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Abstract

Background: Human rhinoviruses (HRVs) are the most frequently detected pathogens in acute respiratory tract infections
(ARTIs) and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During
2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To
catalogue the molecular and clinical features distinguishing the divergent HRV strains, we undertook, for the first time, in
silico analyses of all available polyprotein sequences and performed retrospective reviews of the medical records of cases in
which variants of the prototype strain, HRV-QPM, had been detected.

Methodology/Principle Findings: Genomic analyses revealed that the six divergent strains, residing within a clade we
previously called HRV A2, had the shortest polyprotein of all picornaviruses investigated. Structure-based amino acid
alignments identified conserved motifs shared among members of the genus Rhinovirus as well as substantive deletions
and insertions unique to the divergent strains. Deletions mostly affected regions encoding proteins traditionally involved in
antigenicity and serving as HRV and HEV receptor footprints. Because the HRV A2 strains cannot yet be cultured, we created
homology models of predicted HRV-QPM structural proteins. In silico comparisons confirmed that HRV-QPM was most
closely related to the major group HRVs. HRV-QPM was most frequently detected in infants with expiratory wheezing or
persistent cough who had been admitted to hospital and required supplemental oxygen. It was the only virus detected in
65% of positive individuals. These observations contributed to an objective clinical impact ranging from mild to severe.

Conclusions: The divergent strains did not meet classification requirements for any existing species of the genus Rhinovirus
or Enterovirus. HRV A2 strains should be partitioned into at least one new species, putatively called Human rhinovirus C,
populated by members detected with high frequency, from individuals with respiratory symptoms requiring hospital
admission.
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Introduction

Human rhinoviruses (HRVs) are the most frequently detected

pathogens in acute respiratory tract infections (ARTIs). HRVs

have been associated with lower respiratory tract (LRT) illness and

more serious clinical outcomes within pediatric and other

vulnerable populations [1]. Despite this, HRV strains continue

to be commonly defined, en masse, by their most prolific and

currently most well-defined role in causing the ‘common cold’

[2,3].

Classified within the family Picornaviridae, the genus Rhinovirus

consists of 100 serotyped strains divided into two species, Human

rhinovirus A (HRV A; n = 75) and Human rhinovirus B (HRV B;

n = 25) [4]. Species classification was initially based on the

susceptibility of strains to capsid binding antivirals [5,6] and

subsequently confirmed by phylogenetic studies [4,7]. HRVs are

also subdivided by receptor usage; major group HRVs use an

intercellular adhesion molecule (ICAM-1; n = 88 strains), which

interacts within a depression of the viral surface known as the

canyon [8]. Minor group HRVs (n = 12) receive a molecule from
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the low density lipoprotein receptor family (LDLR) at protrusions

along the 5-fold axis of the capsid surface [9–12]. Recently,

heparan sulphate was identified as a pH dependent, low efficiency

receptor for HRV-54 [13]. A relationship between receptor usage

and species identity is only evident among minor group HRVs; all

are HRV As. Major group HRVs reside in both species. Studies

have identified four neutralizing immunogenic sites on the surface

of a major group HRV (HRV-14; NImIA, NImIB, NImII and

NImIII)[14] and three sites on a minor group HRV (HRV-2; site

A, B and C) [15], with some overlap [16]. These sites consist of

discontinuous amino acid sequence within VP1, VP2 and VP3.

The human enteroviruses (HEVs) are the closest genetic

relatives of the HRVs but they belong to the genus Enterovirus.

HEV strains are classified into four species (A–D) and some have

been implicated in ARTI [17]. Similar to the major group HRVs,

some HEVs have been shown to use ICAM-1 as their primary

cellular receptor [18]. Other host molecules employed by HEVs

include the decay accelerating factor (DAF) [19,20], poliovirus

receptor (PVR) [21] and coxsackie-adenovirus receptor (CAR)

[22]. Under a proposal currently before the International

Committee on Taxonomy of Viruses (ICTV), HRV and HEV

strains will be combined into the genus Enterovirus, at the expense

of Rhinovirus, an issue of contention for decades [23].

Picornavirus genomes typically consist of a 7.2 to 7.5 kb

positive-sense, single-stranded RNA molecule located within a

non-enveloped icosahedral capsid. The genomes contain a

single open reading frame flanked by 59and 39untranslated

regions (UTR). The polyprotein is first cleaved into three

precursor polyproteins, P1, P2 and P3 (Figure 1). P1 is further

cleaved into the structural proteins VP4, VP2, VP3 and VP1.

Union of a single copy of each structural protein constitutes a

viral protomer; the HRV capsid consists of 60 protomers

arranged in a T = 1, pseudo T = 3 (i.e. T = p3) conformation. P2

and P3 are cleaved into seven non-structural proteins including

two proteases (2Apro and 3Cpro) and an RNA-dependant RNA

polymerase (3Dpol) [24].

Recent studies have generated 27 additional HRV A and 12

additional HRV B genomes [25,26] also resulting in the proposal

that individual HRV genomes are under purifying selective

pressure and that significant intra-strain variation occurs only at

the antigenic sites [26]. This is in stark contrast to the HEVs for

which recombination in the non-structural regions is a significant

contributor to viral diversification [27,28].

Untypeable rhinoviruses have been described using PCR-based

tools, since 1994 [29] but it was only in 2007 that the complete

coding sequences of a number of novel and apparently divergent

HRV strains were reported, permitting a for identification of the

first new strains in two decades [30]. The initial strain described,

HRV-QPM, was identified from children with presenting

symptoms often suggesting bronchiolitis [31]. Subsequently,

‘HRV-Xs’ were found in an adult asthma study in the United

States [32] and ‘HRV-Cs’ were described from a study of

pediatric infection by human bocavirus in Hong Kong [33].

Some notable features associated with these six putative viruses

include the reliance upon molecular methods for their detection,

their apparent endeminicity, their failure to produce cytopathic

effects in culture, their frequent detection in subjects with

expiratory wheezing and their limited sequence identity with

existing HRV strains but high shared sequence identity. Studies

employing subgenomic sequences proposed that there were many

of these putative viruses occupying a distinct position within the

genus Rhinovirus, which we collectively called HRV A2 [34]. It has

been proposed that these strains may constitute a new

picornavirus species [33]. Data have not yet been presented

which appropriately address classification using current ICTV

criteria and the scope of the clinical impact of these divergent

strains has not yet been studied in detail. Because it appears that

the members of this clade are frequently associated with LRT

illness we sought to better characterise them in the hope of

finding features that might prove useful in predicting the outcome

of HRV A2 infection.

Intensive genomic analysis and computer-based modelling

resulted in comprehensive characterisation of all HRV A2

polyprotein sequences and, by superimposing the sites of known

receptor contacts, we were able to propose a more robust

taxonomic placement for these newly identified viruses (NIVs).

Detailed medical chart reviews on HRV-QPM-positive (prototype

HRV A2) individuals were augmented by a severity scoring system

which quantified the outcome of infection by this apparently

uncharacteristically pathogenic clade of HRV strains.

Results

Genomic analyses
We undertook a comparative analysis of all HRV A2 complete

coding regions (n = 6; HRV-QPM, -X1, H2, -C024, -C025 and

C026) against all HRV A (n = 34), HRV B (n = 13), most HEV

sequences (n = 71, including species A–D) and two non-human

enteroviruses (simian, SEV and porcine, PEV).

HRV A2 sequences had a higher G+C content (average,

42.4%) than all other HRVs (average 38.7%) or HEV Ds and a

shorter coding region (average, 2144 aa) than any other

picornavirus investigated. The final residue of the HRV A2

genomes was an isoleucine, distinguishing them from all other

picornavirus genomes we investigated, which ended at the

preceding phenylalanine; the biological implications of this

feature are unknown.

We identified 10 protease sites (data not shown) dividing the

HRV A2 polyproteins into four structural and seven non-

structural proteins (Figure 1A). However, unlike previous studies

that relied on amino acid alignments to determine cleavage sites

[33], we obtained additional evidence that these sites were

recognised by 2Apro and 3Cpro by using a neural network protease

cleavage-site prediction tool. A single cleavage by 2Apro was

predicted between an A or L and a G residue at the VP1/2A

junction. The remaining cleavages, predominantly occurring

between Q and G residues, were mediated by 3Cpro. Three

motifs crucial for RNA polymerase binding (YGDD, TFLKR and

SIRWT) were identified in all HRV A2 sequences [35,36].

Using SimPlot� [37], the HRV A2 sequences were found to be

most similar to those from HRV A strains (54% identity) whereas

identity with HEV species ranged from 46%–49% (Figure 1B).

Dips in identity occurred across all regions but only the structural

region was investigated further because its components contain

antigenic sites and receptor contact residues, or ‘footprints’; the

latter being significant domains for defining the major and minor

group HRVs [38] and other picornaviruses.

Structural homology modelling
Although identifiable using amino acid alignments[33], the

scope and impact of the many HRV A2 sequence deletions could

not be fully qualified or quantified in this form. However, the

inability to isolate the HRV A2 strains in vitro will hinder

crystallography studies seeking to identify structural features, so we

created structure-based alignments of the VP1–4 sequences from

the prototype HRV A2 strain, HRV-QPM and used them to

predict the presence of a-helices and b-sheets. These were

identified in the eight, anti-parallel b-sheet ‘jellyroll’ conformation

A New Rhinovirus Species
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common among picornavirus proteins VP1, VP2 (including the EF

‘puff’) and VP3 [39] (Figure 2). Deletions in the VP1 protein

imparted the most dramatic changes, reducing the protrusion of

the BC, DE and HI loops compared with the other HRVs and

introducing an additional C-terminal sheet-loop-sheet structure

(arrow, Figure 2B). Similar deletions were noted in all HRV A2

strains but only HRV-C026 was predicted to encode a similar, C-

terminal structure in VP1. We next assembled the HRV-QPM

structural proteins into a protomer by associating them with the

closest sequence match (HRV-16) and then replicated this

structure in silico into a viral pentamer. RMSD values were

derived from the VP1, VP2 and VP3 structures of all HRVs with

crystallography-derived data available (HRV-1A, -2, -3, -14 and -

16) and compared to the predicted HRV-QPM structure. HRV-

QPM and HRV-16 shared the highest conformational similarity

(0.145, 0.142 and 0.147 Å for the VP1, VP2 and VP3 structures

respectively), reflecting the use of HRV-16 in predicting the

structure HRV-QPM. The poorest agreements were between

HRV-1A and HRV-3 in VP1 (0.793 Å) and VP3 (0.740 Å) and

between HRV-2 and HRV-14 in VP2 (0.697 Å). At the ICAM-1

footprint, HRV-QPM values ranged from 0.064–0.106 Å and

0.709–0.779 Å in comparison to the same regions on HRV-16

and -14, respectively. Values could not be determined for HRV-2

because of the impact of deletions. We also examined the

conformational agreement between an HEV footprint e.g. the

CAR site employed by CV-B3, and the predicted HRV-QPM

structure. A space filling model of the pentamer was next used to

display SimPlot data in order to visualise regions of sequence

conservation and diversification with a focus on the major (ICAM-

1; Figure 3A) and minor (VLDL-R; Figure 3C) group domains.

Overall, greater sequence identity was apparent between HRV-2

than HRV-14 reflecting the genomic similarity to HRV A strains,

however within the domains defining HRV groups, HRV-QPM

was most similar in its antigenic sites to the major group

representative, HRV-14. Most sequence diversity was found in

the VP2 protein while the most conserved protein in these

comparisons was VP3.

To study these regions in greater detail, we mapped known

HRV antigenic sites and receptor footprints onto ribbon

depictions of pentamers derived from empirically determined

structural data (major group, HRV-14, Figure 3B; minor group,

HRV-2, Figure 3D) and compared their locations and structures

to the predicted HRV-QPM pentamer. HRV-QPM and HRV-14

appeared to share a number of similar structures in the region of

the ICAM-1 footprint [6,33,40] (Figure 3B). The noteworthy

structural disparities were two small helices present in the HRV-

QPM sequences; one in the VP1 and the other in the VP3 ICAM-

1 footprint (Figure 3B; VP1 and VP3, ICAM-1 arrows). Similar

sequences were infrequent among the other HRV strains we

examined. The HRV-QPM NImIA and IB sites appeared to differ

structurally due to the shortening of the BC and DE loops in VP1

while the NImII and NImIII sites appeared structurally similar.

Comparison to HRV-2 (Figure 3D) also revealed the impact of

VP1 deletions. The resulting loops were shorter, which ablated

any analogue of antigenic site A and may hamper binding of the

VLDL-R molecule, the only LDLR family member with a well-

defined footprint. The area in VP1 forming site B was altered due

to the presence of more hydrophilic amino acids at the equivalent

positions in HRV-QPM (Figure 3D; VP1 site B, arrow). Deletions

were apparent but did not confer obvious structural changes to the

VP2 portion of site B. Furthermore, in antigenic site C (VP2), a

single deletion and a hydrophobic to hydrophilic amino acid

change contributed to a protrusion in HRV-QPM compared to

the same region in HRV-2.

Analysis of HRV-QPM in the context of HEV receptors
Given the comparative differences we observed when locating

and comparing the HRV domains, we also investigated the HRV-

Figure 1. Characterization of HRV A2 genomes. (A) Scale representation of the coding region from prototype HRV A2 virus, HRV-QPM.
Predicted protein products from the structural (VP4 to VP1) and non-structural (PRO-protease; POL-polymerase) regions are indicated. Regions are
shaded alternatively for convenience and numbering indicates positions of predicted protease cleavage according to the start of the HRV-QPM
polyprotein. Dashed lines indicate regions involved in species classifications. (B) HRV A2 amino acid similarity to HRV A (n = 34) and B (n = 13), or HEV
(n = 71) strains as determined by SimPlot� analysis. Plots indicate the percentage similarity of a 50% consensus sequence from each species’
polyprotein compared to the HRV A2 strains. Average similarity across the polyprotein is indicated by dotted line. Averaged values for the complete
coding, P1 and 2C+3CD regions are indicated within the inset of each panel.
doi:10.1371/journal.pone.0001847.g001
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Figure 2. Comparison of predicted protomers. (A) A simplified depiction of two protomers in opposition on a viral capsid (shaded areas,
adapted from [37]). As a guide for visualising loop length, a dashed and a dotted line are spaced equidistantly and represent proximal and distal
positions from the virion core, respectively. (B) Ribbon depiction of two opposing viral protomers from HRV-QPM, HRV-2 (minor group) and HRV-14
(major group). HRV-QPM proteins were predicted by in silico matching to the empirically derived HRV-16 and HRV-14 structure (materials and
methods). Protomers consist of one copy each of VP1, VP2, VP3 and VP4. b-sheets are depicted as flat arrows and a-helices as coiled ribbons. The
formation of VP1-VP3 into eight anti-parallel b-sheets is indicative of the ‘jellyroll’ conformation typical in picornaviruses. Major differences in the
predicted HRV-QPM VP1 include the shortened external loops between b-sheets (asterisk) and an additional C-terminal sheet-loop-sheet formation
(arrow indicates the same location on all protomers for comparison).
doi:10.1371/journal.pone.0001847.g002
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QPM capsid for the presence of footprints reportedly used by CV-

A21 (which employs ICAM-1 as a receptor), Echovirus (EV)-11

(DAF), Poliovirus-1 (PVR) and CV-B3 (CAR).

The deletions in the VP1 BC loop had a less obvious impact on

HEV receptor footprints which were mostly located on the b-

sheets rather than the loop (Figure 4). The EF loop in HRV-QPM

VP1 provided the greatest observable identity with any HEV

footprint while the C-terminal sheet-loop-sheet structure may

interfere with binding to the HEV receptors we investigated. All

the HEV VP2 receptor footprints occured in the EF ‘puff’ but in

this region of HRV-QPM a number of deletions and residue

substitutions were apparent (Figure 4) that affected the appearance

of predicted structural overlap. HEV footprints in VP3 differed

from HRV-QPM at the N-terminus and the CD loop due to

amino acid substitutions and loop-shortening deletions but they

overlapped in the GH loop.

HRV-QPM capsid prediction and visualization
HRV-QPM protomers were replicated and mapped onto an

icosahedral lattice (T = 1 configuration; Figure 5A), rendered in

3D and depth cued in order to predict capsid structures. Since

HRV-QPM protein and protomer structures were inferred by

homology to their closest available relatives, these capsids

(HRV-16 and HRV-14) were produced from the available

empirical data, using the same approach. Visual comparisons

revealed that the deletions in the HRV-QPM VP1 most

obviously reduced the size of protrusions around the 5-fold axis

of the capsid.

Phylogenetics
Previously, phylogenies had been estimated using subgenomic

sequences from HRV A2-like strains [31–33]. To test whether this

approach accurately represented inter-strain relationships, we

Figure 3. Predicted HRV-QPM pentamers compared to representative major (HRV-14) and minor (HRV-2) group HRV pentamers
derived from crystallography data. (A) HRV-QPM versus HRV-14 SimPlot data projected onto a space filling depiction of the predicted HRV-QPM
pentamer. Shading represents the amino acid identity (26–69%). The yellow dashed triangle represents a single icosahedral asymmetric unit (T = p3
conformation) composed of VP1 and VP2 from the same protomer and VP3 for an adjacent protomer. The major group domains of interest are
divided between two asymmetric units for ease of viewing. Receptor (white) and antigenic (red) sites are shown in outline. (B) Top view ribbon
depiction of a major group HRV pentamer (HRV-14; gray) with labelled antigenic neutralisation sites (NImIA-III, green) and combined HRV A (HRV-16)
and B (HRV-14)ICAM-1 receptor footprints (red) [6,37]. Magnified areas of interest (boxed) highlight computer-based predictive comparisons to the
equivalent HRV-QPM (orange) structures of interest. Arrows indicate structures and corresponding sequences of interest (refer to text). (C) HRV-QPM
versus HRV-2 SimPlot data projected onto the HRV-QPM pentamer. The domains of interest are mostly shown within a single asymmetric unit. (D) A
minor group pentamer (HRV-2; gray) including antigenic sites (sites A–C, green) and VLDL-R footprint (red) [10]. Attachment of the VLDL-R involves
adjacent VP1 molecules. Magnified VP1 area represents one half of a VLDL-R footprint [42]. Amino acid substitutions (arrowed) contributed to the
differences between minor group sites B and C.
doi:10.1371/journal.pone.0001847.g003
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compared the entire polyprotein sequences from 120 previously

described and, for the first time, all six newly-identified

picornavirus strains (Figure 6). We confirmed that the newly-

identified HRVs occupy a distinct phylogenetic position with the

genus Rhinovirus [34] and are most closely related to the HRV A

strains (also supported by SimPlot mapping; Figure 3). We also

found support for our earlier data [31] that this clade is divided

into two distinct subgroups. In the 2C and 3CD regions, these

Figure 4. Comparison of HRV-QPM and HEV structures at the sites comprising HEV receptor footprints. Figures indicate comparison of
the predicted structures of HRV-QPM (orange) with representative HEVs (gray) in regions identified as HEV receptor footprints (red) across VP1, VP2
and VP3 proteins. RMSD values shown for conformational comparison of CAR and HRV-QPM structures, in angstroms.
doi:10.1371/journal.pone.0001847.g004

Figure 5. Predicted virion capsid structures. (A) Replication (660) and mapping of the predicted HRV-QPM protomer onto a T = 1 icosahedral
lattice (representing T = p3 configuration). (B) 3D rendering of predicted HRV capsids providing imagery similar to that obtained by cryo-electron
microscopy reconstruction at 10 Å resolution. HRV-2, -14 and -16 predicted structures were derived from crystallography data. Each viral capsid has
been depth cued to demonstrate canyon structure; yellow indicates surface detail and blue identifies areas of greatest depth. (C) Numbers
superimposed over the lattice indicate the fold axis. The simplified position of the canyon is indicated by a circle on the capsid. All models were
rendered and oriented identically, as determined by VIPERdb [59].
doi:10.1371/journal.pone.0001847.g005
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subgroups share less than 70% amino acid identity, which also

occurs among members of the existing HRV species.

Clinical impact of HRV-QPM variants
Previously, preliminary and potentially subjective notes made

by physicians upon first contact with ill individuals had been used

for an approximate determination of the clinical impact of HRV-

QPM [31]. To better address clinical impact, a comprehensive

review of available patient charts was undertaken and two

objective severity scoring tools were applied (Table 1). Most

HRV-QPM-positive individuals (76.5%) were admitted to hospital

(Table 2). Five patients were admitted for 96 hours or longer; two

with severe illness and only HRV-QPM detected (variants 005 and

012) and one with moderate illness positive for HRV-QPM

(variant 017) and HCoV-NL63. The remaining two had

underlying medical conditions and multiple infections (HRV-

QPM variant 009 and HCoV-229E with cystic fibrosis deterio-

ration and HRV-QPM variant 008, HBoV and HCoV-NL63 with

a viral URTI during admission for cardiac surgery). Oxygen

therapy was required by almost half of all HRV-QPM-positive

individuals studied. In addition to those described previously

[31], a new co-detection was identified with the newly identified

polyomavirus, WUPyV [41] in a patient exhibiting a persistent

cough, already positive for HRV-QPM (variant 013) and

HBoV.

Applying species criteria to the HRV A2 strains
In silico data obtained from this study permitted an enhanced

analysis of HRV A2 strains using the ICTV criteria which assign

a member to the genus Rhinovirus or Enterovirus [42] (Table 3).

The requirement common to both genera was for .70% amino

acid identity in the P1 and 2C+3CD regions; this was not met by

the HRV A2 genomes (Figure 1B). The remaining Rhinovirus

species criterion was classification based on capsid-binding

antiviral susceptibility and we found here, building upon earlier

data [31], that all HRV A2 strains contain a Thr191. This

residue reportedly contributes to conveying resistance to the

capsid-binding antiviral Pleconaril [4,43], placing the divergent

HRVs into antiviral Group A [5].

Comparison to the Enterovirus species criteria revealed several

features that may also be applicable for classifying HRV A2

strains. Firstly, although we could not identify a specific receptor

using these in silico methods, the HRV-QPM models most closely

accommodated interaction with an ICAM-1-like molecule, similar

to some HEV C viruses [44]. Secondly, HRV A2 genomes

exhibited #2.5% variation in G+C composition compared to

HEV C and HEV D and ,5% compared to HEV A and HEV B.

Thirdly, HRV- and HEV-like protease cleavage sites and locations

suggested similar proteolytic processing (Figure 1A). Although we

have been unable to find any indication of recombination in

HRV-QPM [31], the differences in amino acid identity within the

novel HRVs, particularly in the 2C and 3CD region of HRV-X2,

-C024 and -C025 compared to HRV-QPM, -X1 and -C026 (data

not shown), may indicate a relevant event requiring further study.

r
Figure 6. Neighbour-joining phylogeny based on representa-
tive full-length picornavirus polyprotein sequences. Trees are
unrooted and relevant nodes are labelled with bootstrap values (%) (see
materials and methods for details). Species are indicated next to vertical
bars. CV-Coxsackievirus A; EV-Echovirus; HEV-Enterovirus; HPV-Poliovi-
rus.
doi:10.1371/journal.pone.0001847.g006
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In sum, these data indicate that the HRV A2 strains cannot

be assigned to an existing HRV or HEV species and should

be assigned to a new species, tentatively called Human rhinovirus

C.

Discussion

In 2007, the sequences of a number of divergent HRV strains

were reported as a result of worldwide molecular investigations

into cases of suspected ARTI [26,31,33]. Because these strains

formed a distinct clade within the existing HRV As, we

previously assigned to all Australian and similar New York

strains, the title of HRV A2 [31]. Kistler et al. identified similarly

divergent strains [32] and Lau et al. used sequence-based

criteria to propose that some HRV A2-like strains could be

classified as a new species [33]. Our ongoing efforts to

characterise additional HRVs led us to catalogue the distin-

guishing molecular and clinical features of these HRV A2-like

strains and to better address their taxonomic placement. We

undertook in silico analyses, for the first time using all complete

HRV A2 coding sequences and performed a retrospective

review of the medical records of cases from which variants of the

prototype strain, HRV-QPM, had been previously detected. To

date the studies reported herein are the first of their kind to have

been conducted on a single HRV strain.

During our genomic analysis we found HRV A2 strains shared

only 50%–53% average amino acid sequence identity with other

HRV strains (Figure 1); less with any strain from an HEV species.

Average HRV A2 G+C content (42.4%) fell between the

rhinovirus (38.7%) and enterovirus (45.6%) genera, suggesting

an intermediate evolutionary path for HRV A2 strains. Nonethe-

less, a large number of HRV motifs, including those recognized by

Table 1. Criteria used to determine the severity[60] of respiratory illness upon discharge, in patients presenting to Queensland
hospitals who tested positive for HRV-QPM.

Criteria Value assigned = 0 Value assigned = 1

Respiratory support1 No oxygen Oxygen therapy Mechanical ventilation

Intravenous fluid support2 No fluids Required fluids

Hospitalization3 Not admitted Admission $96 hours

Total severity score 0–1 2–3 4–5

Severity classification Mild Moderate Severe

1Respiratory support by oxygen therapy and/or mechanical ventilation, 2Supplementary fluids delivered by either intravenous and/or nasogastric route, 3[61].
doi:10.1371/journal.pone.0001847.t001

Table 2. HRV-QPM detections and association of co-morbidities and severity of respiratory illness upon discharge.

Strain Age(months)/Gender Co-detection
Notes on presentation and
underlying conditions

Mechanical
Ventilation and
treatments

Severity
Score4

HRV-QPM001 10/M Bronchiolitis 01,3 2

HRV-QPM016 11/M HMPV Croup-like cough, Labs-Pert 01,2,3 1

HRV-QPM015 1/M HCoV-NL63 Croup-like cough, Labs-Pert 01 2

HRV-QPM017 11/F HCoV-NL63 Croup-like cough 01,2,3 3

HRV-QPM012 5/F Bronchiolitis, CHD 03 4

HRV-QPM011 30/F Febrile convulsion 0 1

HRV-QPM013 16/M HBoV; WUPyV Hacking persistent cough, Labs-Pert 0 1

HRV-QPM009 357/M 229E CF 0 3

HRV-QPM006 7/F Bronchiolitis, Trisomy 21, CHD, Labs-Myco 0 2

HRV-QPM003 32/M Wheeze 03 1

HRV-QPM005 815/F Severe exacerbation of COPD 1 5

HRV-QPM004* 0/F Bronchiolitis 03 0

HRV-QPM008 13/F HBoV; NL63 Viral URTI, CHD 1 05

HRV-QPM007 55/M Viral URTI-asthma, Labs-Myco 01,3 1

HRV-QPM010 10/F Bronchiolitis, Labs-Pert 01,3 2

HRV-QPM014* 9/M Labs-Pert 0 0

HRV-QPM002 43/M Viral URT illness and asthma 01,3 1

HMPV-Human metapneumovirus, HCoV-229E or -NL63-Human coronaviruses, HBoV-Human bocavirus, WUPyV-WU polyomavirus. Labs-Myco/Pert- laboratory testing for
Mycoplasma spp. or Bordetella pertussis. 1Steroids, 2adrenalin or 3bronchodilators administered, 4Comparison of severity score using Wilcoxon rank-sum test for HRV-
QPM cases with and without co-detection, p = 0.88. 5Recorded as ‘zero’ due to the patient being admitted for cardiac surgery and all criteria were in relation to the
surgery and not the ARTI. * Not admitted. CF-cystic fibrosis. NC-No chart could be obtained for review, CHD-congenital heart disease. NN-No notes were available from
presentation during the preliminary study.
doi:10.1371/journal.pone.0001847.t002
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the RNA-dependent RNA polymerase, were retained by HRV A2

strains. This supported the proposal that some HRV genomic

regions are under purifying selection [26], even among the newly

identified and divergent strains. HRV A2 strains were most similar

to the HRV As overall, but amino acid sequences were as different

from any traditional HRV or HEV species as the species in those

genera were from each other. Previous subgenomic HRV A2

nucleotide phylogenies [31–33] were confirmed and expanded

herein reinforcing that these NIVs reside within a distinct clade of

the genus Rhinovirus, branching from the existing HRV A species

(Figure 6).

The inability to propagate an HRV A2 virus could be due to

many factors including the age, storage, site of origin and amount

of the inoculum, its handling during processing, how long after

symptoms appear before sampling occurs and the culture

conditions used. It is also possible that an unknown primary

receptor is employed or that binding of a secondary receptor is

required for successful viral attachment and entry; or a mix of

both. We sought to approach receptor-related issues using

homology models derived crystallography data which already

exist for a small number of HRV strains. Models of the component

structural proteins from the prototypical HRV A2 strain, HRV-

QPM, predicted that the characteristic ‘jellyroll’ conformations

were retained (Figure 2) despite frequent and distinguishing

deletions and inter- and intra-genus diversity at the sites of

receptor contact and antigenicity (Figure 3). This also supported

findings that HRV variability is mostly localized to receptor and

antigenic sites [24,33,45] and begins to extend the data to include

the more divergent strains.

The VP1 BC and HI loops receive the VLDL-R molecule

among some minor group HRV strains [12,46,47]. The

comparative reduction in size of protrusions along the 5-fold axis,

resulting from deletions in the BC, DE and HI loops of the HRV-

QPM VP1, together with structure-altering deletions and

substitutions affecting some antigenic sites previously identified

from a minor group strain (HRV-2), particularly site A, lead us to

propose that HRV A2 viruses are unlikely to behave as members

of the minor group. Mapping the known ICAM-1 contact sites

onto the predicted HRV-QPM structure revealed that most of the

footprint was retained in structure by HRV-QPM, although it

differed in sequence compared to other major group strains.

SimPlot data revealed that sequence variation was not uncommon

among strains within the major groups. Two small a-helices

predicted to form in the HRV-QPM VP1 and VP3 footprints may

disrupt receptor binding but since ICAM-1 is predicted to attach

at differing angles in different HRV strains [8], it may be suitably

flexible to overcome such obstacles. Although NImIA and NImIB,

first identified in a major group virus (HRV-14), were affected by

the deletions in VP1, additional support for HRV-QPM belonging

to the major HRV group came from structural similarities in the

NImII (VP2) and NImIII (VP3). Amino acid substitutions

occurred at these sites (ERG and GRT respectively) rather than

insertions or deletions. These variations may result in distinct

immunogenicity.

Localisation of four known HEV receptor footprints to the

predicted HRV-QPM structure identified at least one major

sequence and/or structural divergence in each (Figure 4).

However, like the ICAM-1 interactions with HRV-14 and -16,

HEV receptors could still bind at the same locations but utilize

different amino acids on the capsid of HRV A2 strains [20].

Recent findings by Bartlett et al have shown that once past the

receptor, HRV replication can occur within non-human tissues

[48] exemplifying the importance of receptors in moderating the

potential for more widespread HRV replication and illness. The

high detection frequency of HRV A2 strains from patients with

acute LRT illness may be another indication that these divergent

viruses employ a tissue-specific receptor or it may be that all HRV

strains cause similar illness, they simply have not been subjected to

sufficient individual study. The LDLR family of molecules are

located on many tissues in many species [10] and yet all these

locations do not, to our knowledge, host HRV replication.

Identifying an HRV A2 receptor in vitro cell culture system will

be important for empirically addressing receptor- and replication-

related issues and the outcomes may have broad implications for

what is currently known of the attachment, entry and replication

of HRV strains. Based on our predictive in silico studies of HRV-

QPM, an ICAM-like molecule may be an early candidate for the

role of receptor.

Table 3. Adherence of the newly identified HRV A2s to the ICTV species demarcation criteria.

ICTV Classification HRV A2 (n = 6) compared to

Genus Rhinovirus HRV A (n = 35) HRV B (n = 12)

.70% amino acid identity in P1 No No

.70% amino acid identity in 2C + 3CD No No

Receptor attachment inhibited by similar antiviral agents;

Group A Yes

Group B TD

Genus Enterovirus HEV A (n = 11) HEV B (n = 43) HEV C (n = 13) HEV D (n = 4)

.70% aa identity in P1 No No No No

.70% aa identity in 2C + 3CD No No No No

Share a limited range of host cell receptors No No Yes No

Genome G+C composition varies #2.5% No (5.2%) No (5.5%) Yes (2.3%) Yes (0.5%)

Compatibility in proteolytic processing, replication,
encapsidation and genetic recombination

TD

Share limited range of natural hosts TD

Numbers next to species indicates the number of polyprotein sequences included in the comparison. Bracketed percentages indicate G+C content variation of the HRV
A2 polyprotein coding region to reference species. TD-to be determined. * See Figure 6 for accession numbers.
doi:10.1371/journal.pone.0001847.t003
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Future in silico studies could examine all available HRV

polyprotein sequences to predict the extent of flexibility in

receptor interactions ‘normally’ occurring in the major and minor

groups. This would provide a context for the structural differences

we observed in HRV-QPM. The sequence of most HRV genomes

is unknown and our understanding of HRV structure is mostly due

to crystallography data derived from less than 5% of HRV strains.

There are limited structural data to support the wholesale

extrapolation of receptor binding behaviour and capsid structure

to the other HRV strains. Without data to the contrary, in silico

analyses appear to provide a suitable surrogate to address this

issue. By employing RMSD calculations to examine the

conformational similarity between predicted HRV-QPM struc-

tures and those from HRV structures determined empirically, we

could be confident that our predictions approximated experimen-

tal data. All comparative values (0.064–0.766 Å) were well below

the maximum resolution used to originally determine HRV crystal

structures (2–3 Å [14,15,49]). Comparison to an HEV footprint

also returned values below this threshold.

While the inability to cultivate divergent HRV strains is a

defining feature of the HRV A2s it is also a hindrance to

classifying them. In our experience (data not shown), the earliest

PCR-based methods [50] are already efficient at detecting these

divergent strains. By extrapolating from published subgenomic

sequence data, this clade is populated by a great number of

divergent strains which are distributed both geographically and

temporally, suggesting an endemic aspect to these previously

uncharacterised viruses. No evidence exists to suggest that the

HRV A2 strains are emerging viruses, rather it appears that they

are newly identified strains that have been contributing to

respiratory illness, in the absence of detection using culture-based

diagnostic methods, for many years. There has now arisen a need

for reliable protocols to characterise these putative viruses but in

the absence of an HRV A2 isolate, neutralization, acid sensitivity

and antiviral susceptibility studies, important for taxonomic

placement, cannot be obtained. We have catalogued a series of

features using methods which, while requiring further validation,

contribute to our understanding of the biology and pathogenesis of

HRV A2 strains. Additional molecular approaches will also be

useful to classify other recently described divergent HRV strains

[51]. Our data demonstrated that the newly identified HRVs,

residing within the HRV A2 clade, do not satisfy the criteria for

assignment to any existing HRV or HEV species and most likely

constitute one or more novel species in the current genus

Rhinovirus, tentatively called Human rhinovirus C (HRV C).

Until recently, the genus Rhinovirus has been frequently

neglected from clinical laboratory diagnosis and to date its

members are not sought independently. Improved diagnostic

methods, the broader application of existing PCR technology, new

sequence data and many new insights have greatly enhanced our

understanding of human rhinoviruses and the selective pressures

impacting on their evolution [25,26]. Similarly, the identification

of a putative new HRV species, HRV C, the characterisation of

HRV-QPM’s molecular features and epidemiology and the

identification of similar viruses around the world [31,34,52] have

potential to reinvigorate HRV research. We found that the

variants of one strain of the HRV Cs, HRV-QPM, sought in a well

characterised population of specimens collected over all months of

a single year, were more often associated with LRT illness than is

commonly reported. The illness frequently presented as exacer-

bation of expiratory wheezing or persistent cough, with a

requirement for supplemental oxygen, steroids and bronchodilator

treatments. Despite exhaustive PCR-based investigation for other

respiratory viral causes in our previous retrospective studies

[31,41], HRV-QPM detection, in the absence of any other

pathogen, occurred among infants with mild, moderate and severe

(in both instances) LRT illness and most cases (88.2%) were

admitted to hospital. Associated illness was usually (92.3% of the

time) scored as mild to moderate and 58.8% of the HRV-QPM

positive cases were children aged 12 months or less. The same age

group represented 43.2% of the total study population originally

screened for HRV-QPM (n = 1,244). While it is to be expected

that a paediatric hospital-based population would overestimate the

severity of HRV C clinical impact compared to a community-

based study, our study may in fact better represent the impact of

first infection with HRV strains, the major pathogens detected

during the first year of life [53].

It will be important to further characterize these NIVs and

determine whether their differences confer distinctive biological

behaviours, such as unique growth properties, antiviral resistance

and discrete clinical outcomes among infected individuals. Strain-

focussed studies could also identify how many distinct HRVs

circulate in a single respiratory season, how often a given strain

recurs in a population and just how many HRV strains there are.

Materials and Methods

Nucleotide and amino acid comparisons
Nucleotide and amino acid compositions were determined using

BioEdit Sequence Alignment Editor� v7.0.5.3. Picornavirus

coding sequences (obtained from GenBank or picornaviridae.com)

were determined by multiple alignments and subsequent trunca-

tions of the 59and 39UTRs. Discrepant nucleotides were

substituted with the most frequently employed nucleotides, as

determined by consensus alignment. Alignments available upon

request. Predicted picornavirus cleavage sites were identified by

amino acid sequence submission to the NetPicoRNA World Wide

Web server [54].

Amino acid similarity was determined using SimPlot� v3.5 [37]

employing the Hamming method on a 50% consensus of each

group, a sliding window of 100 bp and a 1 bp step. Similarity data

were mapped to the HRV-QPM capsid residues on the original

sequence alignment and visualized using Chimera [55].

Phylogenetic analyses
Picornavirus polyprotein sequences were compiled, translated,

and aligned with the program BioEdit [56]. A neighbour-joining

tree was generated using the Kimura two-parameter estimation in

MEGA 3.1 [57]. Nodal confidence values (%), noted at the

relevant nodes, indicate the results of bootstrap resampling

(n = 1000). Because of the sequence diversity among the viruses

analyzed, we undertook an additional analysis on a subgroup of

strains whereby we gap-stripped the alignment, removing all gaps/

highly divergent regions and re-estimated the phylogeny (data not

shown). This confirmed the phylogenetic position determined in

the first instance.

Structural homology modelling
Secondary structures in the HRV A2 structural proteins were

predicted using amino acid sequences submitted to the Jpred

web server (http://www.compbio.dundee.ac.uk/,www-jpred/

submit.html). The location of a-helices and b-sheets were revealed

by comparison to other picornavirus sequences using Cn3D 4.1

(http://130.14.29.110/Structure/CN3D/cn3d.shtml) (data not

shown).

To determine the predicted protomer structure of HRV-QPM,

DeepView/Swiss-Pdb Viewer v3.7, [58] were used to locate and

individually thread HRV-QPM amino acid sequences into HRV
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reference structures. Of the five HRV strains with empirically

determined structural data available, HRV-14 [14] and -16 [49]

shared the highest sequence identities with HRV-QPM in the regions

chosen. Proteins VP1 to VP3 were aligned and threaded through

HRV-16 (1ayn1, 1ayn2, 1ayn3 respectively) and VP4 through HRV-

14 (1na1). Models were submitted to the SWISS-MODEL server for

final threading analysis. The resulting HRV-QPM protein data bank

files (PDB) were then matched and structurally aligned to a template

HRV protomer (HRV-16, 1AYN). Other picornavirus reference

PDB files used in this study: HRV-2 (1FBN), HRV-3 (1RHI), HRV-

14 (4RHV), CV-A21 (1Z7S), E-11 (1H8T), PV-1 (1HXS) and CV-B3

(1COV). Structural matching, alignments, ribbon figures, capsid

predictions and root mean square deviation (RMSD) data were

produced using Chimera [55].
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