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Inactivation of the Hippo tumour suppressor
pathway by integrin-linked kinase
Isabel Serrano1, Paul C. McDonald1, Frances Lock1, William J. Muller2 & Shoukat Dedhar1

One of the hallmarks of cancers is the silencing of tumour suppressor genes and pathways.

The Hippo tumour suppressor pathway is inactivated in many types of cancers, leading to

tumour progression and metastasis. However, the mechanisms of pathway inactivation in

tumours remain unclear. Here we demonstrate that integrin-linked kinase (ILK) plays a critical

role in the suppression of the Hippo pathway via phospho-inhibition of MYPT1-PP1, leading to

inactivation of Merlin. Inhibition of ILK in breast, prostate and colon tumour cells results in the

activation of the Hippo pathway components MST1 and LATS1 with concomitant inactivation

of YAP/TAZ (Yes-associated protein/transcriptional co-activator with PDZ-binding motif)

transcriptional co-activators and TEAD-mediated transcription. Genetic deletion of ILK

suppresses ErbB2-driven YAP/TAZ activation in mammary tumours, and its pharmacological

inhibition suppresses YAP activation and tumour growth in vivo. Our data demonstrate a role

for ILK as a multiple receptor proximal regulator of Hippo tumour suppressor pathway and as

a cancer therapeutic target.
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T
umour progression, metastatic potential and response to
therapy depend on complex genetic, epigenetic and
tumour microenvironmental interplay. Despite intensive

efforts at identifying genetic mutations that promote tumour
progression, genetically identical tumour cells have been
demonstrated to behave very differently in vivo1,2. The
bidirectional interaction between tumour cells and the tumour
microenvironment can influence the tumour phenotype
by switching intracellular signalling pathways on or off, or by
switching from one signalling pathway to another3,4, thus evading
the effects of therapeutics and promoting tumour recurrence and
metastasis. The highly evolutionarily conserved Hippo tumour
suppressor signalling pathway5,6, which restricts organ size and
proliferation, has emerged as one such prominent pathway which
is ‘switched off’ in many types of cancers. Core components of the
Hippo pathway include the mammalian sterile 20-like kinases
(MSTs), Large tumour suppressor kinases (LATSs) and the
adaptor proteins Salvador homologue 1 (SAV1; also called
WW45) and Mps One Binder kinase activator proteins7. The
major target of the Hippo core kinase cascade is the mammalian
transcriptional activator Yes-associated protein (YAP) and its
paralogue transcriptional co-activator with PDZ-binding motif
(TAZ). Phosphorylation of YAP and TAZ by the Hippo pathway
leads to their sequestration in the cytoplasm by interaction with
14-3-3 proteins and ubiquitination-dependent proteosomal
degradation8. In cancer, Hippo signalling is inactivated, and
YAP and TAZ are activated and free to translocate into the
nucleus to promote cell proliferation. Nuclear YAP/TAZ activate
or suppress transcription factors that regulate target genes
involved in cell proliferation, tissue growth, control of organ
size and shape or metastasis5,9–12. These transcription factors
include: TEAD1–4 (important for growth promotion and
epithelial–mesenchymal transition), SMADs (TGF-b
(transforming growth factor beta) signalling), RUNXs (blood
and bone formation), p63/p73 (apoptosis), PAX3 (neural crest
formation), PPARc (adipogenesis), TTF1 (thyroid and lung
morphogenesis) and TBX-5 (WNT/b-catenin signalling and
cardiac and limb development)7.

Although recent reports have identified upstream positive and
negative regulators of the pathway10,13, its membrane proximal
components are not established, although cell density and actin
cytoskeletal organization can modulate the pathway14,15.

Integrin-linked kinase (ILK) is an integrin associated, actin and
tubulin cytoskeletal interacting effector, which regulates several
cell adhesion and integrin-mediated as well as growth factor-
regulated functions16–18. ILK coordinates several signalling
pathways, and it has been shown to activate Pi3Kinase/Akt,
Wnt, TGF-b and epithelial–mesenchymal transition signalling in
various types of cancer cells16,17. Furthermore, ILK expression is
upregulated in many types of cancers17,18. We therefore wanted
to determine whether ILK signalling cross-talks with the Hippo
pathway.

Here we demonstrate that ILK is a critical negative regulator of
the Hippo tumour suppressor pathway in human breast, prostate
and colon cancer cells. ILK, by inhibiting MYPT1 through direct
phosphorylation, prevents Merlin dephosphorylation and activa-
tion, resulting in the inhibition of the Hippo kinase cassette and
nuclear accumulation of YAP/TAZ. Inhibition of ILK expression
with siRNA or pharmacological inhibition of its activity, results in
a dramatic activation of the Hippo pathway, leading to YAP/TAZ
phosphorylation and sequestration in the cytoplasm, with
concomitant inhibition of TEAD transcriptional activity. Further-
more, genetic knockout of ILK in ErbB2-activated mammary
tumours leads to YAP inactivation, as does pharmacological
inhibition of breast tumour growth in xenograft tumour models
in vivo. These data collectively point to an important role of ILK

in inhibiting the Hippo tumour suppressor pathway in cancer
cells, and identifying ILK as a potential therapeutic target for
re-activation of Hippo signalling.

Results
Inhibition of ILK leads to YAP inactivation in tumour cells.
Hippo pathway perturbation can trigger tumorigenesis in mice,
and mutations and altered expression of a subset of Hippo
pathway genes have been observed in human cancers19,20. To
determine a potential role of ILK in the suppression of the Hippo
pathway, we initially examined the phosphorylation status of
YAP protein in different human tumour cell lines. As shown in
Fig. 1a, we found that phosphorylation of YAP on Ser127 was
significantly enhanced upon siRNA-mediated knockdown of ILK
expression in HCT116 colon and PC3 prostate tumour cells,
indicating that inhibition of ILK leads to YAP inactivation in
these cell lines. In addition, we utilize MDA-MB-435 LCC6 breast
cancer cells to examine as well YAP/TAZ nucleo/cytoplasmic
localization in response to ILK depletion. As shown in Fig. 1b,
extensive localization of YAP is shown in the nuclei of MDA-MB-
435 LCC6 breast cancer cells, which was sequestered to
the cytoplasm in ILK siRNA-treated cells. These data suggest
that in these human colon, prostate and breast cancer cell lines,
the Hippo pathway is inactivated and that ILK plays a role in
this inactivation since inhibition of ILK expression resulted
in the phosphorylation of YAP and its sequestration in the
cytoplasm.

To examine the role of ILK in regulating the pathway in more
detail, we treated PC3 and HCT116 human tumour cells with a
highly specific inhibitor of ILK kinase activity16,18,21. This small
molecule inhibitor, QLT0267, has previously been tested against
150 protein kinases and found to be highly selective at inhibiting
ILK activity relative to other kinases21 with only one off-target
kinase reported, the FMS-like tyrosine kinase 3 (ref. 22). As
shown in Fig. 2a, treatment of these cell types, under standard
growth conditions, with 10 mM QLT0267 resulted in a time-
dependent stimulation of phosphorylation of MST1 (T183),
LATS1 (T1079) and YAP (S127). In addition, since
phosphorylated YAP and TAZ have been demonstrated to be
sequestered in the cytoplasm by 14.3.3 (ref. 8), we observed that
in both cell lines, inhibition of ILK resulted in the sequestration of
YAP to the cytoplasm with partial 14:3:3 co-localization,
compared with cells treated with dimethylsulphoxide (DMSO)
(vehicle), in which YAP was almost exclusively localized to
the nuclei (Fig. 2b). Inhibition of ILK activity also resulted in
the interaction of the YAP paralogue, TAZ and 14:3:3 (Fig. 2c).
Furthermore, inhibition of ILK in several cancer cell lines resulted
in the suppression of the transcriptional activity of the TEAD
transcription factor (Fig. 2d), which is known to be activated by
the YAP/TAZ transcriptional co-activators6. Since the YAP/
TEAD transcription factor complex is known to activate genes
involved in cell growth, we determined the effect of the ILK
inhibitor on cell growth of PC3 cells. As shown in Fig. 2e, the
growth of these cells was significantly inhibited by QLT0267 in a
dose-dependent manner. These data demonstrate that ILK
suppresses the Hippo pathway in several types of tumour cells
through inactivation of the core kinases, MST1, LATS1 and the
concomitant activation of YAP/TAZ oncogenes.

Growth factor-mediated inactivation of Hippo requires ILK.
The Hippo pathway has recently been reported to be regulated by
G-protein-coupled receptor signalling through lysophosphatidic
acid (LPA), as well as by epidermal growth factor (EGF)13,23.
In addition, TGF-b has been shown to activate YAP and YAP-
mediated transcription24. Since ILK is an established effector
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of several growth factors, such as TGF-b, EGF, Wnt1 and
Wnt3a16–18, we wanted to determine whether ILK is required for
the suppression of the Hippo pathway and YAP activation by
these growth factors. As demonstrated previously, treatment of
MCF10A cells with either TGF-b1, EGF or LPA resulted in
dephosphorylation of YAP, indicating suppression of Hippo
signalling by these factors. However, silencing ILK expression
(Fig. 3a), inhibited the suppression of phosphorylation of YAP
by these factors, thus resulting in stimulation of YAP
phosphorylation on Ser127. In addition, nuclear localization of
Smad 2/3 was induced in response to TGF-b1 signalling in
MCF10A cells independent of ILK as shown previously16

(Fig. 3b). However, TGF-b1-induced nuclear localization of
YAP/TAZ was ILK dependent in MCF10A breast and BPH-1
prostate epithelial cells since co-incubation with the ILK
inhibitor, QLT0267, or silencing its expression, resulted in the
cytoplasmic retention of YAP/TAZ (Fig. 3b,c). Interestingly,
silencing TAZ and/or YAP expression, resulted in a significant
decrease in cell proliferation in MCF10A cells (Fig. 3d). The same

results in decreased cell proliferation were observed in ILK-
depleted cells (Fig. 3d). These results suggest that ILK is an
upstream regulator of Hippo signalling through multiple growth
factor/receptor systems.

ILK inhibits Merlin through MYPT1 phosphatase. The con-
served Hippo pathway is stimulated in mammals by the FERM
domain-containing tumour suppressor NF2 (neurofibromatosis
type 2)/Merlin, resulting in the sequential activation of the
MST1/2 and LATS1/2 kinases8. Because the inhibition of ILK in
tumour cells significantly enhances the phosphorylation (and thus
the activity) of MST1 and LATS1, the point at which ILK affects
regulation of the pathway must be upstream of these kinases. Since
Merlin is required for MST1 activation25,26, and Merlin activity is
controlled by the phosphorylation status of Ser518 (refs 27,28), we
assessed whether ILK modulates Merlin activation. As shown in
Fig. 4a, Merlin was found to be constitutively phosphorylated at its
inhibitory site, Ser518 in prostate, colon and breast cancer cells.
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Figure 1 | Silencing ILK leads to functional inactivation of YAP/TAZ in cancer cells. Indicated cells were treated with non-silencing control (siCT) or

two different siRNAs against ILK (siILK-A or siILK-H): (a) Cell lysates were subjected to western blotting with the indicated antibodies. Bands were

semiquantified by image intensity area under the curve. (b) Cells were subjected to immunofluorescence microscopy with the indicated antibodies.

Scale bar, 20mm.
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However, inhibition of ILK activity resulted in dephosphorylation
of Merlin Ser518 (Fig. 4a). Since Merlin is active when it is
dephosphorylated at this site by the myosin phosphatase
MYPT1-PP1 (ref. 27) and MYPT1 phosphatase is also an
established target of ILK29,30, we wanted to determine whether
ILK might modulate the Hippo pathway through MYPT1-
mediated regulation of Merlin phosphorylation. In PC3 cells,
MYPT1 was constitutively phosphorylated at its inhibitory site,
Thr696 (Fig. 4b)27,29,30. However, inhibition of ILK activity
resulted in dephosphorylation of MYPT1 (Fig. 4b), resulting in its
activation as shown previously29,30, and as determined by the
observed dephosphorylation of its target Merlin (Fig. 4a). In
addition, the activation of the Hippo pathway through inhibition
of ILK activity occurred very rapidly as shown by the activation
of MYPT1, Merlin and LATS1 in MDA-MB-435 LCC6 cells
(Fig. 4c). To confirm the specificity of ILK-dependent
phosphorylation of MYPT1, especially since MYPT1 can also be
phosphorylated at the inhibitory site by Rho kinase31, we treated
PC3 cells with a Rho kinase-specific inhibitor, H1152. Treatment
of PC3 cells with a previously established inhibitory dose of
H1152, resulted in only minor inhibition of MYPT1
phosphorylation on Thr696, compared with the effect elicited by
QLT0267 (Fig. 4d). Consistent with this minor effect on MYPT1
phosphorylation, neither Merlin Ser518 nor LATS1 Thr1079
phosphorylation, were modulated by the Rho kinase inhibitor

(Fig. 4d). Significantly, only QLT0267, but not H1152, inhibited
TEAD transcriptional activity in PC3 cells (Fig. 4e).
Dephosphorylation of MYPT1 and Merlin was also observed
upon siRNA-mediated knockdown of ILK expression in prostate
and breast tumour cell lines (Fig. 4f).

To confirm that ILK can directly phosphorylate MYPT1 on
Thr696, we carried out an in vitro kinase assay utilizing highly
purified active recombinant GST-ILK, which has been previously
extensively characterized for its kinase characteristics32. As shown
in Fig. 4g, separation of the GST-ILK by SDS–polyacrylamide gel
electrophoresis and staining of the gel with Coomassie blue
showed the presence of a full-length protein with the expected
molecular weight of B78 kDa and purity of 94% as shown
previously32. In addition, mass spectrometric analysis
demonstrated the absence of other protein kinases in the GST-
ILK preparation used for these studies32. This recombinant ILK
directly phosphorylated MYPT1 on the inhibitory Thr696 residue
in a dose and time-dependent manner (Fig. 4h), and this
phosphorylation was inhibited by the ILK inhibitor, QLT0267
(Fig. 4i) but not by the Rho kinase inhibitor, H1152 (Fig. 4i).
These data demonstrate the specificity of ILK in regulating the
phosphorylation of MYPT1 at its inhibitory site. Furthermore, we
silenced MYPT1 expression in PC3 cells to determine whether
MYPT1 is required for the ILK-mediated constitutive
phosphorylation and inactivation of Merlin. Treatment of the
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Figure 2 | Pharmacological inhibition of ILK activates the Hippo pathway and suppresses YAP/TAZ activity in cancer cells. Indicated cells were treated
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MYPT1 knockdown cells with QLT0267 did not result in a
significant effect on Merlin phosphorylation (Fig. 5a). However,
the inhibition of Ser473 Akt phosphorylation by QLT0267 was
similar in control and MYPT1-silenced cells (Fig. 5a), suggesting
a specific role of the ILK-MYPT1-Merlin axis in the regulation of
the Hippo pathway. Finally, we examined the effect of ILK
inhibition in U87 MG human malignant glioma cell line, in which
Merlin expression has been shown to be dramatically reduced33,
and also in Merlin-deficient Meso-33 mesothelioma cells34. As
shown in Fig. 5b, no differences were observed in YAP/TAZ
localization upon treatment of these cell lines with the ILK
inhibitor, QLT0267. These data suggest that ILK regulates the
Hippo pathway largely through MYPT1/Merlin axis, although,
the regulation by ILK of other MST1/LATS1 modulators may also
play a role.

YAP and TAZ activation is ILK dependent in tumours in vivo.
In order to determine whether the role of ILK in suppressing the
Hippo pathway extended to tumours in vivo, we took advantage
of two previously established transgenic breast cancer models in
which the ILK gene was either deleted from ErbB2-induced breast
tumours35, or was overexpressed together with Wnt1 in the
mammary epithelium36. In the former case deletion of ILK had a
significant growth suppressive and anti-metastatic effect on
ErbB2-driven mammary tumours35, whereas breast tumour
growth in the double-transgenic Wnt1/ILK mice was
significantly accelerated largely due to more rapid cell
proliferation36. Here we now show that YAP/TAZ is highly
expressed in ErbB2-driven mammary tumours (Fig. 6a) with a
significant proportion of its expression within the nuclei of the
tumour cells. Deletion of ILK in the background of ErbB2

activation resulted in dramatic inhibition of YAP/TAZ expression
(Fig. 6a), and silencing ILK in cell lines established from the
ErbB2 tumours resulted in sequestration of YAP in the cytoplasm
as well as in the inhibition of TEAD reporter activity (Fig. 6b,c),
demonstrating that ErbB2-driven YAP expression requires ILK.
The converse was observed in the tumours derived from the
Wnt1/ILK double-transgenic mice relative to tumours derived
from the single Wnt1 mice. Nuclear YAP expression was
significantly elevated in the double-transgenic tumours
compared with the Wnt1 only tumours (Fig. 6d), suggesting
that YAP expression can be co-operatively driven by Wnt and
ILK. These in vivo tumour models, where expression of ILK has
been altered chronically, demonstrate that YAP/TAZ activation,
and therefore accumulation, depend on ILK.

Inhibition of ILK in vivo results in decreased tumour growth.
We next sought to characterize the efficacy of ILK inhibition with
QLT0267 in vivo. We used MDA-MB-435 LCC6 cells, an estab-
lished xenograft model for evaluating the efficacy of anti-cancer
agents37, to first demonstrate the inhibition of TEAD
transcriptional activity, induction of apoptosis and reduced cell
growth in vitro following QLT0267 treatment (Fig. 7a–c). ILK
may promote cell growth and survival through activation of
different signalling pathways such as PI3K/Akt17. To assess
whether the induction of apoptosis and reduced cell growth
observed following QLT0267 treatment in MDA-MB-435 cells
was dependent on the inactivation of YAP/TAZ oncogenes, cells
were transfected with an activated form of YAP (YAP S127A)12.
Transfection of YAP S127A in MDA-MB-435 LCC6 cells prior to
incubation with the ILK inhibitor QLT0267, resulted in a nearly
complete rescue of apoptosis (Fig. 7d) and to partial rescue of cell
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growth inhibition (Fig. 7e). These results demonstrate that ILK
promotes cell growth and survival of these cells at least partially
through inactivation of the Hippo pathway. Finally, treatment of
mice with established tumours derived from these cells with
QLT0267 resulted in significant tumour growth suppression
(Fig. 7f) while simultaneously resulting in the inhibition of
expression of nuclear YAP in the tumour cells within the tumours
(Fig. 7g). A caveat of the effects of QLT0267 on tumour growth
and YAP expression in mice could be through potential off-target
effects due to the inhibition of other protein kinases as shown by
Eke et al.38 In conclusion, we have identified ILK as a critical
player in the inactivation of the Hippo tumour suppressor
pathway, via inactivation of the tumour suppressor Merlin.
Importantly, we show that inhibition of ILK can switch the
Hippo pathway ‘on’, resulting in the inactivation of YAP/TAZ
and TEAD transcriptional activity, inhibition of tumour cell
growth, induction of apoptosis and suppression of tumour
growth in vivo (Fig. 8).

Discussion
The communication between cells and their microenvironment
can influence activation or inactivation of intracellular signalling
pathways and the survival of tumour cells depends on their ability
to adapt to their environment3,4,6. Integration of signalling
pathways for the adequate balance of cell proliferation and
apoptosis is an essential function of multicellular organism under
physiological conditions and deregulation of these functions leads
to human diseases such as cancer. The Hippo tumour suppressor
pathway plays an important role in the maintenance of this cell
number balance, and its deregulation promotes tumorigenesis.
Although the transcription co-activators, YAP and TAZ, are well-
established Hippo signalling downstream oncogenes in several
cell types and promote metastasis6,12,25,39, many efforts are now
directed towards identifying the upstream regulators of the
pathway. Other kinases such as homeodomain-interacting
protein kinase (HIPK2) have been recently identified to
modulate YAP40. However, in contrast to ILK, which we have
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demonstrated is upstream of LATS phosphorylation and
activation, regulation of YAP by HIPK2 occurs in parallel to
LATS activation40.

In the context of normal hepatic biology and control of organ
size, it has been reported that targeted knockout of ILK in the
liver results in increased expression of total YAP during liver
regeneration41. Overall lower phosphorylation of YAP in the
knockout animals was also reported in this study, although results
were not quantified and other components of the Hippo pathway
were not interrogated41. Importantly, we have demonstrated in
this study that ILK is a critical upstream regulator of Hippo
signalling in cancer cells and that inhibition of ILK leads to

changes in the phosphorylation status of several of the core
components of the pathway (MST1, LATS1 and YAP), resulting
in the inactivation of YAP. Thus, our data suggest a novel
mechanism of regulation of the Hippo pathway by ILK in tumour
cells. The differences between the data described here and those
reported by Apte et al.41 may be due, in part, to the contrasting
roles of ILK signalling in normal cells and cancer cells, as has
been established previously for the survival of cancer cells,
which are critically dependent on ILK signalling, compared with
ILK-independent survival by normal cells21.

We have shown that the Hippo tumour suppressor pathway is
inactivated in human breast, prostate and colon cancer cell lines,
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as indicated by the low or undetectable phosphorylation of MST1,
LATS1 and YAP proteins, YAP/TAZ nuclear localization and
high TEAD transcriptional activity. Inhibition of ILK activity or
siRNA-mediated silencing of its expression resulted in a complete
reversal of the pathway.

Merlin, the product of NF2 gene, serves as a linker between
transmembrane proteins and the actin cytoskeleton. Merlin is a
multifunctional protein and recent studies suggest that Merlin is
also an upstream component of the mammalian Hippo path-
way26,42–44. Our results demonstrate that in the tumour cell types
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in which the Hippo pathway is inactivated, Merlin is
phosphorylated on Ser518. Inhibiting or silencing ILK resulted
in dephosphorylation of Merlin at this site, and since activation of
Merlin occurs upon its dephosphorylation27, ILK most likely
regulates Merlin phosphorylation via phospho-inhibition of a
phosphatase. It has been shown that Merlin is the decisive
substrate of MYPT1-PP1 in tumour suppression27 and here we
have demonstrated that ILK specifically phosphorylates MYPT1
to inhibit its activity. The GST-ILK preparation used to perform
the kinase assay experiments reported in this study has been
extensively characterized32. In fact, mass spectrometric analysis of
the highly purified preparation did not detect any other protein
kinases, besides ILK32, demonstrating that ILK alone is
responsible for MYPT1 phosphorylation in this assay.
Furthermore, inhibition of ILK in MYPT1-depleted cells or
Merlin-deficient cells did not have any effect on the downstream
components of the pathway, demonstrating that MYPT1 and
Merlin are required for the regulation of the pathway by ILK.
Importantly, our data demonstrating that YAP/TAZ inactivation
in cancer cells in response to genetic silencing of ILK expression
using two independently targeted siRNA sequences correlates
with the results of pharmacologic inhibition of ILK activity using
a well-established, selective ILK inhibitor in the same cell types,
together with our results showing that MYPT1 is directly
phosphorylated by purified ILK in vitro and that this
phosphorylation is inhibited by QLT0267, but not by a Rho
kinase inhibitor, constitute further convincing evidence that ILK
is an active, physiologically relevant kinase45.

Recently, numerous upstream components involved in the
Hippo pathway have been identified, such as cell polarity,
mechanotransduction and G-protein-coupled receptor signal-
ling44,46, and Hippo signalling has been shown to be regulated by
cell detachment and by growth factors13,14. We found that the
suppression of the Hippo pathway by the tumour
microenvironmental factors TGF-b, EGF and LPA is ILK
dependent. These results suggest that the regulation of the
Hippo pathway by ILK is through multiple growth factors
signalling receptor.

Both ILK and YAP/TAZ protein levels are frequently elevated
in many types of human cancers17,25,47–49, although whether
these elevated levels interact functionally has not been
determined. Here, we have provided compelling evidence for
such a functional interaction between ILK and activation of YAP/
TAZ in cancer cell lines and in breast tumours in vivo.

First, in ErbB2-induced mammary tumours, where YAP/TAZ
are highly expressed and active, deletion of ILK had a significant
suppression of YAP/TAZ expression, correlating with a marked
suppression of tumour growth and metastasis35. The overall
decrease in YAP protein expression in the ILK knockout tumours
is somewhat different from what we observed with ILK
knockdown or inhibition of activity in cultured cells where the
overall levels of YAP/TAZ were not suppressed, but rather they
were sequestered in the cytoplasm. The overall decrease in the
YAP/TAZ protein levels in these tumours in vivo is not surprising
however, since YAP/TAZ phosphorylation also leads to its
degradation49, and long-term sequestration in the cytoplasm
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Figure 7 | Pharmacological inhibition of ILK in vivo leads to decreased tumour growth and YAP/TAZ inactivation. (a–e) Cells were treated with DMSO

or ILK inhibitor QLT0267 at indicated concentrations: (a) TEAD transcriptional activity was assayed using TEAD optimal and TEAD inactive mutant (CT)-

dependent promoter-driven firefly luciferase reporter construct. Error bars denote s.e.m. P-values were calculated using Student’s t-test; n¼ 3 per group.

(b) Apoptosis was measured by TUNEL. Error bars denote s.e.m. P-values were calculated using Student’s t-test; n¼ 3 per group. (c) Cells were counted

daily to assess cell accumulation. Error bars denote s.e.m. P-values were calculated using Student’s t-test; n¼ 3 per group. (d,e) Prior to treatment, cells

were transfected with vector or constitutive active YAP (YAP S127A): (d) Apoptosis was measured by TUNEL. Error bars denote s.e.m. P-values were

calculated using Student’s t-test; n¼ 3 per group. (e) Cells were counted daily to assess cell accumulation. Error bars denote s.e.m. P-values were

calculated using Student’s t-test; n¼ 3 per group. (f) Luciferase-labelled MDA-MB-435 LCC6 cells were implanted orthotopically into Balb/c mice and

treatment (Tx) was initiated 1 week later. Vehicle or 200 mg kg� 1 QLT0267 were administered daily by oral gavage and tumour growth was monitored

by IVIS imaging. Error bars denote s.e.m. P-values were calculated using Student’s t-test; n¼ 10–16 mice per group. (g) At the end of treatment, tumours

were excised and subjected to immunohistochemistry with YAP/TAZ, or IgG control (IgG), or ILK antibodies. Representative images are shown.

Arrows indicate YAP/TAZ nuclear localization. YAP/TAZ and IgG original magnifications � 63, ILK original magnification �40.
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would also lead to eventual degradation. Recently, coordinated
phosphorylation of YAP by LATS and CK1 on Ser381 has been
shown to regulate the stability of YAP50, and this could account
for the loss of YAP expression in the ILK knockout tumours.

Second, we have shown the converse situation where tumours
that overexpress ILK in the background of Wnt activation leads to
accelerated tumour growth36 and have increased and strong
nuclear expression of YAP/TAZ proteins. Wnt signalling is
known to activate the expression of YAP/TAZ51, and b-catenin-
driven cancers require YAP transcriptional complex for
tumorigenesis52. Since ILK also activates the downstream
components of the Wnt signalling pathway, especially b-catenin
stabilization53, and it cooperates with Wnt1 to accelerate breast
tumour growth36, it is not surprising to observe significant
stimulation of nuclear YAP expression in tumours from the
double-transgenic ILK/Wnt1 mice. These data suggest that ILK
can also regulate YAP/TAZ in a Hippo pathway-independent
manner.

Third, treatment with QLT0267 in MDA-MB-435 LCC6
established xenograft model for evaluating the efficacy of anti-
cancer agents37, resulted in significant tumour growth
suppression with inhibition of expression of nuclear YAP/TAZ
in the tumour cells within the tumours. Collectively, these data
suggest that YAP/TAZ activation can be driven by ILK in vivo.

The Hippo pathway plays a critical role in tumour growth and
metastasis and pharmacological interventions of this pathway
have important clinical implications. With this work, we have
provided new insights into the regulation of this tumour
suppressor pathway, demonstrating that ILK is a negative
regulator of the Hippo pathway and we have provided data
suggesting that ILK is a potential therapeutic target, the inhibition

of which can activate the Hippo kinase cascade to inactivate YAP/
TAZ oncogenes and inhibit tumour cell growth.

Methods
Cell culture and transfection. Human breast cancer cells (MDA-MB-231, MDA-
MB-435 LCC6 and BT549), prostate cancer cells (PC3 and DU-145), U87 MG
glioma cells and normal prostate BPH-1 cells were originally obtained from the
American Type Culture Collection (ATCC, Manassas, VA) and were cultured in
high-glucose DMEM (Invitrogen, Canada) with 2 mmol l� 1 L-glutamine and
10% fetal bovine serum (Invitrogen). Normal human epithelial MCF10A cells were
cultured as previously described12,16. NIC wild-type (WT) 9784 and 5257, were
isolated from ErbB2-induced mammary tumours (NIC ILK wt/wt) and grown in
DMEM with 5% fetal bovine serum, EGF (5 ng ml� 1, Sigma-Aldrich),
hydrocortisone (1 mg ml� 1, Sigma-Aldrich), insulin (5mg ml� 1, Sigma-Aldrich)
and bovine pituitary extract (Lonza)35. Meso-33 cells were a gift from Dr Filippo G.
Giancotti (Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY,
USA). Cells were incubated with the ILK inhibitor, 10 mM QLT0267 (unless
otherwise specified) (Quadralogic Technologies Inc, Vancouver, BC, Canada) or
the Rho kinase inhibitor, 1 mM H1152 (Millipore), at times specified in the text and
control cells were incubated with DMSO vehicle (Sigma-Aldrich).

For siRNA (small interference) transfection, cells were transfected using
SilentFect (Bio-Rad Laboratories) as previously shown16. ILK was targeted, as
previously validated16,54, using ILK-A, DNA target sequence:
AAGACGCTCAGCAGACATGTGGA or ILK-H, DNA target sequence:
AACCTGACGAAGCTCAACGAG. siRNA against YAP (cat. no. sc-38637), TAZ
(cat. no. sc-38568) and MYPT1 (cat. no. sc-37240) were purchased from Santa
Cruz. For vector and YAP S127A DNA transfection, cells were transfected using
Lipofectamine 2000 (Invitrogen) according to manufacturer’s instructions.

Luciferase assay. For TEAD transcriptional activity assays, the indicated cells
were plated on 24-well dishes in triplicates and co-transfected with 400 ng of a 20:1
mixture of 10� optimal TEAD BS in pGL3-Basic or 10� mutant TEAD BS in
pGL3-Basic as a control (CT) and PRL-TK using Lipofectamine Plus (Invitrogen).
After 48 h, cells were treated overnight with DMSO or 10 mM QLT0267 and
luciferase activity was assayed using the dual luciferase reporter assay system
(Promega) and the Lumat LB 9507 plate reader. For each triplicate well the signal
of firefly luciferase (pGL3-10�Basic) was normalized to the signal for Renilla
luciferase (PRL-TK).

Growth factors. MCF10A cells were serum-starved overnight and incubated with
10% horse serum or 100 ng ml� 1 of EGF (Sigma-Aldrich), L-a-LPA (Sigma-
Aldrich) or TGF-b1 (R&D Systems, Canada). Cells were previously treated with
DMSO or 10mM QLT0267 for 30 min or ILK silenced using siRNA.

For YAP/TAZ immunofluorescence localization experiments, MCF10A or
BPH-1 cells were serum-starved and incubated with 5 ng ml� 1 human
recombinant TGF-b1 (R&D Systems, Canada) or vehicle (4 mM HCl containing
1 mg ml� 1 bovine serum albumin) for 2 h. Co-incubation with DMSO or 10 mM
QLT0267 was also carried out as appropriate or ILK expression was silenced using
siRNA.

Cell proliferation and apoptosis assays. Indicated cells were maintained in the
presence or absence of 10, 25 or 50 mM QLT0267 for 1, 2 or 3 days. For cell
proliferation, cell numbers were determined daily using a cell counter (Bio-Rad) or
as for MCF10A cells, Cell Proliferation Kit I (MTT) was used following the
manufacturer’s instructions (Roche). To assess cell apoptosis, cells were incubated
with the inhibitor at indicated concentrations for 24 h, fixed with 4% paraf-
ormaldehyde, permeabilized with 0.2% Triton-x-100 (Sigma-Aldrich) and sub-
jected to TUNEL protocol using In Situ Cell Death Detection Kit (Roche
Diagnostics) following the manufacturer’s instructions. DNase I-treated (Invitro-
gen) sections and sections incubated with label solution only, were used for positive
and negative controls, respectively.

Cell lysis and immunoprecipitation. Cells were harvested and RIPA lysed as
described previously16. For immunoprecipitation experiments, cells were pelleted
and resuspended in 400 ml of 10 mM HEPES-potassium hydroxide (pH 7.9),
1.5 mM magnesium chloride, 10 mM potassium chloride, 0.5 mM dithiothreitol
and 0.2 mM phenylmethylsulphonyl fluoride. After 10 min of incubation on ice,
nuclei were pelleted by being spun for 10 s and resuspended in 50 ml of 20 mM
HEPES-potassium hydroxide (pH 7.9), 25% glycerol, 420 mM sodium chloride,
1.5 mM magnesium chloride, 0.2 mM EDTA, 0.5 mM dithiothreitol and 0.2 mM
phenylmethylsulphonyl fluoride. Tubes were incubated for 20 min on ice and then
centrifuged to clear the cellular debris53. Protein concentrations were determined
using the BCA assay (Pierce Biotechnology). Immunoprecipitation of 1 mg protein
was carried in the cytoplasmic cell fraction with 5 mg anti-TAZ antibody (cat. no.
560235, BD Bioscience) or the correspondent mouse IgG control antibody
(sc-2025, Santa Cruz).
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Western blotting. Immunoblotting was carried out as previously described16.
Proteins were separated on NuPAGE 4–12% gradient gels (Invitrogen). Samples
were incubated overnight at 4 �C with appropriate primary antibodies at a dilution
of 1:1,000: anti-phospho-LATS1 Thr1079 (cat. no. 9159), anti-LATS1 (cat. no.
3477), anti-phospho-MST1 Thr183/Mst2 Thr180 (cat. no. 3681), anti-phospho-
Merlin Ser518 (cat. no. 9163), anti-phospho-YAP Ser127 (cat. no. 4911), anti-
MYPT1 (cat. no. 2634), anti-YAP/TAZ (cat. no. 8418) (Cell Signaling), anti-MST1
(cat. no. ab57836), anti-NF2/Merlin (cat. no. ab88957), anti-14:3:3 e (cat. no.
92311) (Abcam), anti-ILK (cat. no. 611803, BD Transductions), anti-b-actin (cat.
no. A5441, Sigma-Aldrich), anti-YAP (sc-101199) and anti-phospho-MYPT1
Thr696 (ABS45, Millipore). Proteins were visualized by chemiluminescence (ECL
or supersignal, Pierce) or using the Odyssey system (Li-Cor Biosciences).
Densitometric analysis of the blots was performed using ImageJ software (National
Institutes of Health, USA). Full blots can be found in Supplementary Figs S1–S6.

Quantification of western blots. Bands were semiquantified by image intensity
under the curve. For phospho-protein levels, the ratio of the intensity of the
phospho-protein band to the total protein band in each lane was calculated. For
ILK protein levels, the ratio of ILK to b-actin was calculated. For data presented as
bar graphs, control samples were set at 1 and fold change in intensity is reported.
For data presented as values directly below the blots, the ratio of phospho-protein
to total protein is reported. Data are representative of at least three independent
experiments.

Immunofluorescence microscopy. Cells were treated with the indicated inhibitors
for 2 h, washed with PBS, fixed with 4% paraformaldehyde and permeabilized with
0.2% Triton-x-100 (Sigma-Aldrich). Primary antibodies: anti-ILK (cat. no. 611803,
1:100), anti-Smad 2/3 (cat. no. 610842, 1:100) (BD Transduction), anti-YAP/TAZ
(cat. no. 8418, Cell Signaling, 1:50) and anti-14:3:3 e (sc-135816, Santa Cruz, 1:50)
were used followed by the appropriate anti-mouse or anti-rabbit Alexa Fluor 488
and 594 secondary antibodies (Invitrogen). Nuclei were stained using bisBenzimide
Hoescht 33342 trihydrochloride (Sigma-Aldrich). Samples were mounted using
Mowiol 4–88 (Polysciences). Images were taken using Zeiss 780 confocal micro-
scope. Representative images of at least three independent experiments are shown.
Areas indicated with a square box were cropped for more detail in the figures
(inset, Fig. 1b, 2b, 5b, 6a, 6d and 7g).

Kinase activity assay. Non-radioactive ILK kinase activity assays were performed
as previously described32. Briefly, 100 ng of highly purified GST-ILK (SignalChem
Lifesciences Corporation, Richmond, BC, Canada), 500 ng of the substrate MYPT1
(EMD Millipore, Billerica, MA) and 500 mM cold ATP were incubated in kinase
buffer (New England Biolabs, Ipswich, MA) in a total volume of 20 ml. Reactions
were carried out at 30 �C for 30 min in a circulating water bath. For experiments
using kinase inhibitors, stock inhibitors in DMSO were initially diluted in water to
create working stocks. One microlitre volumes of the inhibitor working stocks were
added directly to the kinase reaction to provide final inhibitor concentrations as
indicated in the figures. Inhibitors included Rho kinase inhibitor (EMD Millipore)
and ILK kinase inhibitor QLT0267 (Quadralogic Technologies Inc., Vancouver,
BC, Canada).

Transgenic mouse models and immunohistochemistry. ErbB2-induced mam-
mary tumours (NIC ILK wt/wt) or mammary gland targeted deletion of ILK
tumours (NIC ILK f/f) have been generated and characterized35. To mitigate the
impact of genetic background variability, transgenic mice were derived from the
inbred FVB/N strain. Mammary tumour formation was monitored by weekly
palpations.

The generation of mammary-specific double-transgenic MMTV-Wnt/ILK mice
has been described by us36. Briefly, MMTV-Wnt1 and MMTV-ILK mice were
backcrossed to the FVB strain. MMTV-Wnt1 males were then bred with MMTV-
ILK female to generate the double-transgenic MMTV-Wnt/ILK mice. Mice were
tail clipped and genotyped by PCR. Nulliparous females were monitored biweekly
for tumours by palpation and tumour growth was monitored by caliper
measurement subsequent to tumour discovery.

All tumour samples were fixed in 10% neutral-buffered formalin, paraffin-
embedded and sectioned at 4 mm. Immunohistochemistry analysis was performed
as previously described35,55. Briefly, antigen retrieval was accomplished in citrate
buffer by using a microwave and peroxidase activity was blocked with 3% peroxide
hydrogen. Sections were then blocked in 5% goat serum or milk and incubated in
primary antibodies (1:100 dilution) anti-YAP/TAZ (cat. no. 8418, Cell Signaling)
or anti-ILK (sc-20019, Santa Cruz). Areas indicated with a square box were
cropped for more detail (inset).

Human breast cancer xenografts. All animal studies and procedures were per-
formed in accordance with protocols approved by the Animal Care Committee at
the University of British Columbia and the BC Cancer Research Centre-BC Cancer
Agency. MDA-MB-435/LCC6GFP/Luc cells were inoculated into the mammary fat
pad of a 7–10-week-old female Rag-2M mice. Tumours were allowed to establish
for 7 days. Caliper measurements were initiated B5–7 days post cell inoculation,

when tumours become palpable by hand were visible, and were conducted once per
week. Vehicle PTE (PEG300/Ethanol/Tween 80/citrate (63:29:7.8:0.2 w/v/w/w)) or
QLT0267 (200, 150 or 75 mg kg� 1) were administered daily by oral gavage.
Tumour growth was monitored by IVIS imaging for luciferase-labelled MDA-MB-
435/LCC6GFP/Luc cells. Tumours were excised at days indicated in the text and
paraffin-embedded for immunohistological staining.

Statistical analysis. With the exception of western blot analysis (described above),
graphical data are presented as mean values±standard error (s.e.m.). P-values were
calculated using unpaired Student’s t-tests comparing control with treated cells/
animals. Statistically significant differences are indicated within the text and by
asterisks. Data are representative of at least three independent experiments.
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