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Abstract

Breast cancer is the most common cancer among women and 30% will be diagnosed with an 

ErbB2-positive cancer. Forty percent of ErbB2-positive breast tumors have an activating mutation 

in p110α, a catalytic subunit of phosphoinositide 3-kinase (PI3K). Clinical and experimental data 

show that breast tumors treated with a p110α-specific inhibitor often circumvent inhibition and 

resume growth. To understand this mechanism of resistance, we crossed a p110α conditional 

(p110αflx/flx) mouse model with mice that overexpresses the ErbB2/Neu-IRES-Cre transgene 

(NIC) specifically in the mammary epithelium. Although mammary-specific deletion of p110α 
dramatically delays tumor onset, tumors eventually arise and are dependent on p110β. Through 

biochemical analyses we find that a proportion of p110α-deficient tumors (23%) display 

downregulation of the Pten tumor suppressor. We further demonstrate that loss of one allele of 

PTEN is sufficient to shift isoform dependency from p110α to p110β in vivo. These results 

provide insight into the molecular mechanism by which ErbB2-positive breast cancer escapes 

p110α inhibition.
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Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide, and 70% of 

women with breast cancer have mutations in the phosphoinositide 3-kinase (PI3K) pathway 

[1]. PI3K is an essential lipid kinase whose downstream effects involve cell growth, 

proliferation and survival [2,3,4,5]. PI3K functions by phosphorylating 

phosphatidylinositol-4,5-bisphosphate (PIP2) on its 3′ hydroxyl group to generate 
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phosphatidylinositol-3, 4,5-bisphosphate (PIP3) [6,7,8]. PIP3 is an important second 

messenger that recruits PI3K effectors to the membrane allowing subsequent activation of 

the pathway. Phosphatase and TENsin homolog (PTEN) is an essential lipid phosphatase 

that antagonizes PI3K by dephosphorylating PIP3 and has antagonistic functions to PI3K 

[2,3,4,5].

PI3K represents a large family of protein kinases that is divided into three classes, of which, 

class I is the most commonly studied in breast cancer. Class I is further subdivided into class 

Ia, which are activated mainly by Receptor Tyrosine Kinases (RTKs), such as the ErbB2/

ErbB3 heterodimer, and class Ib that are primarily driven by G protein-coupled receptors 

(GPCRs) [9,7]. Both subclasses are made up of a p110 catalytic subunit and a p85 regulatory 

subunit [2,10,11]. The catalytic subunit of Class I PI3K has four isoforms: p110α, p110β, 

p110γ and p110δ [12,13]. Both p110α and p110β are ubiquitously expressed, while p110γ 
and p110δ mainly expressed in leukocytes [14,15]. Today, the most studied isoform remains 

p110α due to its 40% mutation frequency in breast cancer and 15% mutation rate across all 

cancers [16,17,18]. This makes p110α the most mutated class Ia isoform [19]. However, 

p110β has been increasingly in the spotlight due to its association with PTEN loss, an 

aberration associated with hereditary cancers and frequently observed in breast cancers 

[20,21,22,23]. Recent publications have suggested that PTEN-null breast tumors often 

depend on p110β for PI3K signaling downstream of GPCRs, while PTEN wild-type tumors 

depend on p110α downstream of RTKs [24,25]. Genetic context also seems to influence the 

choice between p110α or p110β dependency in the absence of PTEN. For example, in 

ErbB2-positive or KRAS mutated breast cancers, PTEN-null tumors are solely dependent on 

p110α [26,27].

ErbB2 is an RTK that is found to be amplified and overexpressed in 20-30% of breast 

cancers, 40% of which have an activating mutation in p110α [28,29]. A wide variety of pan 

and isoform-specific inhibitors have been developed against PI3K, some of which are 

currently in clinical trials [2]. Pan-PI3K inhibitors have been associated with toxicity, so 

there have been increasing numbers of clinical trials investigating isoform-specific inhibitors 

[28,2]. Unfortunately, inhibition of p110α becomes ineffective over time both in vitro and in 

vivo, indicating the development of resistance mechanisms. [30,31]. Notably one group 

found that in response to a p110α-specific inhibitor, luminal breast cancer cells rapidly 

compensate for p110α through the engagement of p110β [30]. Another group has found that 

continued treatment with a p110α -specific inhibitor leads to a durable response in patients 

with a PIK3CA mutation, however, patients ultimately stop responding to therapy and 

develop lung metastasis that display PTEN-loss and p110β dependency. [32]

We have previously shown that loss of p110α in the Mouse Mammary Tumor Virus 

(MMTV)-ErbB2-IRES-Cre (NIC model) results in abrogation of mammary tumor 

development over an initial 8-month observation period [33]. Given that resistance to p110α 
specific inhibitors occur with time, we decided to evaluate p110α-deficient tumors over an 

extended period of 24-months. We find that although, ErbB2-driven mammary 

tumorigenesis is severely delayed in the absence of p110α, the majority of animals 

eventually develop tumors. To understand the mechanism by which acquired resistance was 

occurring in our system, we performed detailed genetic and molecular analyses of the 
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resulting tumors. We show that one mechanism by which p110α-loss is rescued is through 

spontaneous Pten downregulation. We further demonstrate that reduction in PTEN levels, 

through the loss of one allele, is sufficient to rescue the delay in tumor onset caused by the 

loss of p110α, which was found to occur through the p110β isoform. The isoform switch 

that occurs after p110α loss raises the concern about using isoform-specific inhibitors as a 

way to reach durable remission in patients who have ErbB2-positive breast cancer, and 

allows us to suggest a therapeutic approach that is potentially more effective.

Results

Loss of p110α significantly delays tumor onset, and impairs tumor growth and metastasis, 
with a subset of tumors exhibiting downregulation of the Pten tumor suppressor

To understand how ErbB2-positive tumors escape p110α inhibition, we crossed a 

conditional p110α mouse strain [34], to an activated ErbB2/Neu-IRES-Cre mouse model 

driven specifically to the mammary epithelium through the mouse mammary tumor virus 

promoter (MMTV) (NIC model) (supplemental figure 1a) [35]. The resulting mice have 

ErbB2 activation and Cre-mediated deletion of p110α in one or both of the conditional 

alleles (supplemental figure 1b,c). Consistent with our previous report [33], mammary 

specific deletion of both alleles of p110α significantly delayed tumor onset as compared to 

the parental strain, with an average of 351 days (n=44) versus 138 days (n=45) respectively. 

However, loss of one allele of p110α has a significant but limited impact on tumor onset 

with an average of 150 days (n=38) (figure1a). In the p110α-deficient animals that 

eventually developed tumors, the number of tumors (n=35) and total tumor burden (n=43) 

was significantly lower than in the wild-type animals (n=43) (figure 1b). The p110α-

deficient tumors also exhibited reduced metastatic potential to the lungs : 72% (n=39) in the 

p110α-deficient strain to 45% (n=20) in the heterozygous-p110α mice versus 9% (n=23) in 

the wild-type animals (supplemental figure 2a). At a histological level, all tumors of each 

genotype displayed a classic adenocarcinoma phenotype that is typical of NIC model 

(supplemental figure 2b).

Given the known importance of p110α in the PI3K/PTEN/AKT signaling axis, we next 

evaluated the levels of key downstream components of the PI3K pathway. We find that 

despite the loss of p110α, tumors retain robust phosphorylation of Akt. In fact, a subset of 

tumors that tend to have higher levels of p-Akt are also found to downregulate Pten, ErbB2, 

p85 and total Akt. Of 39 p110α-deficient tumors, 9 displayed a reduction in Pten levels 

(23%) (supplemental figure 3). However, most tumors that have high levels of p-Akt are not 

found to downregulate Pten, ErbB2, p85 or total Akt, suggesting the involvement of multiple 

mechanisms.

These observations indicate that regardless of p110α status, tumors remain dependent on 

PI3K downstream signaling.

p110α-deficient ErbB2 tumors remain dependent on PI3K

Given the observed downregulation of PTEN in a subset of p110α-deficient/NIC tumors, we 

hypothesized that these tumors may still be dependent on PI3K signaling through another 

Simond et al. Page 3

Oncogene. Author manuscript; available in PMC 2018 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p110 isoform. To test this hypothesis, we determined whether p110α-deficient tumors 

remained sensitive to a pan-PI3K inhibitor (GDC-0941) [36]. Consistent with this 

contention, we found that potent inhibition of p-Akt occurred within 2 hours of treatment 

and is still apparent after 12 hours (figure 2a). Next, we established tumors in athymic nude 

mice (NCr) from two p110α-deficient and two wild-type tumor lines (n=4-5 per line), and 

treated these mice with either a vehicle or GDC-0941. In contrast to animals treated with 

vehicle, the animals treated with GDC-0941 showed drastic reduction in tumor growth 

(figure 2b,c).

We further show that dependency on PI3K is observed regardless of Pten status, as tumor 

cells having wild-type or reduced levels of PTEN were equally responsive to GDC-0941 

inhibition (figure 2d). These observations indicate that a p110 isoform switch may be 

dependent or independent of PTEN status, suggesting the existence of at least two distinct 

mechanisms by which tumors escape loss of p110α. Taken together, these results indicate 

that, despite the loss of p110α, NIC tumor cells remain dependent on PI3K enzymatic 

activity.

PTEN haploinsufficiency can compensate for loss of p110α in ErbB2 mammary tumor 
progression

The data presented thus far argue that at least one of the molecular mechanisms by which 

p110α-deficient tumors escape p110α dependency may be through Pten downregulation. To 

directly address this hypothesis, we crossed a conditional PTEN strain to the NIC model to 

generate mice with heterozygous loss of PTEN and overexpression of activated ErbB2 in the 

mammary epithelium (supplemental figure 4a.b.c.d). This allowed us to produce mice that 

will express reduced levels of Pten, similar to what we observed in a subset of p110α-

deficient tumors. Consistent with the causal role of Pten downregulation in tumor escape of 

p110α-loss, tumor onset in p110α-deficient/NIC animals lacking an allele of PTEN was 

dramatically accelerated from 351 days (n=45) in the p110α-deficient/NIC animals to 108 

days (n=18) but only modestly accelerated tumor onset as compared to wild-type NIC mice 

that had tumors appear at 138 days (n= 44) (figure 3a). The number of tumors (n=17), total 

tumor burden (n=17), and the incidence of lung metastasis (n=17) was increased in p110α-

deficient/PTEN haploinsufficient animals as compared to the p110α-deficient strain (n=36, 

n=36, n=23) (Figure 3b, supplemental figure 5a). Histologically, we observed an 

adenocarcinoma phenotype across all genotypes (supplemental figure 5b). Most strikingly, 

when analyzing protein levels of PI3K signaling pathway components, we observed that 

tumors that have lost p110α and are PTEN-haploinsufficient have lower levels of ErbB2, 

p85, and total Akt, as well as higher levels of p-Akt. These results are consistent with what 

we observed in p110α-deficient tumors that have spontaneous Pten downregulation (figure 

3c). This suggests that loss of one allele of PTEN is sufficient to shift p110 isoform 

dependency away from p110α in an ErbB2 mouse model, mimicking p110α inhibition, and 

that PTEN is indeed the driver of the p110 isoform switch.

We have previously shown that PTEN loss in the NIC model accelerates tumorigenesis, but 

in the presence of wild type p110α [37]. This report, along with our findings presented, 
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emphasize the importance of PTEN levels in p110α-dependent and independent mammary 

tumorigenesis.

Tumors that have lost p110α are p110β dependent

To confirm that Pten deficiency is responsible for p110 isoform switch, we next investigated 

whether p110α-deficient tumor cells with PTEN-haploinsufficiency remained sensitive to 

p110β inhibition by treating them with a p110β-specific inhibitor (TGX221) [38]. Using Akt 

phosphorylation as a readout for PI3K activity, we observed that both p110α-deficient and 

p110α/PTEN-deficient tumors cells displayed sensitivity to p110β inhibition, whereas, wild-

type tumor cells displayed constant levels of p-Akt. These results indicate that a 2-fold 

decrease in Pten levels can induce p110β-driven tumors (figure 4a). The fact that these 

p110α-deficient tumors are p110β-dependent suggests that there are multiple mechanisms 

involved in p110 isoform switch. Furthermore, our results indicate that p110β may be 

signaling downstream of receptors other than the ErbB2/ErbB3 heterodimer. Consistent with 

this expectation co-immunoprecipitation analyses of tumor lysates revealed that p110β 
associates equally with the ErbB3 receptor in all the genotypes. Because the binding of 

p110β to ErbB3 is not increased in response to p110α-loss, p110β may be signaling through 

another receptor (figure 4b). Consistent with this data, immunofluorescence analyses for 

p110β and ErbB2 on tumor sections, revealed similar co-localization of p110β and ErbB2 

across genotypes, confirming that p110β recruitment to the ErbB2/ErbB3 heterodimer is not 

increased in p110α-deficient tumors (n=7 for each genotype) (figure 4c). Taken together, 

these data argue that PTEN downregulation is sufficient to drive the switch from p110α to 

p110β in an ErbB2 mouse model mimicking p110α inhibition.

Discussion

One of the ongoing challenges in the treatment of breast cancer is the emergence of acquired 

resistance to therapies targeting oncogenic drivers such as PI3K and ErbB2. To uncover the 

molecular basis for resistance of ErbB2-positive breast cancer to p110α-specific inhibition, 

we used an ErbB2 mouse model mimicking p110α inhibition in the goal of understanding 

tumor therapy escape over time. We established that mammary epithelial-specific ablation of 

p110α dramatically delays tumor onset, although, the majority of animals eventually 

develop tumors that are no longer dependent on p110α. Using a pan-specific inhibitor we 

showed that all tumors remain dependent on PI3K. Interestingly, a proportion of p110α-

deficient tumors display downregulation of the Pten tumor suppressor. We found that 

transgenic loss of an allele of PTEN is sufficient to rescue the delay in tumor onset observed 

and induce tumors that are dependent on p110β.

The observation that the subtle changes in Pten protein levels can have dramatic effects on 

p110 isoform dependency is critical as it concerns the design of targeted therapies for breast 

cancer. It is well known that Pten is a haploinsufficient tumor suppressor and that slight 

changes in its protein levels can be controlled by a variety of post-transcriptional and post-

translational events [23].

In our mouse model, loss of p110α has a significant impact on ErbB2-driven mammary 

tumorigenesis, which fits with the theory that ErbB2-positive tumors are p110α addicted and 
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signal through p110β as a last resort, as p110β signals less efficiently through RTK's 

[39,40].

It still remains unclear why Pten has such an interconnected role with isoform specificity in 

ErbB2-positve breast cancer. One possible explanation is that Pten status can alter the levels 

of a variety of proteins some of which may be ligands to a receptor to which p110β would 

have more affinity to then RTKs, such as GPCRs or Integrins. Alternatively, PTEN loss may 

also affect p110β signaling through upregulation of GPCRs or Integrins [41,42,43]. (figure 

5)

Evidence from our study that may support this point is the lower levels of p85 protein in 

p110α-deficient tumors with spontaneous PTEN downregulation. p110β has been found to 

not necessarily need p85 to bind to GPCR receptors, as it binds directly on the catalytic 

domain [43,44]. Consistent with this possibility, we also observed that increased p110β 
dependency did not correlate with increased recruitment to the ErbB3 receptor or with 

increased co-localization with the ErbB2/ErbB3 heterodimer. However, another explanation 

for the results observed in figure 4 could be that p110β is equally recruited to the ErbB2/

ErbB3 heterodimer but only displays kinase activity in response to Pten downregulation.

Based on our genetic studies, we could predict that treatment of ErbB2-positive breast 

cancer with a p110α-specific inhibitor would lead to the development of resistance through 

dependency on p110β. Given that these tumors seem to solely escape through p110β is 

reassuring and suggests that a combinational therapy between p110α and p110β specific 

inhibitors may be the best solution, to this date, for during remission. There are still many 

interesting avenues to be discovered in the molecular mechanisms by which p110 isoform 

switch occurs and future studies may permit us to develop better and less toxic therapeutic 

approaches for ErbB2-positive patients.

Methods

Animal husbandry

Our animals were housed at the animal facility in the Goodman Cancer Research Center and 

our experiments followed the approved animal use protocol. All strains used in this study 

were on an FVB/N background. The strains utilized for the study were : conditional 

p110α[33], conditional PTEN (129/J, obtained from The Jackson Laboratory, Bar Harbor, 

ME) and NIC [35]. All mice used for experimental purposes were female and they were 

housed for a maximum of 600 days.

Genotyping and excision PCR

Genotyping on mouse tails was performed at weaning age and at sacrifice. Excision PCR 

was conducted at tumor endpoint. DNA was extracted from tails and tumors as outlined 

later. Primers for genotyping were: p110α F: 

CTGTGTAGCCTAGTTTAGAGCAACCATCTA, R: 

CCTCTCTGAACAGTTCATGTTTGATGGTGA PTEN F: ACTCAAGGCAGGGATGAGC, 

R: GCCCCGATGCAATAAATATG Neu F: TTCCGGAACCCACATCAGGCC, R: 

GTTTCCTGCAGCAGCCTACGC Cre: F GCTTCTGTCCGTTTGCCG, R: 
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ACTGTGTCCAGACCAGGC Primers for excision PCR were: p110α F: 

CTGTGTAGCCTAGTTTAGAGCAACCATCTA, R: 

ACAGCCAAGGCTACACAGAGAAACCCTGTC PTEN P1: 

ACTCAAGGCAGGGATGAGC, P2: AATCTAGGGCCTCTTGTGCC, P3: 

GCTTGATATCGAATTCCTGCAGC. All primers were used at a concentration of 10μM.

Taq (20120X, Qiagen, Venlo, The Netherlands) was used for p110α and PTEN genotyping 

and excision PCR's with twice the amount of recommended Taq was used for the excision 

PCR. Easy Taq (AP111, TransGen-EasyTaq, Beijing, China) was used for the Neu and the 

Cre genotyping PCR's

Mammary tumor monitoring

Female nulliparous mice were monitored weekly by mammary palpation and animals with 

tumors were sacrificed 5-7 weeks after tumor onset. Tumors were measured using a caliper 

and total volume was determined with the following formula: (4/3 × (3.14159) × (length/2) 

× (width/2)ˆ2). For animals with multiple masses had the individual volumes of each tumor 

were added to determine total volume. Mice were sacrificed before the total total tumor 

volume reached 6cm3 or before a single tumor reached 2.5cm3

Tissue sample processing

Tissue samples were collected at necropsy and either flash frozen in liquid nitrogen and 

stored at -80°C until further use, or fixed immediately in 10% neutralized formalin for 24 

hours. Fixed tissue was paraffin-embedded and sectioned at a thickness of 4μm by the 

Histological core facility in the Goodman Cancer Research Center at Mcgill university. H&E 

staining was performed by the Histology Core Facility.

Lung metastasis analysis—Lung metastasis was assessed by counting lesions in 5 × 50 

μm step sections of lungs from tumor-bearing mice.

GDC-0941 in vivo assay

Tumor cells were isolated from Ncr tumor outgrowths (see supplemental methods for tumor 

dissociation protocol) and 5.0×105 tumor cells were injected into the mammary fat pad of 

Ncr mice (one side). Mice were treated with 125mg/kg of GDC-0941 or vehicle by oral 

gavage daily for 6 weeks. Tumor outgrowth was monitored bi-weekly until tumor burden 

endpoint (2.5 cm3)

Protein extraction

Tumour lysates were prepared from flash frozen tumor tissue, crushed with a mortar and 

pestle, and lysed in PLCγ or TNE lysis buffer (see supplemental methods). Protein 

concentration was determined by brandford assay.

Immunoblotting/immunoprecipitation

For immunoblot, primary antibodies used were: p-ErbB2 (cell signaling# 2249, 1:1000), 

ErbB2 (Santa Cruz #284, 1:1000), p110α (cell signaling #4249, 1:1000), p110β (santacruz 

#602, 1:1000), p110γ (cell signaling #5405, 1:1000), p85 (cell signaling #4257, 1:1000), 
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Pten (cell signaling #9559, 1:1000), p-Akt thr308 (cell signaling #4056, 1:500), p-Akt 

ser473 (cell signaling #9271, 1:1000), Akt1-2 (santa-cruz #1619, 1:1000), β-actin (Sigma 

A5441, 1:10000). Secondary antibodies used were conjugated to horserashish peroxidase 

(HRP) (jackson laboratory). For immunoprecipitation, a p110β antibody (santacruz #602) 

was used. Primary antibodies for immunoblot were ErbB3 (santacruz #285 1:1000) and 

p110β (santacruz #602 1:1000)

DNA/RNA extraction

tail DNA was extracted from tail pieces at weaning age and at sacrifice using salt 

precipitation (see supplementary methods). DNA was extracted from tumor tissue using 

phenol-chloroform (see supplemental methods) and RNA was extracted using the 

Qiashredder colums and the DNA/RNA mini kit from Qiagen

qRTPCR

cDNA was generated from 1ug of tumor RNA using the M-Mulv Reverse Transcriptase 

(#M0253S, New England Biolabs, Ipswich, Massachusetts, United States) Oligo-dT(23VN) 

and a murine RNase inhibitor (New England Biolabs). Real-time PCR was performed using 

the Roche lightcycler master mix on a Roche lightcycler 480. Samples were always run in 

triplicates and normalized to Gapdh. Primers using for RTPCR: Gapdh: F : 

CATCAAGAAGGTGGTGAAGC, R: GGGAGTTGCTGTTGAAGTCG, p110α F: 

TCCATCAGCTTCTGCAAGAC R: CTTCCCTTTCTGCTTCTTGG, PTEN: F: 

CATTGCCTGTGTGTGGTGATA R: AGGTTTCCTCTGGTCCTGGTA

Immunofloresence

Primary antibodies: p110β (santacruz #602, 1:1000), ErbB2 (Dako A0485) Pten (cell 

signaling #9559, 1:1000). Secondary antibodies: Alexa fluor-488 TSA, Alexa fluor-456 

TSA, Alexa fluor-455 from thermofisher. Colocolization of p110β and ErbB2 was quantified 

using 6 different images from each sample. Images were obtained using the Axioscan slide 

scanner from Zeiss and analyzed with the Metamorph software. Slides stained for PTEN 

were imaged using the LSM 800 from Zeiss.

TGX-221 in vitro assay

Mammary tumor cells were isolated from transplanted outgrowths in NCr mice at the same 

time and transplanted in DMEM with 5% Fetal Bovin Serum (FBS). Cells were treated 1 

day after plating with 100nM, 500nM or 1000nM of TGX-221 inhibitor (final DMSO 

concentration of 0.2%) or with DMSO for 6 hours. Cells were then harvested and lysed with 

PLCγ lysis buffer for immunoblot analysis.

Statistical analysis

All experiments on animals were done non-randomized and 9nblended. For the Kaplan-

Meier curves, cohorts of 18 mice and over were used to ensure enough statistical power. The 

variance within each group was assessed by F-test. In figure 1b the number of tumors in the 

wild-type NIC group as compared to the p110αflx/flx/NIC and the p110αflx/wt/NIC 

compared to the p110αflx/flx/NIC had a significant P value. In Figure 2c, the F-test was 
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statistically significant when comparing vehicle and GDC-0941 treatment in sample 8665. 

Finally, in Figure 3b the variance of the number of tumors per group was significant for 

wild-type NIC mice compared to p110αflx/flx/NIC and p110αflx/flx/PTENflx/wt/NIC 

mice. The statistical analysis used throughout the manuscript was a two tailed Student-t-test, 

apart from the Kaplan-Meier survival analysis which was done using the log-rank (Mantel-

Cox) test. For all statistical tests p-values smaller than 0.05 were considered statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Loss of p110α significantly delays tumor onset, and impairs tumor growth and 
metastasis, with a subset of tumors exhibiting down regulation of the Pten tumor suppressor
(a) Kaplan-Meier tumor onset curve for NIC mice that are wildtype, heterozygous, or 

homozygous for the p110α conditional allele. The table indicates for each genotype the 

penetrance (percentage of animals that developed tumours), T50 (age when 50% of the 

animals have tumours), and average tumour onset with standard deviation for each of the 

curves shown on the graph. p values were calculated using a two-tailed student t-test. (b) 

The number of tumors and total tumor burden at endpoint (5-7 weeks post-palpation). The 

error bars represent the standard error of the mean and the p values were calculated using a 

two-tailed student t-test. (c) immunoblot analysis of tumor lysates (20μg) for the genotypes 

indicated.
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Figure 2. p110α-deficient ErbB2 tumors remain dependent on PI3K
(a) Immunoblot of p110αwt/wt/NIC mammary tumor lysates (20μg) from NCr mice injected 

with (500 000 tumor cells) after treatment with either a vehicle (veh) 125mg/kg of 

GDC-0941 by oral gavage for the indicated times, (b) Tumor outgrowth in NCr mice 

injected with tumor cells (500 000 tumor cells) of the indicated genotypes and treated with 

either vehicle or 125mg/kgof GDC-0941 by oral gavage daily for 6 weeks (c) Difference in 

tumor growth in between vehicle-treated and GDC-0941-treated tumors after 3 weeks of 

treatment. The p-values were calculated using a two-tailed Student t-test. (d) Immunoblot of 

NCr tumor lysates (20μg) from the indicated genotypes.
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Figure 3. PTEN haploinsufficiency can compensate for loss of p110α in ErbB2 mammary tumor 
progression
(a) Kaplan-Meier tumor onset curve for NIC mice that are wild-type or homozygous for the 

p110α conditional allele and wild type or heterozygous for the PTEN conditional allele. The 

table indicates for each genotype the penetrance (percentage of animals that developed 

tumors), T50 (age when 50% of the animals have tumors), and average tumor onset with 

standard deviation for each of the curves shown on the graph, p-values were calculated using 

the log-rank (Mantel-Cox) test, (b) The number of tumors and total tumor burden at 

endpoint (5-7 weeks post-palpation). The error bars represent the standard error of the mean 

and the p-values were calculated using a two-tailed student t-test (c) Immunoblot analysis of 

tumor lysates (20μg) for the genotypes indicated.
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Figure 4. Tumors that have lost p110α are p110β dependent
(a) Immunoblot of NCr cells treated with vehicle or 100nM, 500nM or 1000nM of TGX-221 

(p110β3 specific inhibitor) for 6 hours, (b) Co-immunoprecipitation of p110βand ErbB3, 

p110βand p-85 (500μg). (c) Immunoflorescence staining of p110βand DAPI on paraffin-

embedded mammary tumor tissue, scale bar represents 50μm.
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Figure 5. Summary diagram of P13K signaling in response to p110α targeted therapy
(a) PI3K signaling in ErbB2 positive breast cancer before therapy, where the majority of 

PDK signaling occurs through p110α binding to the ErbB3/ErbB2 heterodimer. (b) 

PI3Ksignaling after treatment with a p110α-specific inhibitor. In response to p110α a subset 

of tumors escape through p110β in response to PTEN downregulation/heterozygous loss. In 

these tumors p110β may signal through theErbB2/ErbB3 heterodimer but is more likely to 

be signaling through another receptor, possibly GPCR's or lntegrins.
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