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Phonon-induced disorder in dynamics of optically
pumped metals from nonlinear electron-phonon
coupling
John Sous1✉, Benedikt Kloss2, Dante M. Kennes 3,4, David R. Reichman 2✉ & Andrew J. Millis1,5✉

The non-equilibrium dynamics of matter excited by light may produce electronic phases, such

as laser-induced high-transition-temperature superconductivity, that do not exist in equili-

brium. Here we simulate the dynamics of a metal driven at initial time by a spatially uniform

pump that excites dipole-active vibrational modes which couple nonlinearly to electrons. We

provide evidence for rapid loss of spatial coherence, leading to emergent effective disorder in

the dynamics, which arises in a system unitarily evolving under a translation-invariant

Hamiltonian, and dominates the electronic behavior as the system evolves towards a cor-

related electron-phonon long-time state, possibly explaining why transient superconductivity

is not observed. Our framework provides a basis within which to understand correlation

dynamics in current pump-probe experiments of vibrationally coupled electrons, highlight the

importance of the evolution of phase coherence, and demonstrate that pumped electron-

phonon systems provide a means of realizing dynamically induced disorder in translation-

invariant systems.

https://doi.org/10.1038/s41467-021-26030-3 OPEN

1 Department of Physics, Columbia University, New York, NY 10027, USA. 2Department of Chemistry, Columbia University, New York, NY 10027, USA.
3 JARA - Fundamentals of Future Information Technology, Institut für Theorie der Statistischen Physik, RWTH Aachen, 52056 Aachen, Germany. 4Max
Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany. 5 Center for Computational
Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA. ✉email: js5530@columbia.edu; drr2103@columbia.edu;
ajm2010@columbia.edu

NATURE COMMUNICATIONS |         (2021) 12:5803 | https://doi.org/10.1038/s41467-021-26030-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26030-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26030-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26030-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26030-3&domain=pdf
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0001-8424-902X
http://orcid.org/0000-0001-8424-902X
http://orcid.org/0000-0001-8424-902X
http://orcid.org/0000-0001-8424-902X
http://orcid.org/0000-0001-8424-902X
mailto:js5530@columbia.edu
mailto:drr2103@columbia.edu
mailto:ajm2010@columbia.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Major efforts in condensed-matter physics are currently
focused on the means to induce novel phases of matter
and harness their properties for practical gain. For

many years such phases were thought to robustly exist only as
equilibrium, thermodynamic states. The potential out-of-
equilibrium induction of transient phases, enabled by recent
experimental advances in the creation and utilization of tailored
time-resolved external fields that can excite specific degrees of
freedom, opens a door to new modalities for the realization and
control of new electronic states1,2.

Optical, mode-specific excitation of atomic vibrations3 serves
as one broad class of out-of-equilibrium techniques that has been
shown experimentally to lead to dramatic modifications in elec-
tronic behavior4–6, including the possible induction of a super-
conducting transition at a critical temperature larger than its
equilibrium counterpart in K3C60

7, YBa2Cu3O6.5
8, and organic

salts9. In general, optically accessible phonons are long-
wavelength dipole-active modes, which typically do not couple
linearly to the electron density, and therefore nonlinearities are
expected to govern the dynamics in centrosymmetric
systems10–13, stimulating many interesting theoretical
proposals13–20. One particular mechanism13 is based on the
observation that since direct, local interaction between electrons
and photo-excited phonons must depart from that of conven-
tional linear Holstein21 and Fröhlich22,23 models, one must
consider a quadratic coupling of driven phonons to the electron
density. An approximate analysis of such a model was presented
previously13 (see Supplementary Note 3). Here, we use exact
numerical methods and an effective theory based on a low-order
expansion in the electron–phonon coupling to unravel the
emergent electronic behavior in this driven, nonequilibrium
system. Combining a tensor-network approach for the time
evolution of an infinite one-dimensional (1D) system on short
timescales with propagation to long times using direct Krylov
subspace methods for finite-size systems and analytical argu-
ments, we elucidate the spatially resolved dynamics of electrons
coupled to pumped phonons. Our main results are:

(1) Phonon-induced disorder: we observe fast growth of local
electronic correlations after the application of the pump. A dra-
matic flattening in the momentum dependence of charge, spin,
and pairing correlations rapidly follows, pointing to the loss of
electronic spatial phase coherence. We find that disorder emerges
as a result of the nature of the initial light-created coherent
phonon superposition state whose dynamics is effectively gov-
erned by a Hamiltonian that approximately conserves phonon
occupations. The presence of quasi-conserved phonon constants
of motion implies that electronic observables self-average over the
different disordered phonon configurations of the initial state and
possess no off-diagonal coherence between different phonon
sectors. This provides a realization of disorder-free
localization24–26, recently discussed in the context of lattice
gauge theories27–31. To understand this behavior, we derive an
effective model whose behavior captures the qualitative features
of the exact dynamics on transient timescales. Our effective
theory provides a natural framework within which disorder and
electron localization arise in the dynamics, and provides a per-
spective for the short-time dynamics complementing analysis of
the long-time behavior where the loss of phonon coherence and
preservation of the Poisson-distributed diagonal eigenvalues of
the initial coherent state density matrix characterizes a random
disorder potential, responsible for the destruction of phase
coherence of the normal state electronic correlations13.

(2) Correlated electron–phonon steady state: we provide evi-
dence that the system evolves at long times to a steady state
characterized by sizeable correlations between electrons and
phonons. The early-time dynamics that follow the pump already

indicate rapid growth of local, negative correlations between the
electron density n̂ and the oscillator quadratic displacement X̂

2
at

a given site and between the linear displacement X̂ at adjacent
sites, which signals a tendency towards charge flow between
neighboring sites, resulting in enhanced double occupancy. This
dynamical process quenches the Friedel oscillations32 of the
electron density profile, and manifests as a space-time-dependent
feature in the density-density correlation function that spreads
spatially outwards along a “light cone” defined by the Fermi
velocity33. Behind the light cone, very rapidly, the density–density
correlation function becomes basically structureless, suggesting
that the asymptotic state possesses a large degree of randomness.
At long times, we find an overall increase in the magnitude of the
expectation value of the electron–phonon interaction term,
implying evolution towards a strongly correlated long-time
electron–phonon state.

(3) Dynamically induced strong-coupling behavior: we compare
the dynamical electronic behavior in response to a pump in the
quadratic-coupling model against that in the linear (Holstein)
counterpart. We observe larger double occupancy and greater
large-amplitude response of momentum-resolved correlation
peaks in the quadratic model, indicating that in this model, in
contrast to the more widely studied Holstein model, the drive
pushes the system into a strong-coupling regime. This substantive
dynamical response of the nonlinearly coupled system implies the
existence of nonequilibrium pathways to coherent induction of
electronic phases not accessible in equilibrium, and highlights the
importance of the quadratic coupling in irradiated materials.

Physical setup. We consider a metal whose vibrational modes are
excited at an initial time by a short-duration light pulse that
creates a coherent phonon field34 on every site, which couples
nonlinearly to the local electron density.

The Hamiltonian that governs the dynamics is given by

H ¼ He þHph þ Ve-ph: ð1Þ

Here He ¼ �J∑i;σc
y
i;σciþ1;σ þ h:c: characterizes the dynamics of

electrons of spin flavor σ∈ {↑, ↓} via the fermion creation
(annihilation) operator cyi;σ (ci,σ) and charge density n̂i ¼ ∑σ n̂i;σ

at site i. The phonon Hamiltonian is Hph ¼ ω∑i byi bi þ 1
2

� �
,

which characterizes a local optical Einstein phonon mode with
frequency ω(ℏ= 1), described by the boson creation (annihila-
tion) operator byi (bi). The electrons of this irradiated system
couple locally to the excited vibrations via the the dominant
symmetry-allowed interaction13

Ve-ph ¼ gq ∑
i
ðn̂i � 1Þðbyi þ biÞ

2
: ð2Þ

This coupling also serves as a description of double-well 35,36 and
other37 systems for which the linear approximation is inadequate.
This model Hamiltonian implies an equilibrium renormalization
of the oscillator stiffness K ! K½1þ 4

gq
ω ðhn̂ii � 1Þ�. Thus, the

onsite harmonic oscillator is stable so long as gq

��� ���< ω
4
13 (see

Supplementary Note 1).
Since the wavelength of the pump field extends beyond the

lattice scale, we assume it produces a perfectly phase-coherent
initial product state of onsite phonon coherent states

N
i αj ii,

where αj i ¼ e�
αj j2
2 ∑ν

ανffiffiffi
ν!

p νj i represents a coherent state of

amplitude α written here as an appropriate superposition of
phonon-number states νj i. We simulate the time evolution of the
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initial state

Ψj i ¼ FSj i �
O
i

αj ii; ð3Þ

where FSj i ¼ Q
k≤ kF

cyk;"c
y
k;# 0j i with kF= π/2 describes a metal

formed from a Fermi sea of spinful electrons in a half-filled
(hn̂ii ¼ 1) 1D lattice.

Here, we set the lattice constant a= 1 and study the physics of
the model for physical parameters defined in units of J, i.e., we set
J= 1. In the main text, we consider gq ≤ 0.25 for ω= π/2 to study
dynamics of the nonlinear model for couplings ranging from
weak to strong, and use α ¼ ffiffiffi

2
p

for the pump amplitude. This
choice of ω allows us to numerically resolve the quantum effects
in dynamics due to a large yet amenable phonon Hilbert space.

We simulate the time evolution of Ψj i in an infinite system on
transient timescales via the infinite time-evolved block decima-
tion (iTEBD) algorithm38 and access its long-time behavior in
finite-size systems of size L= 3–6 and local phonon Hilbert space
dimension dν= 8, 10, 12 using direct Krylov subspace methods.
In iTEBD, one employs a matrix-product state (MPS) ansatz for
quantum states in the thermodynamic (infinite-size) limit, which
permits access to information pertaining to long-range correla-
tions in the system. Time evolution of an MPS is however
ultimately limited to finite times because of the exponential
growth of entanglement. Krylov subspace methods, based on
Hamiltonian matrix-state vector multiplication, are in contrast
not limited to short times, but are restricted to small L due to the
exponential growth of the Hilbert space with L. Combining the
two approaches allows us to derive reliable conclusions about
long-range correlations on finite timescales from iTEBD and local
correlations at long times from Krylov propagation.

Results
Figure 1 demonstrates the energy redistribution amongst the
different system subsectors in the course of the time evolution on
timescales ranging from short (panel a) to long (panel b), as the
system approaches its long-time limit of a correlated
electron–phonon steady state. Consider the largest coupling
gq= 0.25 (dark lines in panel a). At early times t ≤ 2π

ω , the electron
subsystem absorbs energy from the excited phonons, and the

phonon energy density oscillates about a value close to its initial
value, while the electron–phonon energy density becomes more
negative, see panel a of Fig. 1. At asymptotically long times, we
observe an overall flow of energy from the phonon and
electron–phonon subsectors to the electron subsector (panel of b
of Fig. 1). Importantly, the increase in the magnitude of the
(negative) electron–phonon correlation term implies a long-time
correlated electron–phonon state.

Correlations between electrons and phonons already appear in
the early-time dynamics, as we demonstrate in Fig. 2. Consider the
charge–phonon correlation function CXrðtÞ ¼ hn̂iX̂

2
iþrðtÞi �

hn̂iðtÞihX̂
2
iþrðtÞi (Fig. 2, panel a), where X̂i :¼

ffiffiffiffiffiffiffi
1

2Mω

q
ðbyi þ biÞ, and

we set M= 1. For r= 0, n̂ rapidly becomes negatively correlated
with X̂

2
. Note that hn̂iðtÞi ¼ 1 throughout the dynamics in the

translationally invariant system under consideration and hX̂2
i ðtÞi

(dash-dotted line, panel c) remains positive under time evolution.
The substantial local, negative correlations in CX0(t), therefore,
imply a flow of electrons between neighboring sites. The same
analysis applied to CX1(t) reveals a positive correlation between
electron density and phonons separated by a single site with a
dynamical profile somewhat similar (albeit of opposite sign) to
CX0(t). With a slightly delayed onset, much weaker positive cor-
relations build-up at larger r in CXr(t). The interplay between onsite
and nearest-neighbor correlations in CXr(t) reflects the tendency of
charge to flow from a site to its neighbors, implying that doublons
(doubly occupied sites) and holons (empty sites) emerge in the
dynamics on such timescales. Indeed, in panel b, we observe a rapid
enhancement of local electron density–density correlations
D0ðtÞ ¼ hn̂in̂iðtÞi ¼ hn̂ii þ 2hn̂i;"n̂i;#ðtÞi, accompanied by the
suppression of D1ðtÞ ¼ hn̂in̂iþ1ðtÞi due to doublon creation, as
expected if there is a tendency towards formation of an alternating
pattern of doubly and singly occupied sites. For times greater than
t � 0:175½2πω �, D1ðtÞ begins to grow and becomes positive, whilst
D2ðtÞ ¼ hn̂in̂iþ2ðtÞi diminishes, and a wavefront behavior in r
appears to arise. In fact, when normalized against the t= 0 metal
Friedel density profile, a density–density correlation light-cone
Cr(t)/C0(t) (CrðtÞ ¼ hn̂in̂jðtÞi � hn̂iðtÞihn̂jðtÞi)33,39 propagating
outwards in r can be clearly seen (Fig. 2, panel d). A characteristic
feature that emerges for larger r at later time delays closely trails the
second-in-time maximum. Thus, to sharply characterize the light

ba

Fig. 1 Energy redistribution among the different system subsectors. a Infinite system iTEBD simulations of the time dependence of the electronic (top),
phononic (middle) and electron-phonon (bottom) energy densities for ω= π/2 show a trend with larger gq of rapid heating of the electronic subsector,
accompanied by transient relaxation of the electron-phonon subsector. b Exact Krylov propagation of small systems with L= 3− 6 and local phonon
Hilbert space dimension dν= 8, 10, 12 (L= 6 is restricted to dν= 10) for ω= π/2 and the largest coupling strength gq= 0.25 to asymptotically long times
showing the net change relative to the initial state in electronic (left), phononic (center) and electron-phonon (right) energy densities confirms a correlated
electron-phonon steady state, as evidenced by the considerable flow of energy from the electron-phonon subsector to the electronic subsector. The y-axis
labels of the net change in energy densities have been placed at the top of the corresponding plots. Here, He0

� Heð0Þ.
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cone, we track the inflection point preceding that maximum (dia-
mond symbols). A line of best fit through these data points (Fig. 2,
panel d; inset) reveals linear charge propagation with a velocity
vc ≈ 3.5J, slightly larger than the free metal Fermi velocity 2kFJ= πJ.
On the timescales accessed by iTEBD, we find no evidence for a
wavefront propagating in either of CXr(t) or hX̂iðtÞX̂iþrðtÞi,
reflecting the resistance to the propagation of the dispersionless
Einstein oscillator modes of the initial-time (gq= 0) state. The
behavior exhibited by CXr(t) and Cr(t) implies nonequilibrium
induction of enhanced double occupancy 〈ni,↑ni,↓(t)〉, which we
have directly verified.

Turning to the dynamics of long-range electronic correlations,
in Fig. 3 we study the evolution with time of the momentum-
resolved charge Ck(t), spin Sk(t), and pairing Pk(t) correlation
functions to fully characterize the electronic features. Apart from
the fast initial growth of Cπ(t) for t ⪅ 0:2½2πω � due to the enhanced
double occupancy, we observe rapid flattening in momentum
space of these correlations, marking the loss of spatial coherence,
despite the persistent growth of local density–density and
charge–phonon correlations, indicating that the pattern of doubly
and singly occupied sites is becoming random. This remarkable
behavior implies an effective disordered state forms on transient
timescales, and a more subtle role played by phonons in the
dynamics, as we show next.

Effective model for the disorder. To understand the mechanism
behind the appearance of disorder, we derive an effective theo-
retical picture for the dynamics to leading order in gq/ω.

We find it convenient to consider a rotating frame in which the
off-diagonal phonon terms (in the occupation-number basis) of
Eq. (2) are eliminated via a Bogoliubov-type squeezing
transformation13: H ! ~H ¼ UHUy, where U= eS,
S ¼ �∑j

1
2 ζ jðbyj byj � bjbjÞ, and ζ i ¼ � 1

4 ln ½1þ 4
gq
ω ðn̂i � 1Þ�, the

squeezing parameter, is chosen so that the ðbyi Þ
2
and ðbiÞ2 terms

vanish. This yields, in the squeezed frame,

~H ¼ eSHee
�S þ∑iω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

gq
ω ðn̂i � 1Þ

q
ðβyi βi þ 1

2Þ, where β† cre-

ates a squeezed-phonon state. Perturbatively expanding the

transformed coupling term in orders of gq/ω, we find

Heff : ¼ �J� ∑
i;σ
ðcyi;σciþ1;σ þ h:c:Þ þ ω� ∑

i
βyi βi þ

1
2

� �

þ 2gq ∑
i
ðn̂i � 1Þ βyi βi þ

1
2

� �

� 4
g2q
ω
∑
i
ðn̂i;" � 1=2Þðn̂i;# � 1=2Þ βyi βi þ

1
2

� �
:

ð4Þ

Here, J� ¼ Je�
1
2ð
gq
ω Þ

2ðhn̂Bi2þ2hn̂Biþ1Þ (hn̂Bi is the average number of
excited bosons in the dynamics) and ω� ¼ ω� g2q=ω. Aside from
renormalization of the electron and phonon energy scales, we see
that the electron density, at Ofgq=ωg, and double occupancy, at

Ofðgq=ωÞ2g, couple to the squeezed-phonon density. This
Hamiltonian is exact to Ofgq=ωg, and approximate to

Ofðgq=ωÞ2g (and higher orders). See Supplementary Note 2 for
details of the derivation and approximations employed. For the
time dependence of electronic operators Ôe measured in the
original frame, we derive in a similar approximation (details in
Supplementary Note 2) a theory in the squeezed frame in which
Ôe transforms as Ôe ! eSÔee

�S, the initial state as
0j i � Ψj i ! eS 0j i, and Ueff : ¼ e�iHeff :t governs the time evolu-
tion. Within this scheme in which terms larger than Ofgq=ωg are
neglected, the equal-time expectation value of Ôe in the squeezed
frame becomes

hÔeðtÞi ¼ 0h jUy
eff :ðtÞÔeUeff :ðtÞ 0j i

þ 0h jUy
eff :ðtÞΓÔe

Ueff :ðtÞ 0j i;
ð5Þ

with ΓÔe
¼ S; Ôe

� 	
. In Fig. 4, we test the predictions of Eq. (5)

against the exact results. Not only does the effective theory
reproduce the flattening in momentum-resolved Ck(t) and Sk(t)
(Fig. 4, panels a and b) observed in the exact simulations (Fig. 3),
it also provides an overall qualitative proxy for the exact raw and
time-averaged quantities 〈ni,↑ni,↓(t)〉, Cπ(t) and Sπ(t) (Fig. 4,
panels c–h), even for relatively large gq/ω for which the

b

a

c

d

Fig. 2 Dynamics of charge and charge-phonon correlations. a–c Time evolution of charge–lattice correlation CXrðtÞ ¼ hn̂iX̂
2
iþrðtÞi � hn̂iðtÞihX̂

2
iþrðtÞi (a)

contrasted against that of hX̂2
i ðtÞi (c), and of the density–density correlation DrðtÞ ¼ hn̂in̂iþrðtÞi normalized with respect to its initial-time value Drð0Þ (b).

Here, X̂i :¼
ffiffiffiffiffiffiffi
1

2Mω

q
ðbyi þ biÞ, whereM is the oscillator mass, which we set to unity,M= 1. Note the violation of the relation ðΔXiðtÞÞ2 ¼ hX̂2

i ðtÞi � hX̂iðtÞi
2 ¼ 1

2ω

for t ⪆ 0:15 2π
ω , an indication of deviation of the oscillator from an ideal coherent state. d Onset of a light-cone profile in the normalized density–density

charge correlations; here, CrðtÞ ¼ hn̂i n̂jðtÞi � hn̂iðtÞihn̂jðtÞi is normalized with respect to its initial-time metallic Friedel oscillations profile Cr(0). The diamond

symbols mark the inflection point preceding the second maximum for the different r lines, which we use in the inset to find the best fit of the light-cone
charge propagation tc versus rc (dashed line), yielding an estimate for charge velocity: vc≈ 3.5J. We use gq= 0.25 and ω= π/2 in this figure.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26030-3

4 NATURE COMMUNICATIONS |         (2021) 12:5803 | https://doi.org/10.1038/s41467-021-26030-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a b

c
d

Fig. 3 Dynamics of momentum-resolved electronic correlations. We study the evolution with time of momentum-resolved charge CkðtÞ ¼ F fCrðtÞg (a),
spin SkðtÞ ¼ F fSrðtÞg (b), and pairing PkðtÞ ¼ F fPrðtÞg (c) correlation functions for gq= 0.25 and ω= π/2 and the dependence on time of certain k (0, π)
correlations for various gq at ω= π/2 (d). Note the k-axis of the Pk(t) plot in (c) has been inverted for better visibility, and the y-axis labels of the 0/π
correlations in (d) have been placed at the top of the corresponding plots. Here, Cr � hn̂i n̂iþri � hn̂iihn̂iþri; Sr � hðn̂i;" � n̂i;#Þðn̂iþr;" � n̂iþr;#Þi and
Pr � hcyi;"cyi;#ciþr;#ciþr;"i. F denotes the Fourier transform. Charge, spin, and pairing correlations all rapidly flatten in the course of the dynamics. Note
conservation of C0(t) and S0(t) in the dynamics.

b

a c

d

e

f

g

h

Fig. 4 Dynamics of a pumped metal in the effective theory. a, b Evolution with time of momentum-resolved charge CkðtÞ ¼ F fCrðtÞg (a) and spin
SkðtÞ ¼ F fSrðtÞg (b) correlation functions (F denotes the Fourier transform, Cr � hn̂in̂iþri � hn̂iihn̂iþri and Sr � hðn̂i;" � n̂i;#Þðn̂iþr;" � n̂iþr;#Þi) for gq= 0.25
and ω= π/2 in the effective model given by Eqs. (4) and (5) from iTEBD simulations. c–h Dependence on time of raw (c–e) and time-averaged (f–h)
double occupancy hn̂i;"n̂i;#ðtÞi, π-charge Cπ(t) and π-spin Sπ(t) correlations for various gq at ω= π/2 in the exact model (solid line) and the effective model is
given by Eqs. (4) and (5) (dashed line) from iTEBD simulations. A bar label over an observable symbol denotes time averaging: hÔðtÞi ¼ 1

t

R t
0 dτhÔðτÞi. We

observe good agreement between results obtained in the effective model and the exact simulations of the fully coupled model, including the rapid flattening
of charge and spin correlations in the course of the dynamics.
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approximations we employ are less justified (we discuss
limitations of the effective model in Supplementary Note 2).

The origin of disorder becomes manifest in the effective model.
Noting that in Eq. (5) ΓCk

; ΓSk ¼ 0 because the charge and spin
correlations are conserved under the squeezing transformation
implies that the exact dynamics is approximately captured by an
effective theory that conserves the squeezed-phonon occupations.
This effective theory thus encodes dynamics of the electrons
within independent trajectories of different squeezed-phonon
configurations in an ensemble given by an initial Poisson-
distributed linear combination that describes the t= 0 state (now
in the squeezed basis) and is thus formally equivalent to the
disorder-averaged dynamics of an electronic system quenched in
a random, static Poisson-distributed potential determined by the
initial state occupations. Charge and spin correlations, by
construction, possess no coherence between different squeezed-
phonon sectors, and thus very quickly flatten in the course of the
dynamics. The exact electronic behavior on transient timescales is
therefore dominated by a large degree of effective disorder despite
that the initial state and the Hamiltonian in both squeezed and
unsqueezed frames are disorder free.

Note that, however, while this effective model remains valid on
intermediate timescales, higher-order terms in gq/ω, neglected in
our treatment, will eventually become important, possibly leading
at long times to deviations from the above behavior. Nonetheless,
our numerics seem to suggest evolution towards a state with a
large disorder that remains robust for extended timescales. We
provide in Supplementary Note 3 a complementary treatment of
electronic disorder at later times in the unsqueezed frame based
on the dynamics induced by phonon decoherence. This
disordered behavior persists despite the attractive electron
density–density interaction term of Heff :, which, at least in 1D,
implies that the system lies within a regime far from the
superfluid transition40.

The picture we obtain here indicates that a translationally
uniform system excited by a spatially uniform field governed by
electron–phonon nonlinearity will flow towards a state character-
ized by a high level of randomness in absence of quenched disorder.
This behavior was noted in ref. 13 based on an analysis of phonon
decoherence (see also Supplementary Note 3) and has become a
subject of major theoretical interest within the field of disorder-free
localization24–27 (see also refs. 41–43). In this regard, our effective
theory reveals a mechanism operative in experiments for
dynamically induced disorder reminiscent of that found in the
context of the particular lattice gauge theory models studied in
refs. 27–31. These models describe the coupling of fermions to
background gauge fields modeled as spin degrees of freedom, in
which a duality transformation44,45 maps the Hamiltonian onto one
with conserved gauge charge configurations and the gauge charge
couples directly onsite to the fermion occupation. Time evolution
with this manifestly translationally invariant Hamiltonian of an
initial product state of fermions and gauge spins, equivalent to a
linear superposition over different superselection gauge charge
configurations, exhibits disorder-free localization due to self-
averaging of observables over the different initial gauge configura-
tions. In contrast to these models, our theory reveals that an
approximate effective model governed by similar behavior
dominates the exact dynamics of the quenched electron–phonon
system on extended timescales. Thus, our work paves a way towards
the physical realization of disorder-free localization in current
pump-probe experiments. Furthermore, the emergence of an
attractive Hubbard interaction in the effective model presents an
unexplored avenue within the context of disorder-free localization
to study the competition between disorder and attractive interac-
tions in the dynamics of spinful fermionic systems.

Comparison with a linearly coupled electron–phonon model:
dynamically induced strong-coupling behavior from nonlinear
electron–phonon coupling. We contrast the dynamics of our
nonlinear model to that of the (linear) Holstein model (which
cannot be driven by a light pulse in an inversion symmetric
system). We use two methods to choose an appropriate coupling
strength in the Holstein model corresponding to a given coupling
strength of the quadratic model against which we perform a
comparison, see Supplementary Note 4 for details. In one
approach, we choose the Holstein coupling that yields the same
equilibrium ground state double occupancy as in the quadratic
model. In the other, the Holstein coupling is chosen to produce
the same double occupancy as that obtained analytically from a
disentangling transformation that serves as a low-energy
description of the dynamics (Eq. (4)). Both methods of com-
parison show that even a relatively large nonlinear coupling such
as gq= 0.25, proximate to the oscillator instability threshold, gives
rise in equilibrium to weak-coupling behavior. In contrast, Fig. 5
shows that the quadratic model exhibits a much stronger dyna-
mical response to the pump, displaying both a large enhancement
of double occupancy (panel a) and large-amplitude dynamics in
momentum-resolved electronic correlations (panels b–d)
including flattening of Pk(t) (panel d). This is in sharp contrast to
the behavior of the Holstein model and implies that dynamics of
nonlinear coupled electron–phonon systems operative in pump-
probe experiments afford nonequilibrium pathways to correlated
physics unavailable in the static limit and which lies outside the
frame of conventional theoretical models.

Discussion
Prior studies of nonlinear electron–phonon dynamics have relied
on approximate low-energy treatments. Our exact numerical
approach to spatially resolved dynamics of a pumped nonlinear
electron–phonon systems fills an urgent need. We use iTEBD to
provide a detailed exact analysis of short-time (up to t � 2π

ω )

d

c

a

b

Fig. 5 Dynamical response in the quadratically coupled model versus in
the Holstein model. A comparison of the pump-induced dynamics in the
quadratic-coupling model with coupling constant gq to that of the Holstein
model with coupling constant gH and dimensionless effective coupling
parameter λH ¼ g2H

2ωJ for appropriately selected values of the couplings and
ω= π/2 (see text and Supplementary Note 4 for more details) reveals that
the driven quadratic model induces a more appreciably enhanced double
occupancy (a) and causes a greater response in electron correlations (b–d)
including the flattening of pairing tendencies (d) than its Holstein model
counterpart.
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dynamics of an infinite nonlinear electron–phonon coupled metal
upon coherent excitation of vibrational modes by light. We
supplement this by direct Krylov propagation of small systems to
asymptotically long times. We explicitly describe the flow towards
a correlated electron–phonon steady state at long times, the
indication of which already manifests on short timescales.
Remarkably, although we consider a spatially uniform system
evolving after application of a spatially uniform pump field, the
key feature of the long-time state is the appearance of properties
consistent with a high degree of effective disorder that dominates
the physical behavior, unveiling an intriguing connection to the
scenario of disorder-free localization27,28. These properties are a
consequence of the quasi-conserved squeezed-phonon constants
of motion that effectively govern the time evolution of the initial
linear superposition state and the very rapid loss of coherence of
the phonons, which we found to be directly tied to the buildup of
disorder, implying that the intermediate- and long-time state is
an incoherent superposition of different oscillator configurations
on different sites. These incoherent phonon configurations result
in a dynamic effective disorder potential for the electrons, which
leads to the suppression of the (power-law) quasi-long-range
charge, spin and pairing correlations. Analysis of the energy
redistribution amongst the different system subsectors and of
electron and phonon distribution functions of the long-time state
obtained in finite-size systems, presented in Supplementary
Note 3, suggests that the terminal state obtained in finite-size
simulations may not be thermal. Determining the fate of the
established long-time entangled electron–phonon state in which
the phonons in effect provide strong onsite potential fluctuations
that substantially broaden all momentum–space distribution
functions and fully disentangling the contributions of electron
heating from localization due to the transient phonon-induced
disorder to this entangled electron–phonon state are beyond the
scope of this paper, and are left to future work. However, the
results of this paper establish that the pump-activated transient
phonon-induced disorder in electron dynamics presents an
opportunity to explore the interplay between correlations and
randomness in out-of-equilibrium electronic matter.

A crucial question relates to the possibility of pump-induced
superconductivity as predicted in ref. 13. In our calculations no
evidence for superconductivity is found and we only find weak
evidence for charge density wave correlations for very short time
delays; the results are more consistent with the system falling
within the disorder-dominated Anderson insulating regime of the
phase diagram presented in ref. 13. One possibility would be that
superconducting and density wave regimes either do not exist or
are not accessible with the current pump protocol (perhaps
because the pump transfers too much energy to the electronic
subsystem). A second possibility would be that the 1D model
considered here disfavors superconductivity. In fact, it has been
shown that quantum fluctuations can destroy superconductivity
in dirty superconductors below a mobility threshold46. In one
dimension, all single-particle states are localized in presence of a
static disorder potential. Despite that in 1D systems super-
conductivity can overcome the localizing tendency of disorder to
some extent47, the effects of the disorder are stronger than in
higher dimensions. The accurate simulation of pump-induced
dynamics in higher-dimensional systems in the thermodynamic
limit faces challenges, but is urgently needed.

The quadratic model reacts more strongly to a pump than the
linear Holstein model, highlighting the importance of this
mechanism in pump-probe experiments, e.g., ref. 48. Questions
such as the consideration of additional electron–vibration inter-
actions consistent with inversion symmetry20,49, which may aid
in the stabilization of a transient superconducting state, as well as
how the electron–phonon steady state exposed in this work

manifests experimentally are also important open challenges and
call for the development of new tools for the study of out-of-
equilibrium nonlinear electron–phonon problems. An intriguing
possibility is to use the information obtained here about the
properties of the long-time state to motivate a variational ansatz
in order to simulate the dynamics.

Methods
We study pump-induced dynamics via exact numerical simulations of the non-
linear model coupled with an effective theory derived within a treatment formally
similar to a linear response theory in a low-order expansion in powers of gq/ω.

Details of exact numerical simulations of the nonlinear electron–phonon
system. We simulate the time evolution of Ψj i representing the metal on an
infinite chain irradiated at initial time t= 0 by a pump via the iTEBD algorithm38

utilizing the TeNPy Library50. We use dν= 12 phonon states to represent the local
phonon Hilbert space. We allow the bond dimension χ to grow without saturation
in the iTEBD time evolution, and converge our results with respect to the trun-
cation error ϵTEBD. This allows access to time t ~ 5J for which we find ϵTEBD=
10−3.5 achieves satisfactory convergence. We refer the reader to Supplementary
Note 5 for more information. To shed light on the long-time behavior, we also
propagate the initial state using direct Krylov subspace methods for finite system
sizes L= 3− 6 with dν= 8, 10, 12 and twisted boundary conditions, see Supple-
mentary Note 5 for more details.

Details of the effective model obtained within a low-order expansion in gq/ω.
We derive an effective model within a framework similar to linear response,
consistently incorporating contributions of Ofgq=ωg, with judiciously selected

Ofðgq=ωÞ2g corrections (e.g., the effective electron density–density interaction
term). This theory, strictly valid to Ofgq=ωg, qualitatively captures the exact
behavior of the time-evolved initial state in infinite systems obtained using iTEBD.
We simulate the dynamics governed by the effective model by time-evolving 0j i �
Ψj i under the action of Ueff :ðtÞ in Eq. (5) using iTEBD, employing dν= 12 local
squeezed-phonon states and allowing χ to grow without saturation in the time
evolution, while converging results with respect to ϵTEBD. This allows access to time
t ~ 5J for which we find ϵTEBD= 10−3.5 achieves satisfactory convergence. Details of
the derivation of the effective model and additional discussion of the dynamics are
presented in Supplementary Note 2 and Supplementary Note 3.

Data availability
All data are available upon reasonable request.
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