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Newly emerging and reemerging infectious diseases con-
tinue to pose a substantial threat throughout the world. Un-
derstanding the immune mechanism during infection con-
tributes not only to discoveries in science but also to ad-
vances in health care. Chinese researchers have made tre-
mendous efforts to decipher the underlying mechanism of 
how pathogens elicit and evade immune responses and the 
immune homeostasis during infection. Here, we review new 
findings in Chinese studies concerning immune response to 
pathogens, immunoregulation and pathogen evasion, which 
offer us new insight into the trend in infectious immunology 
in China. 

Response to pathogens 

The immune response triggered by microbial pathogens 
achieves appropriate effector function from diverse path-
ways to protect the host against destructive invasion. How-
ever, most of the underlying mechanism remains unclear. 

The first defense employed by the innate immune re-
sponse is to recognize molecular patterns expressed by in-
vading pathogens via pattern recognition receptors (PRRs). 
Proteins on pathogens which are involved in driving host 
immune response are defined. The surface glycoprotein 
hemagglutinin (HA), the most important protein in molecu-
lar epidemiology and pathogenesis of influenza viruses, is 
characterized in the swine-origin influenza virus A 

(H1N1)-2009 [1]. Tp0751 recombinant protein from T. pal-
lidum is found to induce the production of proinflammatory 
cytokines and the ensuing immune responses [2]. The PRRs 
may locate either on the membrane surface e.g. Toll-like 
receptors (TLRs) or inside the cytoplasm e.g. Nod-like re-
ceptors (NLRs). NLRs assemble into multimolecular ma-
chines termed inflammasomes to detect intracellular patho-
gens [3]. Inflammasomes drive inflammatory processes 
through promoting the maturation of inflammatory cyto-
kines such as interleukin (IL)-1 and IL-18 [4–7]. Alterna-
tively, the recognition of lipopolysaccharide (LPS) is main-
ly mediated by TLR4/myeloid differentiation protein-2 
(MD-2) heterodimers. During this process, residues 
Glu24-Met41 in the N terminal of TLR4 are involved in 
TLR4 binding to MD-2 and LPS-stimulated TLR4 aggrega-
tion [8]. Signaling pathways initiated by ligand binding to 
TLRs activate NF-B, Mitogen-activated protein kinase 
(MAPK), and interferon (IFN), during in which the tumor 
necrosis factor (TNF) receptor-associated factor (TRAF) 
family is shown to participate [9–11]. These responses trig-
gered by PRRs recognizing pathogens culminate activation 
of antimicrobial killing mechanisms and secretion of cyto-
kines and chemokines. For example, production of broad-       
spectrum antimicrobial peptides is a common innate im-
munity defense mechanism against infection. As potentially 
great alternatives to current antibiotics, antimicrobial pep-
tides have been studied in most researches [12–17]. Chen 
and colleagues have first isolated antibacterial peptides from 
the ovine reproductive tract [18]. Two novel temporins, one 
of important families of antimicrobial peptides from Litho-
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bates catesbeianus, have been molecular cloned [19]. The 
antimicrobial mechanism of these peptides has been inves-
tigated. Due to the critical role of type I IFNs in innate anti-
viral response, their production and downstream signaling 
cascades are often the hot topics under intensive investigation. 
Plasmacytoid dendritic cells (pDCs), which sense viral nu-
cleic acids within the endosomal compartments through their 
TLR7 and TLR9, are professional type I IFN-producing cells. 
These IFNs not only directly inhibit viral replication but 
also play an essential role in linking the innate and adaptive 
immune system [20]. The Mx GTPase pathway is one of the 
most powerful antiviral mechanisms induced by IFNs. Be-
longing to the dynamin superfamily of large GTPases, Mx 
proteins have direct antiviral activity by interfering with 
viral genome replication [21–23]. Sun and colleagues have 
well reviewed recent findings in the structural and function-
al studies of Mx protein, which are significant for prophy-
laxis and control of the emerging and re-emerging viruses 
[24]. 

Immunoregulation 

Although these responses are physiologically designed for 
the defense against pathogens, their inappropriate or poorly 
restricted activation drives inflammatory disorders and 
causes host pathology. Thus, not only pathogen-associated 
molecular pattern recognition but also inflammatory process 
are normally under stringent regulation. A novel pathway 
mediated by CD24 and its receptor is essential in 
self-nonself discrimination in pattern recognition, enabling 
to initiate immunity against pathogens without significant 
immune-mediated self-destruction in case of tissue injuries 
[25]. Recent studies have revealed that conventional T cells 
dampen the innate immune response during the early phases 
of infection, and effector and memory T cells dampen the 
hyperactive inflammasome during late phase of primary 
responses or on secondary challenges, regulating host im-
munity appropriately [26]. In addition, regulators, such as 
soluble TLRs, growth arrest-specific gene 6 (Gas6), sup-
pressor of tumorigenicity (ST2) and so on, act at multiple 
levels within TLR signaling transduction [27,28]. As a 
transcriptional factor significantly involved in inflammation, 
Kruppel-like factor 4 (KLF4) inhibits LPS-induced IL-6 
release and thus limits potentially harmful immunopatho-
logical consequences [29]. Some mechanisms are employed 
by negative regulators to ensure the appropriate modulation 
of immune response [30–32].  

Pathogen evasion 

In opposition to host protective strategy, some pathogens 
may be able to evade and subvert immune responses. Pro-
grammed death 1 (PD-1), a negative regulator for activation, 

expansion and acquisition of effector functions of T cells, is 
well involved in pathogen evasion strategies [33,34]. Alt-
hough extensive studies have been performed on function of 
PD-1, as so far regulation mechanism of PD-1 expression 
has not been reported. Zheng and colleagues have identified 
and characterized the promoter and upstream regulation 
region of mouse PD-1, providing important clues for the 
PD-1 gene transcriptional regulation [35]. In addition, pa-
pain-like proteases (PLPs), produced by coronavirus such as 
SARS and NL63, attenuate the innate response against virus 
through their IFN antagonism activities. As deubiquitinating 
enzymes, PLPs block polyI:C-induced activation of Inter-
feron regulatory factor 3 (IRF3) and NF-κB, thus reducing 
IFN induction. Meanwhile, PLPs deactivate ERIS, an endo-
plasmic reticulum IFN stimulator, by inhibiting the ERIS 
dimerization [36–41]. Another mechanism involved in 
pathogen evasion is induced by IbeT, an E. coli K1 patho-
genicity island gene. It has been shown that IbeT contrib-
utes to escape from the lysosomes into the cytoplasm for 
replication after E. coli K1 invasion into human brain mi-
crovascular endothelial cells [42,43]. 

These studies have evaluated immune mechanisms in-
volved in infection in cutting-edged aspects, which will not 
only help us better understand the process of infection but 
also lay a foundation for developing novel therapies for 
infectious diseases. 
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