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Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of ongoing global
pandemic of coronavirus disease 2019 (COVID-19), has infected millions of people around the world, especially the
elderly and immunocompromised individuals. The infection transmission rate is considered more rapid than other
deadly pandemics and severe epidemics encountered earlier, such as Ebola, Zika, Influenza, Marburg, SARS, and
MERS. The public health situation therefore is really at a challenging crossroads.

Main body: The internal and external and resident microbiota community is crucial in human health and is
essential for immune responses. This community tends to be altered due to pathogenic infections which would
lead to severity of the disease as it progresses. Few of these resident microflora become negatively active during
infectious diseases leading to coinfection, especially the opportunistic pathogens. Once such a condition sets in, it
is difficult to diagnose, treat, and manage COVID-19 in a patient.

Conclusion: This review highlights the various reported possible coinfections that arise in COVID-19 patients vis-à-
vis other serious pathological conditions. The local immunity in lungs, nasal passages, oral cavity, and salivary
glands are involved with different aspects of COVID-19 transmission and pathology. Also, the role of adaptive
immune system is discussed at the site of infection to control the infection along with the proinflammatory
cytokine therapy.
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1 Background
The ongoing human-to-human transmitted coronavirus
disease 2019 (COVID-19), caused by the latest corona-
virus strain (severe acute respiratory syndrome corona-
virus 2; SARS-CoV-2), is debatably believed to have
originated from pangolins and/or bats that has spread
rapidly worldwide [1, 2]. SARS-CoV-2 infection as the
ongoing pandemic, resulting in increased number of
COVID cases with the current second wave, is a serious
global health concern, especially for the immunocom-
promised and the elderly. Viral infections like Ebola,
Zika, Influenza, SARS-CoV, MERS-CoV-2, and Marburg

have been infecting millions of humans, animals, and
birds equally either as a seasonal epidemic or as a pan-
demic and a global health disaster [3]. These spread
through person-to-person contact with body fluids, and
there is no effective therapeutics to treat them being
viral entities. Like other CoVs, SARS-CoV-2 possesses
membrane glycoprotein, spike protein, nucleocapsid pro-
tein, small membrane protein, and hemagglutinin ester-
ase [4, 5]. The glycoprotein spikes present on the outer
surface of the virus are mostly responsible for its attach-
ment and entry to the host cell [6]. SARS-CoV and
MERS-CoV recognize exopeptidases as the key receptor
in case of humans [7], while aminopeptidases or carbo-
hydrates in others. MERS-CoV binds to DPP4 while
SARS-CoV and SARS-CoV-2 bind to angiotensin-
converting enzyme 2 (ACE2) as a key receptor [7, 8].
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The virus spike (S)-protein may bind to ACE2 receptors
present on various human cells to initiate its entry into
the human host cells [6, 9]. ACE2 is found in human
cells like in lung alveolar epithelial cells [10]. However,
understanding the dynamics of SARS-CoV-2 in humans
and its impact is at its infancy [11]. This viral infection
reportedly has caused pulmonary, cardiac, renal, circula-
tory, gastrointestinal, and neurological fatal tissue dam-
age in patients.
The most common symptoms for COVID-19 are cold,

fever, and cough, followed by pneumonia. Apart from
these respiratory affections, the virus may further affect
the heart, kidneys, and the nervous system. It may cause
severe complications among the immunocompromised,
including those having diabetes and cardiovascular dis-
orders [12, 13]. SARS-CoV-2 is mainly transmitted
through the respiratory droplets from the infected, and
also through direct/indirect contacts (i.e., contaminated
object/surface/fomite) and fecal-oral route [14]. The
WHO till date reported millions of deaths due to this
novel virus. Respiratory viral infections lead to secondary
coinfections and increase the disease severity and mor-
tality outcomes [15]. Microbial coinfection also increases
the risk of disease severity in humans [16]. The mechan-
ism of virus interactions with other microbes is still un-
clear. It is very essential to study the source and the

mechanism infection of the coinfecting pathogens. In
1918 influenza outbreak, Morens et al. [17] suggested
that most fatalities occurred due to a subsequent coin-
fection by Streptococcus pneumonia. Bacterial coinfec-
tion was also associated with the 2009 H1N1 influenza
pandemic [18, 19]. There are reports on the bacterial
and fungal coinfections (Fig. 1) in COVID-19 pandemic,
and the related fatalities [20, 21]. The state-of-art mNGS
technique helps to investigate and identify the novel
pathogen directly from clinical samples [22] which has
confirmed the presence of an elevated level of oral and
upper respiratory commensal bacteria [23]. An oral-lung
aspiration axis may be a key factor for many infectious
diseases [24].

2 Main text
2.1 Viral coinfection
Coinfection is commonly encountered in respiratory dis-
eases [25] which influences disease prognosis and treat-
ment (Table 1). Viral coinfections in COVID-19 patients
have been reported globally, and are critical during early
misdiagnosis [50]. Possibly due to their immunity status,
the middle-aged and the elderly are more prone to viral
coinfection [26]. However, it may not be true, healthy
people may also be coinfected [27]. Majority of COVID-
19 patients coinfected with other viruses have been

Fig. 1 Coinfections observed in COVID-19 cases

Mohapatra et al. Beni-Suef University Journal of Basic and Applied Sciences           (2021) 10:47 Page 2 of 12



reported to be around 30–60 years old [51]. An in vitro
study by Lin and coworkers at Shenzhen Third People’s
Hospital confirmed 3.2% viral coinfection, and at least
two viruses were detected in 2.2% of those patients [52].
A study in Wuhan confirmed 5.8% coinfections with
other coronavirus, hRV, and influenza (H3N2) [27].
Additional pathogens in 20.7% COVID-19-positive spec-
imens were reported from Northern California, predom-
inantly by RSV, entero-/rhinovirus, and non-SARS-CoV-
2 CoV [28]. Due to the infectivity nature of SARS-CoV-
2, respiratory viruses like hepatitis virus [29] and HIV
[30] coinfections were noticed along with simultaneous
detection of common respiratory viruses like RSV,
hMPV, hRV, PIV2, and HKU1. Also, C. pneumoniae,
parainfluenza 3, influenza A, M. pneumoniae, rhinovirus,

and non-SARS-CoV-2 CoV are common coinfections
[26].

2.2 Viral coinfection and immune response
The respiratory viral infections normally affect the air-
ways and lungs. Among all, the Influenza virus is re-
sponsible for causing frequent seasonal viral infections
[3]. Other viruses responsible for respiratory infections
include coronavirus, human adenovirus, rhinovirus, en-
terovirus, parainfluenza virus, and human metapneumo-
virus. Viral coinfection influences the prognosis and
treatment of COVID-19, and such patients need higher
level of care [53]. Development of such coinfections af-
fects the host immune response, especially in the im-
munocompromised and elderly people [54]. Reportedly,

Table 1 Microbial groups reportedly active in coinfection of COVID-19 patients

Microbial
group

Microbe(s) Origin Endogenous/
exogenous

Found in References

Virus C. pneumoniae, parainfluenza 3, influenza A, M.
pneumoniae, rhinovirus, non-SARS-CoV-2

Environment/
birds/animals

Exogenous Upper/lower respiratory tract [26]

Other coronavirus, hRV, influenza (H3N2) Environment/
birds/animals

Exogenous Upper/lower respiratory tract,
intestine

[27]

RSV, entero/rhinovirus, non-SARS-CoV-2 Environment/
birds/animals

Exogenous Upper/lower respiratory tract,
intestine

[28]

Hepatitis virus Human Endogenous/
exogenous

Blood, tissues, body secretions [29]

HIV Human Endogenous/
exogenous

Blood, tissues, body secretions [30]

hMPV, hRV, PIV2, HKU1 Human,
animals

Exogenous Upper/lower respiratory tract [29, 30]

Bacteria Veillonella, Capnocytophaga, Human Endogenous Oral cavity [23, 31–33]

Neisseria, Streptococcus pneumoniae, Corynebacterium,
Leptotrichia, Prevotella, Fusobacterium periodonticum

Human Endogenous Oral cavity [34, 35]

Pseudomonas aeruginosa, Streptococcus pneumoniae,
Fusobacterium periodonticum, Veillonella, Prevotella,
Capnocytophaga

Human Endogenous/
exogenous

Upper/lower respiratory tract [23, 31–33]

Staphylococcus aureus, Haemophilus influenza, Escherichia
coli

Human/
environment

Endogenous/
exogenous

Respiratory tract, skin, and
intestines

[36]

Coprobacillus, Clostridium hathewayi, C. ramosum Human,
environment

Endogenous/
exogenous

Gut [37]

Clostridium, Veillonella, Actinomyces, Streptococcus
pneumoniae, Rothia

Human,
environment

Endogenous/
exogenous

Gut [25, 37–40]

Mycobacterium tuberculosis Human,
environment

Endogenous/
exogenous

Lower respiratory tract, other
organs of the body

[41–43]

Fungi Candida tropicalis, C. albicans, C. glabrata, C. dubliniensis, C.
krusei

Human Endogenous Upper/lower respiratory tract,
intestine

[44]

Aspergillus fumigatus Human,
environment

Endogenous/
exogenous

Upper/lower respiratory tract [45]

Aspergillus fumigatus, Rhizopus oryzae, Absidia mucor Human,
environment

Endogenous/
exogenous

Respiratory tract, other organs
of the body

[46]

Black fungus (Rhizomucor species, Syncephalastrum species,
Cunninghamella bertholletiae, Apophysomyces, Lichtheimia,
Saksenaea, Rhizomucor)

Environment Majorly
exogenous

Respiratory tract, eye, broken
skin and its appendages,
sinuses, and brain

[47–49]
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the patients having hepatitis C virus and HIV infections
more likely lead to drug-induced liver injury (DILI) [55].
COVID-19 infection may cause liver damage [56]. As
coinfection causes serious damage to immunity [57], so
patient’s condition may be more serious, the treatment
could be more complicated, and the treatment cycle may
be longer [58]. Patients that are coinfected with SARS-
CoV-2 and HIV had a longer disease progression attrib-
uted to the slower specific antibody generation [59].
Genome sequencing confirms that SARS-CoV-2 is 79.5%
identical with SARS-CoV [5].

2.3 Rationale of viral coinfection
Viral coinfection increases the CRP and PCT levels,
damaging the immunity and the airway [60, 61]. Viral
coinfections arise as the airway epithelium is destroyed
by SARS-CoV-2 virus. COVID-19 could cause immune
system disorders leading to a possibility of coinfection
by other viruses [62]. Coinfection mechanism is unclear
in COVID-19 patients due to very little available infor-
mation about the virus kinetics. Coinfection rate in
COVID-19 with other viruses is reportedly not very high
[63]. Prevention and control of infection is suggested in
COVID-19 patients to avoid coinfection [64]. Social dis-
tancing is arguably the best prevention in the spread of
infection [65–67]. Isolating the patients during treatment
in a clinical setting is suggested to understand the trans-
mission risk of the infection [67]. Patients with HIV in-
fection history are more likely to encounter COVID-19
coinfection due to their reduced specific antibody re-
sponses [68].

2.4 Bacterial and fungal coinfection
Bacterial coinfection is a worrying problem in the
COVID-19 management and also is the major cause of
morbidity and mortality in other respiratory infections
[69]. However, the rate of coinfection in COVID-19 pa-
tients is relatively low possibly due to limited available
studies. Contou et al. [70] reported 28% bacterial coin-
fection in French ICU patients with SARS-CoV-2,
mostly related to Haemophilus influenzae, Staphylococ-
cus aureus, Streptococcus pneumonia, and bacteria of
Enterobacteriaceae family. A recent meta-analysis also
confirmed bacterial and viral coinfections in COVID-19
patients [71]. Bacterial coinfection is reportedly more
(14%) in COVID-19 patients in the ICU [72]. Calcagno
and coworkers reported coinfections with other respira-
tory pathogens such as Staphylococcus aureus, Morax-
ella catarrhalis, Haemophilus influenzae, Streptococcus
agalactiae, Enterobacter cloacae, Klebsiella pneumoniae,
and Escherichia coli in COVID-19 patients [73]. A study
on 989 COVID-19 patients showed nosocomial superin-
fections [74]. A total of 51 hospital-acquired bacterial
superinfections by Escherichia coli and Pseudomonas

aeruginosa along with S. pneumoniae, S. aureus and
Klebsiella pneumoniae were diagnosed. Also, mycobac-
terium tuberculosis coinfection was observed in COVID-
19 patients [41–43], although such coinfections report-
edly do not frequently occur. Mohamed and coworkers
reported multi-triazole resistant Aspergillus fumigates
coinfection in respiratory samples and suggested that
early diagnosis would help to understand the antifungal
therapy to improve the diseases condition [45]. In a case
report, Pal and coworkers found Streptococcus pneumo-
niae coinfection in SARS-CoV-2-infected patients [75].
S. pneumoniae, M. pneumoniae, L. pneumoniae, and C.
pneumoniae coinfections are also observed in COVID-
19 patients and suggested for combination therapy with
non-anti-SARS-CoV-2 agents [76]. In a multicentre co-
hort study, Russell and his group reported 70.6% second-
ary nosocomial infections in COVID-19 cases during the
first wave [36]. Staphylococcus aureus, Haemophilus
influenzae, and Escherichia coli (Enterobacteriaceae)
were the most commonly encountered pathogens as di-
agnosed within two days post hospitalization.

2.5 Human saliva and COVID-19
Human saliva constituting 94–99% water content, pro-
duced by the salivary gland, is important in food diges-
tion, oral mucosa lubrication, cleaning, and preservation
of oral cavity. It also contains food particles, oral mi-
crobes and their metabolites, serum elements, white
blood cells, and exfoliated epithelial cells. Although
more than 700 microbial species are detected in it, saliva
prevents overgrowth of specific pathogens and serves as
a gatekeeper (the first level of defense), and prevents
them from spreading to the respiratory and gastrointes-
tinal tracts [65]. Also, it is crucial in preventing viral in-
fection [77]. SARS-CoV-2 may enter human saliva
through the lower and upper respiratory tract droplet
nuclei. It may enter the mouth through the blood from
gingival crevicular fluid, and through salivary ducts from
infected salivary gland [78].
A previous study on SARS-CoV confirmed infection of

epithelial cells of salivary gland having elevated
angiotensin-converting enzyme 2 (ACE2) expressions
[79]. Moreover, ACE-2 expression in minor salivary
glands was found to be more than in lungs. Before the
onset of lung lesions, SARS-CoV RNA may be found in
saliva samples. Live virus may be cultured in saliva sam-
ples. Thus, salivary gland is a significant virus reservoir.
It suggests that SARS-CoV-2 spreads through contami-
nated saliva for asymptomatic infections [80].

2.6 Oral bacterial microbiota
Significant number of viral, bacterial, and fungal coinfec-
tions in COVID-19 originating from the oral cavity has
been observed, similar to other pandemics. Oral
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pathogens like Veillonella and Capnocytophaga were
confirmed by mNGS in bronchoalveolar lavage fluid
(BALF) of COVID-19 cases [31]. A higher nasal virus
load in the throat has been reported [81]. Oral cavity
houses the second largest microbiota containing bac-
teria, viruses, fungi, and archaea in human body [82].
Major bacterial genera in human oral cavity are Neis-
seria, Prevotella, Streptococcus, Corynebacterium, Fuso-
bacterium, Leptotrichia, Veillonella, and
Capnocytophaga [34]. Many such pathogens may
colonize the respiratory tract of healthy individuals
asymptomatically [83]. Thus, oral microbiome regulates
mucosal immunity and affects pathogenicity [84].

2.7 Lung microbiota
In COVID-19, the virus infects epithelial cells of the
upper respiratory tract (URT) like the nasal passages and
throat, and lungs (bronchi and lung alveoli). The local
immunity in lungs, nasal passages, oral cavity, and saliv-
ary glands are involved with different aspects of SARS-
CoV-2 transmission and pathology. The lung microbiota
community is another complex variety and found in
lower respiratory track (LRT) like the epithelial and mu-
cous layers. There is a relationship between the micro-
bial community in lungs and the oral cavity [85]. Under
normal conditions, the microbiota from oral cavity mi-
grates as an important source of lungs microbiota [86].
Human lungs contain Pseudomonas, Streptococcus, Pre-
votella, Fusobacterium, Veillonella, and Capnocytophaga
that is found in oral cavity as well [23, 32, 33]. Some-
times, potentially harmful bacteria responsible for re-
spiratory disorders like S. pneumonia, H. influenza, and
M. catarrhalis are also found in respiratory specimens.
Further, the fungal genera include Candida, Aspergillus,
Saccharomyces, and Malassezia. Studies confirm that
lung microbiota is quite similar to those in the orophar-
ynx and nasopharynx [44].
Reports mention that 72% COVID-19 patients re-

ceived antimicrobial therapy to treat fungal and bacterial
coinfections [87, 88], although the pathogenesis was un-
clear. As active microbiota of the oral cavity is found in
the BALF of COVID-19 patients, it could be a natural
reservoir of opportunistic pathogens in COVID-19 pa-
tients. Metagenomic sequencing confirms that the naso-
pharyngeal Fusobacterium periodonticum population in
SARS-CoV-2 patients varied with the duration of the in-
fection and decreased significantly beyond 3 days [35].

2.8 Intestinal microbiota
Ingestion is a frequent mode of pathogen transmission;
gastrointestinal infection is common among the
pediatric age group attributable to their playing habits.
Environmental microbes are accidentally ingested by
both humans and animals, although most of them do

not necessarily result in infection. This could be attrib-
uted to the unfriendly acidic environment in the stom-
ach and the various proteolytic enzymes in the
alimentary system. The mucus lining, the peristaltic
movements of the intestinal villi, the secretory immuno-
globulins, the local immune defence mechanisms like
mucosa-associated lymphoid tissue (MALT) and gut-
associated lymphoid tissue (GALT) also aid in the first
line of defense. However, microbes like bacteria and vi-
ruses occasionally succeed in causing gastrointestinal
disorders. SARS-CoV-2 is transmitted through the re-
spiratory route and not much is known about the pres-
ence/survival of it in the intestine and transmission
through the fecal-oral route. The consequence of SARS-
CoV-2 infection in the gastrointestinal tracts is unclear
[89, 90]. Studies report the potential of SARS-CoV-2 in
the faeces of infected persons and its possible faecal-oral
transmission. This is supported by several reports hint-
ing at diarrhoea as a clinical presentation among a quar-
ter of patients infected by the pandemic. Common
gastrointestinal symptoms include nausea, diarrhea,
vomiting, and abdominal pain [91–96], that persist in
throat swabs in SARS-CoV-2 convalescence with dimin-
ished respiratory symptoms.
Intestinal microbiota influence pulmonary diseases

[97]. Studies demonstrate that respiratory viral infection
may disturb intestinal microbiota [94, 98–101]. Gut
microbiota may downregulate the ACE2 expression with
virus load in COVID-19 cases [37]. Results demonstrate
that SARS-CoV-2, which attaches to the ACE2 receptors
and transmembrane serine protease 2, could infect intes-
tinal epithelial cells. These cells exhibited receptors to
bind to the virus as do the respiratory epithelial cells
and other cells. Thus, SARS-CoV-2 efficiently adheres to
intestinal epithelial cells, causes inflammation, and could
initiate infection via the gastrointestinal tract [102].
SARS-CoV-2 may cause local inflammation in the gut
and could lead to coinfection taking advantage of sup-
pressed immune system resulting in severe infection, es-
pecially among the elderly. The novel virus caused
dysbiosis of the gut microbiome potentially facilitating
its invasion and survival. Disturbed normal gut micro-
biome predisposes the patients to secondary microbial
infections and dissemination of virus to other body parts
[103, 104]. The susceptibility to SARS-CoV-2 in patients
with irritable bowel disease (IBD) and other luminal dis-
eases has been reported. This could be supporting evi-
dence that a healthy gut with normal microbiome
prevents potential SARS-CoV-2 spread by faecal-oral
route.
Indians have a comparatively healthy gut attributable

to their eating habits, ensuring the existence of health-
benefiting microbes [105]. There is an increased belief
that probiotics help in managing and prognosis of
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COVID-19. Probiotics could prevent excessive immune
response (cytokine storm), reduce inflammation and pre-
vent virus multiplication and invasion [106, 107].
COVID-19 remains mild and becomes self-limiting in
healthy individuals with a robust immunity. SARS-CoV-
2 infection increases in severity causing complications
and death with a compromised immunity and other de-
bilitating conditions like diabetes and increased age. This
supports the argument that the immunity status of indi-
viduals plays a key role in COVID-19 disease prognosis.
As gut microflora influences the immune system, distur-
bances of the gut microbiome may predispose people to
COVID-19 via intestinal invasion. Also, there could be
an increased likelihood of secondary microbial coinfec-
tions as observed in HIV infection and acquired im-
munodeficiency syndrome (AIDS) wherein the patients
suffer from serious intestinal parasitic infections involv-
ing opportunistic microbes [108].
A comparison between the gut microbiome of

COVID-19, H1N1 influenza patients, and the healthy
controls indicated that opportunistic bacterial (Clostrid-
ium, Veillonella, Actinomyces, Streptococcus and Rothia)
and fungal (Candida and Aspergillus) pathogens re-
placed beneficial microbes/commensals like Proteobac-
teria, Bacteroides, Actinobacteria, Blautia, Romboutsia,
Collinsella, and Bifidobacterium in COVID-19 patients.
Also, unique bacterial species were noticed in COVID-
19 patients that could be infection indicators in SARS-
CoV-2 [25, 37–40]. Coprobacillus, Clostridium hathe-
wayi, and C. ramosum have been reported to be associ-
ated in severe COVID-19. Bacteroides sp. downregulated

ACE2 expression in the murine gut and were correlated
inversely with the SARS-CoV-2 load [37, 109].
An assessment of the pulmonary and intestinal micro-

flora that influences the prognostic to determine the
clinical outcome of COVID-19 patients and therapeutics
has been reported. The ACE-2 on intestinal epithelial
cells facilitates absorption of tryptophan, an antimicro-
bial peptide. As SARS-CoV-2 attaches to the ACE-2 re-
ceptors on the epithelial cells causing reduced
absorption of tryptophan and increased survival of mi-
crobes, it predisposes COVID-19 patients to severe com-
plications and secondary microbial coinfections [110].
Fecal shedding of SARS-CoV-2 in convalescing patients
and dysbiosis of gut microbiome even after a month has
been reported. Study proposed the screening of fecal
specimen for SARS-CoV-2 before fecal microbiota trans-
plantation procedures [111]. It is important that the nor-
mal pulmonary and intestinal microflora is maintained
in equilibrium as there is a harmonious relationship be-
tween the gut microbiome and the respiratory health
[112]. Because COVID-19 disturbs the gut and the air-
way microbiome, it predisposes the patients to gastro-
intestinal and respiratory complications (Fig. 2).

2.9 Proinflammatory cytokine therapy
The fundamental components (B cells, CD4+ T cells,
and CD8+ T cells) of the adaptive immune system are
important to control the viral infections. These play dif-
ferent roles in different viral infections and it is very es-
sential to understand the COVID-19-associated
mechanism. Adaptive immune system should act at the

Fig. 2 Gut microbiota and COVID-19
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site of infection to control an infection [113]. Although
the mechanism of viral entry is still ambiguous [114,
115], severe COVID-19 patients demonstrated an over-
reactive immune response leading to cytokine storm and
developing acute respiratory distress syndrome (ARDS)
[114]. ARDS leads to other complications like secondary
bacterial infections and lung fibrosis. In severe cases,
host-directed immunotherapy is an adjunct therapy that
could reduce inflammation and related lung damage and
prevent ICU hospitalization. Cytokine storm syndrome
is a major cause of mortality associated with hospitalized
COVID-19 patients [116]. Cytokine storm from several
viral infections is well-known to be involved in enhan-
cing immunopathology of the disease [117]. A high level
of inflammatory cytokine (IL-6) was reported during
early pandemic days in COVID-19 patients, with more
than 80 pg/mL IL-6 levels, a good indicator of respira-
tory failure and death [118]. Targeting IL-1 (another
pro-inflammatory cytokine) could be a successful strat-
egy to improve survival in COVID-19 patients [119,
120]. Cavalli and coworkers compared the effectiveness
of IL-1 and IL-6 inhibition in treating COVID-19 cyto-
kine storm syndrome [121]. In a significant number of
mortality cases, SARS-CoV-2 was associated with exten-
sive multiorgan inflammation suggesting a maladaptive
immune response, resulting in continuous neutrophil ac-
tivation and organ damage [117].
Anti-inflammatory therapy is being explored in mor-

bidity and mortality reduction. Immunosuppressive ther-
apies like cytokine blockade and JAK inhibition is also
suggested [122]. The first therapy that reduced mortality
was dexamethasone. Recent studies have shown the
benefit of tocilizumab in critically ill patients, and barici-
tinib in hospitalized patients providing substantial evi-
dence that COVID-19 patients benefit from
immunosuppressive therapies [123]. Glucocorticoid
therapy may also be beneficial for COVID-19 treatment
[124]. Cytokine-targeted treatment by anakinra was
promising in saving lives in COVID-19 cases, although
randomized controlled trails results are awaited [124,
125].

2.10 Animal models in coinfection study
Various microbial coinfections are a common occur-
rence in several epidemics and pandemics including
three lethal CoVs witnessed in last two decades. It is
very essential to understand the pathogenesis and noso-
comial management of SARS-CoV-2 and related coin-
fections. Mouse model is widely used for different viral
pathogenesis investigations due to its small size and easy
low cost of operation. Studies to determine the role of
immune effectors in the CoV infection report the use of
immunocompromized mice [126].

The current SARS-CoV-2 mouse model may be crit-
ical in line with considering the use of MHV to study its
biological mechanisms [127], using gene editing technol-
ogy to understand mouse genes (ACE2 and TMPRSS2)
related to viral binding and entry [128, 129], or transfer
of human ACE2 for direct infection [130], and using
wild SARS-CoV-2 virus to establish a mouse model for
significant clinical phenotype [131]. To understand the
coinfection mechanism by inoculating other pathogens,
a coinfection mouse model may be recommended [132].
Furthermore, small animals like human ACE2 transgenic
mice, wild-type mice, Syrian hamsters, and large animals
such as ferrets, cats, Rhesus macaques, and Cynomolgus
macaques may contribute significantly as animal models
to evaluate vaccines and drugs against SARS-CoV-2
[133, 134].

2.11 Mucormycosis
Mucormycosis, also known as black fungus or zygomy-
cosis, is found in the environment and is caused by a
group of molds called mucormycetes that mainly affect
the sinuses or the lungs of people with reduced immun-
ity [135]. It is a rare albeit deadly fungal infection and is
now detected in COVID-19 patients in India too. Many
Indian states have reported such infections among the
COVID-19 patients. Once a person is infected, this op-
portunistic pathogenic fungus manifests in the skin or
could affect the brain or lungs. As per the Centre for
Disease Control and Prevention (CDC) of the USA, it
may be rhinocerebral mucormycosis (sinus and brain),
pulmonary mucormycosis (lung), gastrointestinal mucor-
mycosis (gut and intestines), cutaneous mucormycosis
(skin), and disseminated mucormycosis (in people hav-
ing other medical conditions). Usually developing in 10–
14 days post-hospitalization, the infection spreads
through the bloodstream to other body parts. The pa-
tients may be treated with Amphotericin B (an antifun-
gal), and surgery may be required in some cases.
The symptoms are pain and redness around the eyes

or nose, blurred or double vision, loosening of teeth,
toothache, blackish/bloody discharge from nose, bloody
vomits, swelling in cheekbones, skin lesion, chest pain,
fever, headache, dyspnea, coughing, and may also alter
mental status [135, 136]. This infection is observed in
the convalescing COVID-19 patients having issues re-
lated to diabetes, prolonged ICU stay, prolonged medical
oxygen use, high blood sugars, chronic kidney disease,
HIV/AIDS, hematological malignancies, solid organ
transplant, etc. [137] Such infections spread due to the
rampant misuse or overuse of steroids, monoclonal anti-
bodies, and broad-spectrum antibiotics during COVID-
19 treatment [47]. As India has second largest diabetic
population with around 70% are uncontrolled cases,
such coinfection has become more common here [135].
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Hence, higher mortality rate (~ 87%) is observed these
days as compared to earlier reports (~ 50%) during non-
COVID times [48, 138].
Garg and coworkers [48] reported a COVID-19-

associated pulmonary mucormycosis in a 55-year-old
COVID-19 patient with diabetes, end-stage kidney dis-
ease. With 5 g of liposomal amphotericin B treatment,
the patient was discharged from the hospital after 54
days. They also analyzed seven other cases of COVID-
19-associated mucormycosis. According to them, dia-
betes mellitus was the most common risk factor. The in-
cidence of acute invasive fungal rhinosinusitis is
prominent in post-COVID-19 patients especially in the
immunocompromised [46], the most common infecting
organisms being Aspergillus fumigatus, Rhizopus oryzae,
and Absidia mucor.
In India, along with black fungus, white and yellow

fungus infections detected during endoscopy proved
fatal in COVID-19 patients [139]. While mucormycosis
relates to black fungus, however the latter are referred to
as aspergillosis, candidiasis, and cryptococcosis. All such
fungal infections were observed in immunocompromised
COVID-19 patients by invading the immune system
leading to dysregulation and reduced numbers of T lym-
phocytes, CD4+T, and CD8+T cells [46]. Physicians
need to be careful about the possibility of such second-
ary invasive fungal infections in COVID-19 patients dur-
ing and after the onset of the disease [49].

3 Conclusions
The internal and external resident microbiota is crucial
in human health and is essential for immune responses.
The microbial coinfection increases the risk of disease
severity in humans. However, their mechanism of inter-
action with the infecting virus with other pathogens is
still unclear. It is very essential to study the source and
the mechanism of the coinfecting pathogens. This will
help in early diagnosis and to understand the antimicro-
bial and antifungal therapy to effectively treat the dis-
ease. The use of health microbiobata, probiotics, and
other health promoting regimens need to be explored to
counter coinfections during COVID-19 pandemic. Ex-
perimental therapy to support the treatment outcomes
and prevention of the consequences of respiratory coin-
fection is imminent. This review has attempted to
summarize previous studies describing the viral, bacter-
ial, and fungal pathogens involved in COVID-19 coinfec-
tions, and it also discusses the role of adaptive immune
system at the site of infection to control the infection
along with the proinflammatory cytokine therapy.
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