

(Xijk − Xijk′)(Xijk − Xijk′)T

(10)

Substituting KW  with the empirical estimator KW  and subtracting this term from both sides of 

the first line of Equation (9), the day-to-day variation is eliminated from the total variation. 

The remaining proportion of variation therefore only involves variations at subject and visit 

levels. Denote Xij .Xij′
T , as the resulting residual variance, the estimators of the covariance 

functions of the U and V  processes can be expressed as,

E(Xij . Xij′ .
T ) = KU0 + T ijKU01 + T ij′KU01 + T ijT ij′KU1 + δjj′KV

(11)

By implementing the two-step procedure, we are able to reduce the dimension of the 

“outcome” variable in the regression modeling and essentially reduce it to the two-level 

case. The computational feasibility for this two-level case has been proved in Greven et al. 

[22], and we then regress the product Xij .Xij′
T , on “predictors” (1, T ij, T ij′, T ijT ij′, δjj′) and get 

the estimated covariance estimators (KU0, KU01, KU1, KV).

5.2 ∣ Estimation of Eigenfunctions and Scores

With the estimated covariance functions from the two-step procedure, KU =
KU0 KU01

KU01 KU1

, KV , 

and KW  in the previous section, using the spectral decomposition, we can easily estimate 

the eigenvalues λl
U, λm

V , and λr
W , and eigenfunctions ϕl

U(t), ϕm
V (t), and ϕl

W (t), t ∈ D, at grid 

points D, that is, KU = ∑l = 1
2D λ lϕl

U(ϕl
U)T , KV = ∑m = 1

D λmϕr
V (ϕr

V )T  and KW = ∑r = 1
D λ rϕr

W (ϕr
W )T . The 

eigenfunctions, ϕl
U = {ϕl

U0(t), ϕl
U1(t), t ∈ D} form an orthonormal basis in L2[0, 1] × L2[0, 1], 

and ϕm
V  and ϕr

W  are orthogonal vectors in L2[0, 1]. If the time variable T ij is standardized 

to have zero mean and unit variance, that is, E(T ij) = 0 and V ar(T ij) = 1, the variation 

in Xijk(t) can be decomposed additively and expressed with respect to the estimated 

eigenvalues, ∫Dvar(Xijk(t))dt = ∑l λl
U + ∑m λm

V + ∑r λr
W . This result has been proved in a two-
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level longitudinal FPCA setting by Greven et al. [22] and we extend it to three-level scenario 

(Section S1). We usually retain a finite numbers of eigenfunctions of subject (NU), visit (NV), 

and day (NW) levels for further analysis. The number of eigenfunctions retained, NU, NV , 

NW , is based on a prespecified percentage of explained variation. In our application, we set 

the threshold to be 95% of explained variation.

For fixed NU, NV , and NW , it is evident that Model (7) is a three-level linear mixed 

model. Therefore, the principal component scores ξ il, ζ ijm, and η ijkr can be obtained via 

the best linear unbiased prediction (BLUP). Let Xi = vec{Xi11, … , Xi1ni1, … , Xij1, … Xijnij}
be a vector with stacked functional inputs for subject i with length D × Ii and 

βi = (ξi1, … , ξiNU, … , ζi11, … , ζi1NV , … , ζini1, … , ζ iniNV , ηi111, … , ηi11NW , … , ηi1ninij1, … , ηininijNW ) be the 

vector of scores to be estimated. The BLUP for βi is given as,

βi = (Zi
′Zi)−1Zi

′Xi

(12)

where Zi = [1Ii ⊗ ΦU0 + T i ⊗ ΦU1 ∣ Ini ⊗ (1nij ⊗ ΦV ) ∣ IIi ⊗ ΦW ], T i = (T ijδjℎ)j, ℎ = 1, … , ni, 

ΦU0 = {ϕl
U0(t)}t ∈ D, l = 1, … , NU, ΦU1 = {ϕl

U1(t)}t ∈ D, l = 1, … , NU, ΦV = {ϕl
V (t)}t ∈ D, l = 1, … , NV , 

ΦW = {ϕl
W (t)}t ∈ D, l = 1, … , NW , I, is the identity matrix, and ⊗ denotes the Kronecker product of 

matrices. δjℎ denotes the matrix of Kronecker deltas with δjℎ = 1 if j = ℎ and δjℎ = 0 otherwise.

5.3 ∣ Comparing Different Models

The proposed mLFPCA model was motivated by prospective studies with functional 

predictors such as the MENU study [5, 6], which is a longitudinal study in which the 

functional PA measurements were collected daily for each visit (baseline, follow-up) 

for each participant, thus encompassing a three-level nested and longitudinal structure. 

To further illustrate the need for deriving our method, we explored the relationship 

between our three-level method and previous approaches with the aim of gaining deeper 

insights. For instance, with the three-level longitudinal data (Equation 5), one may consider 

ignoring the random functional slope process Ui1(t) and applying MFPCA [21] (Equation 

4). Alternatively, assuming that data are well aligned, the two-level longitudinal FPCA 

(LFPCA-lv2) provided in Greven et al. [22] (Equation 3), can be fitted on the mean values of 

daily measurement curves at each visit (W ijk(t) is ignored). While it is intuitive that either of 

these simplifications can cause a loss of information, we aimed to demonstrate their concrete 

effects.

Suppose that we fit the data with a MFPCA model, and decompose the total variance 

with the technique of symmetric sum MoM estimators from Shou et al. [21]. Rewriting 

the covariance functions as E{Xijk(s) − Xi′j′k′(s)}{Xijk(t) − Xi′j′k′(t)}T , we obtain the following 

decomposed form,
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2KW (s, t), if i = i′, j = j′, k ≠ k′
2(T ijKU01(s, t) + T ij′KU01(t, s) + T ijT ij′KU1(s, t) + KV (s, t)
+KW (s, t)), if i = i′, j ≠ j′

2(KU0(s, t) + T ijKU01(s, t) + T ij′KU01(t, s) + T ijT ij′KU1(s, t)
+KV (s, t) + KW (s, t)), if i ≠ i′

(13)

Let KV U(s, t) = T ijKU01(s, t) + T ij′KU01(t, s) + T ijT ij′KU1(s, t) + KV (s, t), which combines variation 

from random slope auto-covariance KU1, cross-covariance KU01 and subject-visit specific 

covariance KV . As a result, the total covariance will only be decomposed into three parts, the 

KU0, KV U, and KW . Therefore, if the model is misspecified as a MFPCA model which ignores 

the slope process, it is expected to witness an inflation of variation at visit-level, while the 

rest of the variation at subject and day-level will not be changed. Given that the total amount 

of variation is a fixed number, the proportions explained by processes at subject and day 

levels will be underestimated.

On the other hand, if we take the mean of the observed (day-level) curves at each visit, that 

is, let Xij = 1
nij

∑k = 1
nij Xijk, we then have,

Xij(t) = μ(t) + Ui0(t) + Ui1(t)T ij + V ij(t) + 1
nij

∑
k = 1

nij
W ijk(t)

V ar(Xij) = KU0 + T ijKU01 + T ijKU01 + T ij
2KU1 + KV

+ 1
nij

2 ∑
k, k′

Cov(W ijk, W ijk′)

(14)

The total variation is increased with an additional term 1
nij

2 ∑k, k′ Cov(W ijk, W ijk′), compared with 

Equation (11). As a result, the estimated explained variance within both KU and KV  will be 

increased by an approximately similar amount, and correspondingly, the proportions of the 

respective explained variations increase. However, the relative variation, that is, the ratios 

between eigenvalues of KU and KV , remain essentially fixed. In fact, taking the average 

can be considered as a form of smoothing, especially when the processes W ijk are random 

errors or only explain a small proportion of the total variation. Therefore, a two-level model 

may be applicable if the day-to-day variation in the data is ignorable or the major research 

questions are primarily focused on subject and visit levels.

The above insights for MFPCA and LFPCA models are further explored and demonstrated 

with our simulation studies in Section 7.
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6 ∣ Regression Model

An important next step is to evaluate associations between the multilevel predictors and 

longitudinal outcomes, for example, PA curves and metabolic health as in the MENU study. 

Traditional multivariate linear models can be extended to scalar-on-function regression 

models to explore the associations between scalar outcomes and functional predictors, 

namely,

E(Y i) = α0 + ∫
D

Ui(t)βU(t)dt

(15)

where Y i ∈ ℛ is a scalar outcome, α0 is the regression intercept, Ui(t) is a functional predictor, 

βU(t) is the corresponding functional regression coefficient. With normally-distributed 

outcomes, a functional principal components regression (FPCR) model [29] reconstructs 

Ui(t) using the estimated scores and eigenfunctions from the FPCA model (Section 3), 

Ui(t) = ∑l = 1
NU ξilϕl

U(t). Gertheiss et al. [24] extended the method to a longitudinal FPCR setup, 

where the outcome Y ij was recorded for each subject i at visit j and includes both subject-

level functional predictors Ui(t) and visit-level functional predictors V ij(t). The longitudinal 

model has the form,

E(Y ij) = α0 + bi + ∫
D

βU(t)Ui(t, T ij)dt + ∫
D

βV (t)V ij(t)dt

(16)

where bi is a subject-specific random effect. We assume bi ∼ N(0, τ2) with Y ij conditionally 

independent given bi. Here, Ui(t, T ij) = Ui0(t) + Ui1(t)T ij; Ui(t, T ij) represents the between-subject 

variation and V ij(t) represents the within-subject variation over the domain function D. 

The βU(t) and βV (t) are smooth coefficient functions for processes Ui(t, T ij) and V ij(t), 
respectively. Longitudinal FPCR regression uses the eigenfunction decomposition of the 

functional predictors so that Ui0(t) = ∑l
NU ξilϕl

U0(t), Ui1(t) = ∑l
NU ξilϕl

U1(t) and V ij(t) = ∑m
NV ζijmϕm

v(t)
as described in Section 5.2.

Both standard FPCR and longitudinal FPCR yield smooth coefficient functions, which have 

a useful interpretation over time t. These coefficient functions in Equations (15) and (16) can 

be estimated using penalized spline methods via the R package mgcv [30, 31]. In particular, 

since the coefficient functions are expressed via spline bases, they do not explicitly depend 

on the number of principal components selected [24].

7 ∣ Simulation Study

In this section, simulation studies were implemented to explore the properties of the methods 

provided in Section 4. In addition to testing the robustness of our proposed methods, 

another goal is to explore how these methods perform when the model is misspecified 

under varying simulation settings. Specifically, we performed simulation studies in both 
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unbalanced cross-sectional (one-level outcome and two-level predictor) and longitudinal 

(two-level outcome and three-level predictor) setups. Our motivation for considering these 

two setups is to explicitly evaluate the impact of ignoring the multilevel structure of the data 

versus ignoring the longitudinal structure. For instance, taking the average at visit level of a 

two-level predictor could result in simultaneous loss of information in both multilevel and 

longitudinal structure. However, for a three-level predictor, the averaging process performed 

on day-level measures still retains the longitudinal structure of the input data, but is expected 

to lose the three-level structure. We performed a series of simulations studies to validate 

these assumptions in cross-sectional and longitudinal setups.

For simulation studies, we compared the performance in both functional models and 

regression models. The normalized errors (relative bias) between the estimated and true 

eigenvalues and principal component scores were used as the evaluation criteria for 

functional modeling. As for regression results, we computed the observed mean squared 

errors (MSE). For each simulation setting, we generated M = 100 replicates with N = 100
subjects. For illustration purpose, we only present simulation design and results of three-

level functional inputs; details of two-level functional data can be found in Supplementary 

Material. The corresponding R code for our proposed method and other models used in 

simulation studies is available at https://github.com/wendylin23/MixedFPCA.

The simulation studies were based on three-level settings and we assumed a fixed numbers 

of visits ni = 3 and days nij = 3 for each subject. (The time variable T ijis generated by 

standardizing the visits, that is, T ij =
j − 1

ni
∑ j

sd(j) , to have unit variance.) The functional curves 

Xijk(t) with length of D = 600 were generated according to the mLFPCA (Model (5)) and the 

true model was set as,

yij = bi + ∫ βU(t)Ui(t)dt + ∫ βV (t)V ij(t)dt + ϵij,

Xijk(t) = ∑
l = 1

NU
ξilϕl

(U0)(t) + ∑
l = 1

NU
T ijξilϕl

(U1)(t) + ∑
m = 1

NV
ζijmϕm

(V )(t)

+ ∑
r = 1

NW
ηijkrϕr

W (t), t ∈ D

ξil ∼i.i.d. N(0, λl
U), ζijm ∼i.i.d. N(0, λm

V ), ηijkr ∼i.i.d. N(0, λr
W )

(17)

where the number of eigenfunctions is set as NU = NV = NW = 4. The eigenfunctions bases 

can be orthonormal sine/cosine basis (F-basis) and Legendre polynomials basis (L-basis). It 

is noted that the sine/cosine basis is orthogonal with each other but it is correlated with the 

Legendre polynomials basis. In addition, we also considered the cases where white noise 

(i.e., random error) curves replaced the subject-level slope or visit-level curves, to mimic 

the situations when the longitudinal or between-visit variability is small. These random error 

curves (E-basis) were generated via eij(t) ∼ N(0, σe
2), σe = 0.3, which was used to replace the 

random slope or visit-specific term in Equation (17). In the following sections, we used 
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abbreviations to represent the combination of different basis. For instance, “FFFF” refers to 

the combination of all four orthogonal Fourier basis in U0, U1, V , and W  processes. In this 

study, we simulated data based on five types of basis combinations, including

a. FFFF: ϕl
(U0)(t), ϕl

(U1)(t), ϕm
(V )(t), ϕr

W (t) ∼ A sin(ωt + ψ), orthogonal Fourier basis.

b. FFFL: ϕl
(U0)(t), ϕl

(U1)(t), ϕm
(V )(t) ∼ A sin(ωt + ψ) orthogonal Fourier basis, ϕr

W (t) ∼ Bt′, 
r = 0, 1, … orthogonal polynomial basis.

c. FLFF: ϕl
(U0)(t), ϕm

(V )(t), ϕr
W (t) ∼ A sin(ωt + ψ), orthogonal Fourier basis, ϕl

(U1)(t) ∼ Btl, 
l = 0, 1 … orthogonal polynomial basis.

d. FFFE: ϕl
(U0)(t), ϕl

(U1)(t), ϕm
(V )(t) ∼ A sin(ωt + ψ), orthogonal Fourier basis, 

ϕr
W (t) ∼ N(0, σe

2) random errors.

e. FEFF: ϕl
(U0)(t), ϕm

(V )(t), ϕr
W (t) ∼ A sin(ωt + ψ), orthogonal Fourier basis, 

ϕl
(U1)(t) ∼ N(0, σe

2) random errors.

where A, B ∈ ℝ and ω = k1π, ψ = k2π, k1, k2 ∈ ℕ. Corresponding eigenvalues were to be 

λl
U = λl

V = λl
W = 0.5l − 1, l = 1, 2, 3, 4.

The random error ϵij in the regression models were assumed to be normal with variance 

σ2 = 2. bi is a random intercept process and follows bi ∼ N(0, 1). Following the regression 

simulation settings in Gertheiss et al. [24], we also used a Gamma density to simulate 

the true coefficient functions βU(t) and βV (t). For each of the 100 simulated datasets, 

we implemented the multilevel longitudinal FPCA (Model (5), mLFPCA) and multilevel 

FPCA (Model (4), MFPCA) on the three-level simulated functional data Xijk(t), and the 

two-level longitudinal FPCA model (Model (3), LFPCA-lv2) on the day-averaged functional 

inputs Xij .(t) = 1
nij

∑j Xijk(t). The eigenfunctions, eigenvalues, scores and predicted functional 

trajectories U i(t) and V ij(t) were estimated from each model. Furthermore, we considered 

cases where amounts of variation explained in the visit- and day-level varied, that is, 

we assumed that the true eigenvalues can vary among levels. Additional tests, such as 

unbalanced design with missing visits and unequal eigenvalues, were also implemented. 

To simplify exposition, we focus here on the results using equal eigenvalues at each level, 

assuming no missing data. Additional results can be found in Supplementary Material.

In Table 1, we show the results of normalized errors (relative bias) between the 

estimated and true eigenvalues for subject-level process (λ l
U − λl

U) ∕ λl
U and visit-level process 

(λm
V − λm

V ) ∕ λm
V , respectively, based on 100 replicates from the five simulation scenarios (a–e). 

At subject level, all three methods provide similarly unbiased estimates of the eigenvalues. 

But at visit level, the proposed mLFPCA model provides the least biased estimates of the 

eigenvalues in all five scenarios. Meanwhile, the two-level longitudinal model (LFPCA-lv2) 

performs consistently better than the three-level FPCA (MFPCA) model, except for the 

last scenario, where only random error terms are added to the slope-level. This finding 

conforms with our theoretical intuition in Section 5.3, where we showed that when the 

model fitting ignores the random slope process and is misspecified as a MFPCA model, 
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estimated variation at visit level is inflated and the consequences are reflected by these 

overestimated visit-level eigenvalues. On the other hand, when the LFPCA-lv2 is fitted 

to the day-averaged data, because the relative explained variation at the subject and visit 

levels are maintained, the estimation biases are hence much lower. To further elucidate these 

results, we provide (Table 2) the proportions of explained variance by different levels of the 

first two principal components, comparing results from the three fitted models with the true 

setting of the first simulation scenario ((a) FFFF). As expected, these Table 2 further validate 

our derivation in Equation (13) and (14), showing the impact of misspecification at different 

levels.

The last column in Table 1 presents MSE results 1
N ∑i

1
ni

∑j (yij − y ij)2 from the regression 

fitting and the mLFPCA models generally have the best prediction performance. Compared 

with MFPCA models, the two-level longitudinal FPCA models still perform better in the 

first four scenarios. Combined with the similar findings in eigenvalues, we conclude that 

in data applications, misspecifying a three-level longitudinal model with the form of a 

two-level longitudinal structure (LFPCA-lv2) may be more optimal than misspecifying it as 

three-level FPCA models (MFPCA). However, it is important to note that all simulated data 

in our study are well-aligned with a same starting point and time range, which may also 

increase the relative robustness of the averaging procedure.

As an interesting parenthetical remark, the last two scenarios (d: FFFE and e: FEFF) can be 

considered as special cases of model misspecification, and can also provide insights on when 

the simpler MFPCA or LFPCA-lv2 models will perform as well as our proposed mLFPCA 

model. Specifically, in setups where the proportion of explained variation is small for the 

random slope processes (Scenario e) or day-specific processes (Scenario d), the mLFPCA 

model essentially reduces to a three-level MFPCA model (i.e., ignoring the slope process) or 

a two-level longitudinal (LFPCA-lv2) model (i.e., averaging over days).

Finally, we note that the PC scores are unbiasedly estimated by all the methods, as expected 

(Section S2A). We also provide additional simulation results exploring the impacts of 

missing data in Section S2B.

8 ∣ Data Application

We provide a brief background on the rationale and protocol of the MENU Study, before 

delving into the data application. The prevalence of obesity in the US has been steadily 

increasing over the last 20 years with recent age-adjusted estimates indicating that 42.4% 

of US adults are obese [32, 33]. Obesity can be associated with serious health risks [34]. 

For instance, compared with persons with normal weight, overweight or obese persons 

are more vulnerable to glucoregulatory dysfunction and dyslipidemia, major risk factors 

for cardiovascular disease and other comorbidities [35-37]. In addition, overweight status 

and obesity increase the risk of end-stage renal disease and many types of cancer [38, 

39]. Since weight gain occurs when energy expenditure (EE) remains low while dietary 

consumption levels are high, certain amounts of PA for increasing EE are commonly 

considered as part of treatment plans for achieving weight-loss in obese individuals [40]. 

Based on these principles, the MENU trial, conducted under the auspices of the NIH-funded 
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Trans-disciplinary Research on Energetics and Cancer (TREC) Center at UCSD from 2011 

to 2017, recruited n = 245 overweight women to a 12-month behavioral (diet and PA) 

weight-loss intervention [5, 6].

Each MENU participant was randomly assigned to one of three diet groups: a lower fat 

(20% of energy) and higher carbohydrate (65% of energy) diet; a lower carbohydrate (45% 

energy) and higher monounsaturated fat (35% energy) diet; or a walnut-rich (35% fat) 

and lower carbohydrate (45%) diet. All participants received the same PA intervention, 

with a prescribed goal of engaging in at least 60 min/day of purposeful exercise at a 

moderate level of intensity. Hence for the current investigation, which is focused on PA 

change, we treat the MENU Study as a longitudinal cohort study. There were three study-

related clinic visits at baseline, 6 and 12 months [5, 6]. PA was measured using a triaxial 

accelerometer device, the GT3X+ Actigraph (Acti-Graph LLC, Pensacola FL). Participants 

were instructed to wear the devices for 7 days during waking hours and measurements 

of health outcomes were collected at each visit. Actigraph data were collected at high-

resolution of 30 Hz, then processed into per minute PA counts [7]. More specifically, 

triaxial activity count vector outputs (ACx, ACy, ACz) from these devices were summarized as 

magnitudes ACx
2 + ACy

2 + ACz
2, which are commonly referred to as magnitude counts and are 

related to intensity of the activity [7].

The goal of the current work was to utilize the longitudinal accelerometer-based PA to 

implement three-level functional data methods, and evaluate associations with longitudinal 

health outcomes. For this purpose, to ensure consistent data availability across participants, 

we extracted daily PA counts on three random days, including weekdays and weekends, for 

each participant at each visit. Sensitivity analysis were performed to show that the selected 

three-day data were representative of whole-week measures, explaining similar amount of 

variation at day-level. Figure 1 presents an example of three-day activity records for one 

participant at each visit. Since the starting time and duration time of device wearing are not 

constant across participants and days, we realigned daily records, so that all participants had 

a “common” starting time of device wear denoted as “0” on the x-axis. We kept the first 600 

min (x-axis) from the records with at least 10 h of device wear (per standard protocols). The 

figure of daily PA magnitude based on clock time can be found in Section S3. Each data 

point (y-axis) represents minute-wise PA activity magnitude.

For exploring the association between PA and overweight/obese status, we considered 

several related health outcomes, including BMI, insulin levels and homeostatic model 

assessment (HOMA). The BMI, computed as weight in kilograms divided by height in 

meters squared (kg/m2), is commonly used to identify overweight/obese status if BMI >25.0 

[33]. In addition, high-levels of insulin have been proven to be associated with lifestyle-

dependent obesity risk factors [41]. The HOMA index is a measure of insulin resistance 

and is computed as fasting insulin (microU/L) × fasting glucose (nmol/L)/22.5. Therefore, 

lower values of each outcome indicate better metabolic health. Brief descriptive statistics on 

demographics and health outcomes of MENU participants are provided in Section S3.

We first fitted the proposed three-level longitudinal FPCA (mLFPCA) model on the daily 

PA counts data for all subjects at each visit. Figure 2 presents the first three estimated 
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principal components for the random intercept, random slope, visit-specific and day-specific 

processes by columns. The top row of the figure provides the first principal component 

at each level. It shows that the red curve, which represents adding (a multiple of) the 

principal component to the mean, is always higher than the mean (black) curve in each 

figure. Specifically, a high score on this component at the subject-level (Level 1) indicates 

that a participant is on average more physically active, and has a higher increase across 

visits, compared to a participant with a low score. Similarly, a high score at the visit-level 

(Level 2) indicates that the participant has higher activity on that visit compared to her 

PA at other visits. Interestingly, the first principal component at the day-level emphasizes 

higher (or lower) activity during the first 200 min. Overall, the first components of the 

subject-, visit-, and day-level processes explain around 77% of total variation. The other 

components display more oscillatory patterns. For instance, the second Level 1 intercept 

component (middle plot in first column) is negative (i.e., below the mean) for the first 200 

min but becomes positive (i.e., above the mean) for the last 200 min, meaning subjects 

with positive scores in this component tend to be less physically active earlier but more 

active later in their day. Since the Level 2 and Level 3 eigenfunctions represent the random 

visit- and day-specific functional deviation respectively, each component can be interpreted 

correspondingly.

Figure 3 provides an example of the daily raw, smoothed and model-recovered PA curves at 

each visit of one participant. As is evident, the model-recovered curves mirror closely the 

(smoothed) observed PA data, which further illustrates the robustness and applicability of 

our proposed model. Finally, in order to explain 95% of the variance, we retained NU = 10, 

NV = 5 and NW = 13 principal components at the three levels, respectively.

Next, we aimed to fit a regression model to evaluate associations between functional PA 

inputs and longitudinal health outcomes. For this, as described in Section 6, the estimated 

scores and principal components were used to reconstruct the subject-level process Ui

and visit-level process V ij for each subject i and visit j. We then fitted the longitudinal 

FPCR model on each health outcome, respectively, with the reconstructed curves U i

and V ij, as denoted in Equation (16). The model also included a random intercept and 

additional covariates including age, ethnicity, smoking status and 1(visit > 1). Figure 4 gives 

the estimated coefficient functions for log(Insulin), BMI and HOMA levels, with 95% 

pointwise confidence intervals, which are Bayesian component-wise variable width intervals 

constructed from the estimated Bayesian posterior covariance matrix [42]. The coefficients 

at a given time-point (on the x-axis) are considered significant if the 95% confidence limits 

at that time do not cross the reference horizontal line at y = 0. The coefficient function for 

the subject-level (Level 1) process of BMI was negative for the first 400 min, suggesting 

that on average, a subject with higher levels of PA had lower BMI compared to a subject 

with lower PA levels, especially in the first 200 min, during which the 95% confidence 

interval excluded the null value of zero. The subject-level coefficient curves for log(Insulin) 

and HOMA were also negative during the first 400+ min, suggesting possible beneficial 

associations with PA, although we cannot rule out the null hypothesis for these markers 

since the 95% confidence bands included zero. Notably, the estimated coefficient curves 

at visit-level (Level 2) of these two markers were negative at earlier times (with the 
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95% intervals excluding the zero value), suggesting that increasing PA earlier in the day 

from one visit to the next was associated with lower insulin and HOMA. Thus, although 

inference for the regression patterns at subject and visit level varied slightly among the 

three health outcomes, we observed negative associations between PA and all outcomes, and 

most interestingly, we found that engaging in PA earlier in the day seemed beneficial for 

mitigating overweight/obese risk factors.

9 ∣ Discussion

In this work, we proposed a mLFPCA approach and compared its performance with other 

functional principal component models that have been previously applied on multilevel data, 

by means of both simulation study and real data application. Specifically, the proposed 

model was designed to fit data from a longitudinal study that has three-level functional 

inputs. It includes a two-step estimation procedure and eigen-expansion based methods to 

capture and decompose the covariance structures of the observed functional (PA) curves. 

The association between the functional predictor (PA) and overweight/obesity related health 

outcomes was then examined via functional regression approaches. In addition, a wide range 

of simulation studies were performed to validate and compare model performances.

Our proposed model can be regarded as a natural extension of previous methodology 

on multilevel and longitudinal FPCA [20-22]. To demonstrate the necessity of such an 

extension, we provided both theoretical illustration in Section 5.3 and simulations in Section 

7. On the one hand, compared with previous implementations that are common in health 

behavior research, which used averaging to reduce the number of nested levels (e.g., 

averaging over days at each visit), our method retained the three-level longitudinal design 

structure, and thus can fully extract the variation information included in all nested levels 

and provide solid inference. On the other hand, though our proposed method consistently 

yields better performance, under certain scenarios simpler models may be acceptable and 

perform adequately depending on the study aims, and when they accurately reflect the 

pertinent information contained in the data. For instance, if the day-to-day variation in a 

three-level dataset explains a relatively small proportion of total variability, a two-level 

longitudinal FPCA model may be applicable for inputs averaged over days. Importantly, 

our simulation studies illustrate different misspecification effects in cross-sectional and 

longitudinal setups. We found that in the setting with cross-sectional outcomes, even with 

longitudinal functional inputs (Section S2C), the simpler misspecified multilevel FPCA 

models (which ignore the slope term but retain the multilevel structure in the functional 

inputs) had superior performance in terms of estimation and prediction, compared to single-

level FPCA which reduced the levels of the functional inputs by averaging. However, in 

the setting with longitudinal outcomes, averaging the functional inputs (over the third-level) 

had superior performance compared to multilevel FPCA (which ignored the longitudinal 

component; Table 1). Thus, depending on the structure of the outcome data, misspecifying 

the longitudinal functional component appears to strongly influence results. We believe that 

these results can guide researchers in how to choose simpler approaches, should they wish to 

do so. Of course, preserving the full data structure, that is, all levels of the functional data, 

using the proposed mLFPCA model performs best, and although this method appears to be 
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more complex, the simulation studies and application indicate that the computation is, in 

fact, fairly efficient.

We also implemented the mLFPCA model in a data application. Our analysis of the MENU 

study, revealed a negative association between temporal patterns of PA and overweight/

obese related health outcomes, that is, PA accumulated earlier in the day was related to 

healthier status. However, we need to exercise caution in making causal claims about 

directions of associations. Further work on how timing of PA most impacts health could be 

useful when designing intervention trials and informing public health recommendations.

Future studies could further extend our approach to functional data in longitudinal studies 

with more than three levels, such as studies in which the variation between morning versus 

evening PA are of interest. In fact, the structural FPCA proposed by Shou et al. [21] 

provided a general estimation procedure for data with any number of levels, but they do 

not explicitly consider longitudinal designs. By combining their approach and ours, we 

expect that these methods could be extended to multilevel (with >3) levels) longitudinal 

data, and we aim to pursue a similar approach in future work. Also, in our data application, 

the functional PA predictors are assessed at three levels (subject-specific, visit-specific, 

and day-specific) whereas the outcomes are only assessed at two levels (subject-specific 

and visit-specific). Our methods are also applicable when predictors and outcomes are 

both assessed at the same levels, for example, 3 levels. We will implement this extension 

in future work as relevant clinical questions arise. In addition, with functional regression 

models where predictors are measured more frequently than outcomes, we could consider 

other summary metrics that can incorporate information from the higher levels in the 

predictors. For instance, Steele et al. [43] proposed multilevel structural equation models 

for longitudinal data, but the implementation involved with functional data needs further 

exploration, which we aim to address in future studies.

In summary, in this work, we developed an analytic approach for three-level longitudinal 

functional data, as are common in health behavior (e.g., diet, sleep, PA) studies. 

Implementing this new model posed several challenges. Firstly, the data exhibited an 

unbalanced structure, with more levels in the predictor than in the outcome. Despite this, 

we were able to construct a model that retained most of the information from the original 

dataset. Secondly, high-dimensional data with multiple levels can present computational 

and storage issues. Our proposed two-step algorithm efficiently handled these challenges. 

Lastly, although numerous studies and algorithms have been developed in the FPCA field, 

the issue of model misspecification has not been adequately addressed. To address this 

gap, we utilized analytic calculations and comprehensive simulation studies, and evaluated 

the performance of the proposed model under different scenarios. We compared our model 

to potentially simpler models, with albeit missspecified structure. We provided guidance 

regarding when the simpler models may be appropriate, which is crucial for real-world 

data applications. We applied our method to data from a longitudinal study on obesity 

measures and PA assessed via accelerometry and obtained meaningful results. Importantly, 

our approach can be applied to other applications with densely sampled data for example, 

continuous glucose monitoring, heart rate monitoring and so forth. We believe that this work 

could add to the body of computational methods for analyzing the full spectrum of data 
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from wearable sensors, which are becoming more and more common in public health and 

biomedical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1 ∣. 
An example of the first 600 min (x-axis) of daily physical activity (PA) magnitude counts 

on 3 days (denoted by varying colors) from minute-level accelerometer count data for one 

subject across three visits (baseline, 6, and 12 months). The daily records were realigned 

to have a “common” starting time of device wear denoted as “0” on the x-axis. Values on 

y-axis provide the vector magnitude of PA measured from accelerometers.
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FIGURE 2 ∣. 
MENU study application: The first three estimated principal components (rows) for the 

random intercept (1st column), random slope (2nd column), visit-specific process (3rd 

column) and day-specific process (4th column). The y-axis of the plots give the overall 

mean value curve μ(t) (black) with addition (red) or subtraction (blue) of 2 square root of 

eigenvalues multiplying first, second or third level principal component curves. The %s in 

the bottom left of each graph are the percent of variation explained by that component. The 

x-axis is time (min) representing 10 h (600 min) of activity.
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FIGURE 3 ∣. 
An example of PA magnitude counts (y-axis) with raw count inputs (thin solid), smoothed 

curves (thick solid) and model-recovered curves (thick dashed) at baseline (top), 6 months 

(middle), and 12 months (bottom), during 600 min (x-axis) of each day, starting from 

when the participants began wearing the device. The daily records were realigned to have a 

“common” starting time of device wear denoted as “0” on the x-axis. Different colors of the 

line represent the day of the measurement.
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FIGURE 4 ∣. 
MENU study application: Estimated functional coefficients curve with 95% pointwise 

confidence intervals (shaded grey) when implementing the longitudinal FPCR model on 

log(Insulin) (top), BMI (middle) and HOMA (bottom), with U (Level 1) and V  (Level 2) 

processes reconstructed from the fitted multilevel longitudinal FPCA (mLFPCA) model as 

functional predictors, after adjusting for age, ethnicity, smoking status, and visit >1; x-axis is 

time in minutes.
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