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Abstract: Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918
and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple
animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed
two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted
goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-
4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles
that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the
Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence
PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored
three different mutation sites, indicating that they have different virulence characteristics. The
mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase ac-
tivity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic
increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1
(CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in
mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-
64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers
of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only de-
tected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51
log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea
and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for
increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea,
particularly with regard to Alaskan and Asian strains.

Keywords: avian influenza; H1N1; isolates; mammal adaptation; pathogenesis

1. Introduction

Based on 18 hemagglutinin (HA) and 11 neuraminidase (NA) surface proteins, in-
fluenza viruses are classified into a wide array of subtypes, some of which are a public
health threat [1]. Sixteen HA subtypes (H1–H16) and 9 NA subtypes (N1–N9) are avian
influenza viruses (AIVs), whereas subtypes H17N10 and H18N11 have only been detected
in bats [2].
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H1 AIVs are a type of influenza A virus that can be transmitted from birds to mammals;
these viruses can co-circulate among wild birds, pigs, and human beings [3]. Influenza
viruses are isolated from human for the first time in 1930s [4]. Since then, the H1N1 subtype
virus in particular has caused two seriously deadly pandemics in human beings including
the 1918 “Spanish flu” pandemic and the 2009 H1N1 pandemic [5]. The 1918 H1N1 flu
pandemic originated from an avian population and, subsequently, infected porcine and
human populations at approximately the same time, although it was not pathogenic in
birds [6]. In 1979, avian-like H1N1 viruses entered the Eurasian swine population and
co-circulated with the classical swine virus in Eurasia [3,7]. The 1957 and 1968 pandemics,
which were caused by subtypes H2N2 and H3N2, respectively, replaced the H1N1 virus
in the human population until its reappearance in 1977. Since then, the H1N1 virus has
been circulating in humans along with the seasonal H3N2 virus [8]. A novel H1N1 virus
emerged in 2009 worldwide and was introduced in Korean with a unique gene constellation
of avian-, porcine-, and human-origin segments. It caused a pandemic, despite the existing
human immunity to seasonal H1N1 [9,10]. The low genetic diversity among the viruses
suggests that the introduction into humans was caused by a single event or multiple events
involving similar viruses [11].

Historically, several highly pathogenic AIVs (HPAI) have infected poultry in Korea, indi-
cating that Korea’s geographic location facilitates the reassortment of avian influenza [12–14].

In Korea alone, HPAI outbreaks have been reported five times since 2003 [13,15–18].
Especially, H5N8 virus represent the fifth and last HPAI outbreak in January 2014. In
addition, H5N8 HPAI viruses were detected from 38 wild birds in 200 poultry farms in
Korea in 2014 [19]. Meanwhile, the H5N1 HPAI virus caused the other four outbreaks
in 2003, 2006, 2008, and 2010. During these outbreaks, HPAI viruses were transmitted in
poultry and live bird markets [20]. Wild birds serve as the reservoir of influenza A virus
in nature. While viruses are normally nonpathogenic in wild birds, domestic birds and
mammals sometimes suffer significantly morbidity and mortality upon its transmission [21].
Therefore, persistent surveillance of the infectious influenza A subtype (H1N1) virus in
birds and swine is important to prevent or control transmission of AIV to human in Korea.

In the current study, we conducted a genetic analysis and a molecular characterization
of two isolates of avian H1N1 found in 2018, and we hypothesized the reassortment events
that led to the generation of these viruses.

2. Materials and Methods
2.1. Sample Collection

During the winter season from November 2018 to March 2019, fresh samples of the
feces of wild migratory birds were collected from a wild field near riverside in Chun-
cheon and Kangwa province of Korea. A total of 1800 fresh fecal dropping samples were
packed at 2–8 ◦C and sent to a laboratory within 1 day for further analysis. KNU18-
64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-
4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)) samples were isolated from the
feces of waterfowl obtained from Chuncheon, Korea (37◦55′03.12′ ′, 127◦44′15.75′ ′) on
7 November 2018, and from Kanghwa, Korea (37◦45′11.4′ ′, 126◦30′13.3′ ′) on 17 March 2019
(Figure S1).

2.2. Virus Isolation

As described previously [22], the fecal samples were resuspended in phosphate-
buffered saline (PBS; pH 7.4), then thoroughly vortexed and centrifuged for 10 min at
3000 rpm. The supernatants were collected and filtered using a 0.45-µm membrane (GVS
Syringe, Nova-Tech, Kingwood, TX, USA) prior to inoculation into 10-day-old specific-
pathogen-free (SPF) chicken embryos (Seng-Jin Inc., Eumsung, Korea). The allantoic fluid
was harvested from the embryos after incubation for 3 days at 37 ◦C in a humidified
atmosphere. The presence of the virus was determined by screening for viral HA activity
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via a hemagglutination assay [23]. The results of the HA activity tests were confirmed by
reverse-transcription PCR (RT-PCR) using pan-influenza A MP primers [24].

2.3. Viral Genome Extraction and RT-PCR to Confirm the Virus and Identify the Host

To confirm the presence of the virus, the total viral RNA was extracted from the
infected allantoic fluid using a Qiagen® Viral RNA Isolation kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions [25]. The mixed total RNAs were reverse-
transcribed and the virus was confirmed the matrix gene (MP) coding sequence of influenza
A virus amplified by PCR according to the World Health Organization guidelines [24].
Cytochrome c oxidase I (COX1), a 648-bp region of the mitochondrial gene, was amplified
from DNA extracted from the fecal samples, and was used as a DNA barcode to identify
animal species as described previously [26].

2.4. Next-Generation Sequencing (NGS) Using Illumina HiSeq X

NGS was conducted by GnC Bio (Daejeon, Korea) using HiSeq X as previously de-
scribled [27]. Briefly, the RNA was evaluated using an Agilent RNA 6000 Pico Kit (Agilent,
Santa Clara, CA, USA), and quantified using a BioPhotometer® spectrophotometer (Eppen-
dorf, Hamburg, Germany). The complementary DNA (cDNA) library of the influenza RNA
was generated using a QIAseq FX Single Cell RNA Library Kit (Qiagen, Venlo, The Nether-
lands). The concentration of the cDNA was determined using a LightCycler® qPCR system
(Roche, Penzberg, Upper Bavaria, Germany), and the library size was checked using a
High Sensitivity D5000 ScreenTape system (Agilent). First, the library was loaded into a
flow cell, where fragments were captured on a lawn of surface-bound oligos complemen-
tary to the library adapters. Each fragment was amplified into distinct clonal clusters by
bridge amplification. When cluster generation was complete, the templates were used for
sequencing. Illumina SBS technology utilizes a proprietary reversible terminator-based
method that detects single bases as they become incorporated into DNA template strands.
Because all four reversible, terminator-bound dNTPs were present during each sequencing
cycle, natural competition minimized their incorporation bias and greatly reduced raw
error rates, compared to those in other technologies. The method provided highly accu-
rate base-by-base sequencing that virtually eliminated sequence-context-specific errors,
even within repetitive sequence regions and homopolymers. The sequencing data were
then converted into raw data for analysis [28].

2.5. Viral Genomic and Phylogenetic Tree Analyses

Phylogenetic analysis was performed using the MEGA 6.0 ((Molecular Evolutionary
Genetics Analysis version 6.0, Pennsylvania State University, PA, USA) software package
with the maximum-likelihood method, and the tree topology was evaluated by 1000 boot-
strap iterations [29]. In the present study, the closest relative reference virus sequences
were found using the online BLAST resource from the National Center For Biotechnology
Information (NCBI https://www.ncbi.nlm.nih.gov/) and the Global Initiative on Sharing
All Influenza Data (GISAID https://www.gisaid.org/) [22].

2.6. Determination of 50% Tissue Culture Infectious Dose (TCID50) and 50% Egg Infectious Dose
(EID50)

To characterize viral pathogenicity, Madin–Darby canine kidney (MDCK) cells ob-
tained from the American Type Culture Collection (ATCC, Manassasa, VA, USA) were
used to determine the TCID50 titers of the viral isolates via enzyme-linked immunosorbent
assay (ELISA), as reported previously [30]. Briefly, a flat-bottomed 96-well cell culture plate
was coated with 104 MDCK cells, and incubated at 37 ◦C in 5% CO2 until 90% confluence
was reached. Each viral stock was serially diluted ten times and used to inoculate the cells,
which were then incubated for 3 days at 37 ◦C in 5% CO2. After incubation, the supernatant
was removed by vacuum, washed three times with cold PBS, and fixed with cold acetone.
After performing the ELISA, the TCID50 titers were calculated using the Reed and Muench
method [31]. To evaluate the infectious particles in each viral stock, the EID50 titers were
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determined by serially diluting the viral stocks ten times and using them to inoculate
10-day-old SPF-embryonated chicken eggs. Subsequently, infective amniotic–allantoic fluid
(AAF) was harvested on Day 4 after inoculation, and HA activity was used to determine
the 50% egg infectious dose [32].

2.7. Viral Growth Kinetics in MDCK Cells

The growth kinetics of the following viral strains were evaluated in vitro: A/Greater
white-fronted goose/South Korea/KNU18-64/2018(H1N1) (abbreviation: KNU18-64(H1N1));
A/wild bird/South Korea/WKU19-4/2019(H1N1) (abbreviation: WKU19-4(H1N1)); and
A/California/04-005-MA/2009(H1N1) (abbreviation: CA/04/09(pdm09) (H1N1)). To
accomplish this the MDCK cells in the monolayers were infected with the viruses at a
multiplicity of infection (MOI) rate of 0.01 plaque-forming units per cell. After incubation
for 1 h, the supernatants were removed, washed twice with PBS, and continuously cultured
in infected media containing L-1-p-tosylamino-2-phenylethyl chloromethyl ketone-treated
trypsin. The viral titers in the culture supernatants were determined at 12, 24, 36, 48,
and 72 h post-infection (hpi) via a TCID50 assay, as previously described [28].

2.8. Animal Study

Six-week-old female BALB/c mice were purchased from Orient Bio (Seongnam,
Gyeonggi, Korea). To evaluate the pathogenicity of each isolate in a mammalian host,
BALB/c mice were intranasally infected with various EID50 viral concentrations (104, 105,
or 106 (EID50/mouse) (n = 5)), and the weight changes and survival rates of the mice were
recorded for 15 days post-infection (dpi).

Finally, the BALB/c mice were intranasal challenged with each viral isolate at a
concentration of 105 EID50 (n = 5) (i.e., KNU18-64, WKU19-4, and a control group infected
with A/California/04/2009 (CA/04/09)(pdm09)), and the weights and survival rates of
the mice were recorded for 15 dpi. To evaluate virus shedding in the lung, at 3, 6, and
15 dpi, the lungs of three mice were collected and weighed, and the viral titer in each lung
was determined by TCID50 assay. To examine the histopathology of the infected lungs, at 3,
6, and 15 dpi, the lungs from three mice were placed in 10% formalin/saline. Lung tissues
in 10% formalin/PBS were processed and embedded in paraffin, and 4–5 µm sections were
cut from the paraffin-embedded lung tissues, and mounted on glass slides. An histological
examination of the lung sections was carried out by standard hematoxylin and eosin (H&E)
staining and light microscopy (magnification × 100). This study was approved by the
Animal Ethics Committee of the Wonkwang University (WKU19-64), December 19, 2019
and all methods were carried out in accordance with relevant guidelines and regulations.

2.9. Statistical Analysis

All the data were statistically analyzed using GraphPad Prism version 5.0 (GraphPad
Software, La Jolla, CA, USA). Two-way analysis of variance (ANOVA) was used to assess
the viral replication kinetics in the MDCK cells, and one-way ANOVA was used to compare
the weights of the virus-infected mouse lungs.

3. Results
3.1. Genome Characterization of Two H1N1 Isolates

The isolate genome sequences were then deposited at GenBank (accession numbers
MN584878 to MN584885 for the KNU18-64 isolate, and MT821115 to MT821122 for WKU19-
4). The GenBank accession numbers of the eight gene segments and the highest nucleotide
identities from the GenBank database are shown in Table 1, with sequence identities of
98.07 to 99.64% with regard to the H1N1 isolates investigated in the present study.

The putative gene segments of the KNU18-64 and WKU19-4 isolates are illustrated in
Figure 1, based on their nucleotide identities and the phylogenetic tree.

As described in Figure 1, the HA genes in both KNU18-64 and WKU19-4 most closely
resemble the Mongolia avian H1N1 strain (A/duck/Mongolia/520/2015(H1N1).
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Table 1. Virus strains from the GenBank database with the highest nucleotide identities with the two H1N1 isolates investigated in the present study.

A/Greater White-Fronted Goose/South Korea/KNU18-64/2018(H1N1) A/Wildbird/South Korea/WKU19-4/2019(H1N1)

Gene Segment Genebank ID Reference Strain
Accession ID Highest Similarly Strain Reference Per. Ident (%) Genebank ID Reference Strain

Accession ID Highest Similarly Strain Reference Per. Ident (%)

PB2 MN584878.1
LC053481.1 A/duck/Vietnam/LBM798/2014(H3N6) 99.08(2280/2280)

MT821115.1
MN049531.1 A/common

teal/Shanghai/JDS120613/2018(H10N4) 99.259(2259/2280)
MN171439.1 A/duck/Jiangsu/S1665/2015(H5N3) 98.86(2293/2280) MK592490.1 A/duck/Hokkaido/56/2017(H12N2) 98.86(2280/2280)
KU881717.1 A/Anseriformes/Anhui/L259/2014(H1N1) 98.86(2280/2280) MK592458.1 A/duck/Akita/51019/2017(H5N3) 98.64(2280/2280)

PB1, PB1F2 MN584879.1
MG386194.1 A/aquatic bird/South

Korea/sw007/2015(H5N3) 99.08(2274/2274)
MT821116.1

MK592547.1 A/duck/Hokkaido/W154/2017(H3N2) 99.56(2274/2274)

MH130136.1 A/wild waterfowl/Korea/F56-1/2017(H6N2) 98.77(2274/2274) MK592531.1 A/duck/Hokkaido/W144/2017(H3N2) 99.56(2274/2274)
KX121186.1 A/bean goose/Hubei/SZY200/2016(H11N9) 98.77(2274/2274) MK592515.1 A/duck/Hokkaido/W105/2017(H5N2) 99.56(2274/2274)

PA MN584880.1
MH547049.1 A/Anas falcata/China/D257/2015(H11N8) 98.93(2151/2151)

MT821117.1
MH579404.1 A/mallard/Korea/CL45/2017(H4N6) 99.12(2151/2151)

MK943289.1 A/duck/Viet Nam/HN-2525/2015(mixed) 98.47(2151/2151) MH727479.1 A/wild goose/dongting
lake/121/2018(H6N2) 98.98(2151/2151)

KF454809.1 A/mallard/Mongolia/1551/2010(H3N1) 98.47(2151/2151) MN703036.1 A/duck/Cambodia/10T-24-1-
D14/2018(mixed) 98.31(2151/2151)

HA MN584881.1
LC121396.1 A/duck/Mongolia/520/2015(H1N1) 98.53(1726/1701)

MT821118.1
LC121396.1 A/duck/Mongolia/520/2015(H1N1) 99.06(1701/1701)

KY402065.1 A/hooded crane/Korea/1176/2016(H1N1) 98.12(1701/1701) LC121276.1 A/duck/Mongolia/154/2015(H1N2) 98.88(1701/1701)
LC121276.1 A/duck/Mongolia/154/2015(H1N2) 98.12(1732/1701) KY402065.1 A/hooded

crane/Korea/1176/2016(H1N1) 98.65(1701/1701)

NP MN584882.1
KT717283.1 A/Anser

fabalis/China/Anhui/L144/2014(H6N1) 99.53(1497/1497)
MT821119.1

MK978905.1 A/duck/Hokkaido/X9/2016(H8N4) 99.2(1497/1497)

KR010412.1 A/goose/Inner Mongolia/IM-192/2014(H5N1) 99.4(1497/1497) KF259820.1 A/common teal/Hong
Kong/MPM1670/2011(H7N7) 99.13(1497/1497)

KT717243.1 A/Anser
fabalis/China/Anhui/S104/2014(H6N2) 99.33(1497/1497) KF259825.1 A/wild waterfowl/Hong

Kong/MPL1006/2011(H7N7) 99.06(1497/1497)

NA MN584883.1
MH130116.1 A/wild waterfowl/Korea/F14-5/2016(H6N1) 98.94(1429/1410)

MT821120.1
LC121398.1 A/duck/Mongolia/520/2015(H1N1) 98.94(1410/1410)

MH130132.1 A/bean goose/Korea/F54-8/2017(H6N1) 98.87(1424/1410) MH791653.1 A/duck/Bangladesh/34191/2017(H3N1) 98.58(1410/1410)
MH130124.1 A/bean goose/Korea/F27-6/2017(H6N1) 98.87(1410/1410) KY402067.1 A/hooded

crane/Korea/1176/2016(H1N1) 98.51(1410/1410)

M2, M1 MN584884.1
MN253720.1 A/Mallard/Alaska/AH0029066S.7.A/2016(H12N5) 98.68(1007/982)

MT821121.1
MK978907.1 A/duck/Hokkaido/X9/2016(H8N4) 99.49(982/982)

KY130619.1 A/green-winged teal/Alaska/292/2011(H3N8) 98.07(995/982) KY635666.1 A/duck/Bangladesh/26980/2015(H7N9) 99.19(982/982)
CY120628.1 A/American

wigeon/California/3180/2010(H5N2) 98.07(995/982) KY635509.1 A/duck/Bangladesh/27042/2015(H7N9) 99.18(982/982)

NEP, NS1 MN584885.1
KX867861.1 A/wild bird/Jiangxi/P419/2016(H6N8) 99.16(864/838)

MT821122.1
MN483241.1 A/White-fronted Goose/South

Korea/KNU18-119/2018(H7N7) 99.64(855/838)

KY635798.1 A/black-tailed
godwit/Bangladesh/24734/2015(H7N5) 99.05(849/838) MH727484.1 A/wild goose/dongting

lake/121/2018(H6N2) 99.64(838/838)

KT266946.1 A/duck/Guangxi/113/2012(H6N8) 99.28(864/838) MT090541.1 A/duck/Bangladesh/38292/2019(H2N2) 99.52(852/838)
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Figure 1. Putative origins of the genes comprising the KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-
64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)) strains.

The KNU18-64(H1N1) isolate from the East Asian wild bird flyway appears to have
been reassorted, because the internal genes PA, NP, and NS most closely resemble those of
the Chinese wild bird influenza virus, and PB2 is closest to the PB2 gene from the H3N6
isolate found in Vietnamese ducks.

Moreover, the NA and PB1 genes of this isolate are similar to those of the original
Korean virus.

The internal MP gene of this KNU18-64 isolate is similar to the corresponding gene in
the H12N5 isolate from Alaska.

This implies that these viruses were reassorted during the intersection of the wild bird
flyway between the East Asian–Australian Flyway (EAAF) and the West Pacific Flyway.

The WKU2019-4(H1N1) isolate most closely resembles the H1N1 Mongolian isolate,
with high similarity between the respective HA and NA genes, and it also has three internal
genes (PB1, NP, and MP) that are closest to the original avian influenza virus strains from
Hokkaido, Japan (H3N2 and H8N4 from ducks).

Furthermore, this virus also includes three other genes (PB2, PA, and NS) that are
similar to those of the influenza virus from Korea and China.

These two new isolated viruses (KNU18-64 and WKU19-4) represent two different
reassortments of the H1N1 subtype virus that were present in the migratory bird population
during the winter of 2018–2019.

We carried out phylogenic analyses of the eight genes from both viral strains to assess
their genetic relationships with those of domestic poultry and wild birds in Korea and
neighboring countries using data from the NCBI and GISAID with selected sequence with
more than 99% and 90% of query cover and identity, respectively. The results revealed that
eight genes (PB2, PB1, PA, HA, NP, NA, M, and NS) in our H1N1 strains were distributed
in East Asian lineages and a North American avian lineage. The phylogenetic data revealed
that the H1N1 influenza strains investigated in the present study are of avian origin, and are
phylogenetically distant from the H1N1 swine virus and the human-infecting strain. This
substantial divergence from the swine- and human-infecting strains is demonstrated in
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Figure 2 by the sizable distance between the novel isolates (represented by black branches)
and the swine strain (yellow branches) and human-infecting strain (purple branches).

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Phylogenetic trees based on the nucleotide sequences of HA (A), NA (B), PB2 (C), PB1 (D), NP (E), PA (F), MP (G),
and NS (H). The trees were generated by the neighbor-joining method using MEGA 6.0 software with bootstrap replication
(1000 bootstrap iterations). The KNU18-64 strain (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) is
indicated by blue circles and the WKU19-4 strain (A/wild bird/South Korea/WKU19-4/2019(H1N1)) is indicated by red
boxes. The avian, swine, and human hosts are represented in black, orange, and purple, respectively. The Korean strains are
shown in green.



Viruses 2021, 13, 30 11 of 23

In the present study, the HA genes of KNU18-64 and WKU19-4 were closely related to
those of avian H1N1 subtype isolates obtained from Mongolia in 2015, with identities of
98.53% and 99.06%, respectively (Table 1). As with the HA gene, the WKU19-4 NA gene
most closely resembles that of the avian H1N1 subtype isolates obtained from Mongolia
in 2015, whereas the KNU18-64 NA gene most closely resembles the Korean H6N1 strain
obtained in 2016 (Figure 2A,B). The phylogenetic tree and the genomic highest identities
demonstrate that the PB1, PB2, NP, and MP genes of the WKU19-4 isolate may have been
introduced into Korea by Japanese strains with percentile identities of 98.86%, 99.56%,
99.2%, and 99.49%, respectively. However, the PA and NS genes of this isolate most closely
resemble those of the Chinese/Eurasian lineage. Except for the MP gene, which closely
resembles that of a North American lineage obtained in 2016, the KNU18-64 isolate internal
gene sequences (PB2, PB1, PA, NP, NS) resemble those of the Eurasian/Mongolian/Chinese
isolate (Figure 2C–G). This implies that the H1N1 virus detected in Mongolia in 2015
subsequently migrated to Korea and that since 2016, there have been some reassortments
with Japanese and Eurasian strains to generate WKU19-4 and KNU18-64.

3.2. A/Greater White-Fronted Goose/South Korea/KNU18-64/2018(H1N1) and A/Wild Bird/South
Korea/WKU19-4/2019(H1N1) were Generated as a Result of Reassortment Events

After tracking each gene segment ancestor of two isolates KNU18-64 (H1N1) and
WKU19-4 (H1N1) by a combination of the results obtained by the phylogenetic trees and
genomic homology, we developed a hypothesis for the ancestor of each gene segment as
shown in Figure 3. The ancestors of PB2 and NP gene of KNU18-64 isolate was identified
in 2014 in China and Vietnam, they may have been introduced into China-Mongolia by
migratory wild-bird during 2014–2015. In here, the reassorment may have happened
with the donor virus A/duck/Mongolia/520/2015 (H1N1) (MN520-H1N1) before the
movement of wild-bird to Korea during migration season 2016–2017. During this miratory
season into Korea, MN520-H1N1 virus may have donated HA and NA gene to A/hooded
crane/Korea/1176/2016(H1N1). The intercontinental migration of the wild bird from
the East Asian–Australian Flyway (EAAF) and the West Pacific Flyway may have been
involved in the transmission of the MP gene from Alaska strain into Korea in 2017–2018,
and KNU18-64 may have been generated during this period.

Meanwhile, WKU19-4 may have been generated later with the reasorment of viruses
from Japan-China with Korea strains during migration season 2018–2019.

3.3. Molecular Characterization of the H1N1 Isolate

The amino acids in the HA protein (positions 94, 116, 121, 134, 139, 142, 221, and 222;
H5 numbering) represent adaptive mutations that enable the virus to bind preferentially to
α-2,6-linked sialic acid and enhance viral fusion [33–37].

All the isolates investigated in the present study are characterized as low pathogenicity
avian influenza viruses, harboring the amino acid sequence PSIQRS↓GLF. In addition to
the HA cleavage site, the mutation sites for efficient binding to avian-like α-2,3-linked sialic
acid receptors and the NA stalk region non-deletion sites supported the low-pathogenicity
of these isolates (Table 2) [38]. However, the NA from both of our isolates contained
isoleucine at positions 26 and 223, and asparagine at position 373, indicating increased
virulence in mammals [39–43].
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Figure 3. Hypothesis for the ancestor of each gene segment evolution of KNU18-64 (A/Greater white-fronted goose/South
Korea/KNU18-64/2018(H1N1)) (A) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)) (B) strains.
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Table 2. Comparison between the hemagglutinin (HA) receptor-binding sites and neuraminidase (NA) of the two novel
avian H1N1 isolates and those of human, swine, and avian H1N1 isolates.

Virus Strain

HA Receptor-Binding Residues (H5 Numbering) NA

Cleavage
Sites D/E94N I116M S121N A134V G139R S142G D221G/N Q222L Deleted Range

from 50–70 M26I I106V T223I K/S373A/N G394D

A/wild bird/South
Korea/WKU2019-4/2019(H1N1) PSIQRS↓GLF E I S A G S G Q No deletion I I I N G

A/Greater white-fronted goose/South
Korea/KNU18-64/2018 PSIQRS↓GLF E I S A G S G Q No deletion I I I N G

A/wild bird/Korea/SK14/2014 a PSIQRS↓GLF E I S A G S G Q No deletion I I I N G

A/duck/Mongolia/520/2015 b PSIQRS↓GLF E I S A G S G Q No deletion I I I N G

A/California/04/2009 c PSIQRS↓GLF D I S A G S D Q No deletion I V I N G

A/swine/Shandong/1207/2016 d PSIQRS↓GLF E I S A G S E Q No deletion I V I N G
a The representative avian H1N1 strain that was isolated from the feces of migratory birds in the Republic of Korea during the winter of
2014–2015 [44]. b Mongolia strain with HA and NA sequences that most closely resemble the corresponding sequences in the two isolates
of the present study. c Human pandemic H1N1 isolate. d H1N1 strain that originated in swine [45].

The analysis data of the internal protein segment mutation sites are presented in Table 3,
which indicates that both KNU18-64 and WKU19-4 contain mammalian pathogenicity-
related mutations which are present in the H1N1 isolates in both swine and human.

Table 3. Molecular characteristic of two novel isolate influenza A (H1H1) virus.

Viral Protein Amino Acid W4 K64 SK14 M520 CA/04/09 SW/1207 Comments Reference

PB2

E627K E E E E E E

Mammalian host adaptation,
Human host marker, Enhanced
polymerase activity, Increased

virulence in mammals

[46–51]

T63I (with PB1
M677T) I I I I I I Enhanced polymerase activity,

Increased virulence in mice [51]

L89V V V V V V V Enhanced polymerase activity,
Increased virulence in mice [52]

K251R R R R R R R Increased virulence in mice [41]

T271A T T T T A A Human host marker (host-specific
polymerase activity) [53]

G309D D D D D D D Enhanced polymerase activity,
Increased virulence in mice [52]

T339K K K K K K K Enhanced polymerase activity,
Increased virulence in mice [52]

R/Q355K R R R R R K Increased virulence in mammals [42]

Q368R R R R R R R Increased polymerase activity,
Increased virulence in mammals [54]

H447Q Q Q Q Q Q Q Increased polymerase activity,
Increased virulence in mammals [54]

R477G G G G G G G Enhanced polymerase activity,
Increased virulence in mice [52]

I495V V V V V V V Enhanced polymerase activity,
Increased virulence in mice [52]

A588I/V A A A A T I Human host marker (host-specific
polymerase activity) [53]

GQ590/591SR/K GQ GQ GQ GQ SR SR Increased polymerase activity,
Human host adaptation [55]

Q591K Q Q Q Q R R Increased virulence in mammals [56]

A/S674T A A A A A A Human host marker [22]

A676T T T T T T T Enhanced polymerase active,
Increased virulence in mice [52]

D701N D D D D D D
Increased polymerase activity,

Increased virulence in mammals,
Mammalian host marker

[55,57,58]

K702R K K K K K K Human host marker [48,49,57]
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Table 3. Cont.

Viral Protein Amino Acid W4 K64 SK14 M520 CA/04/09 SW/1207 Comments Reference

PB1

D3V V V V V V V Increased polymerase activity,
Increased virulence in mammals [59]

L13P P P P P P P
Increased polymerase activity,

Increased virulence in mammals,
Mammalian host marker

[58]

R207K K K K K K K Increased polymerase activity in
mammalian cells [60]

K328N N N N N N N Increased polymerase activity,
Increased virulence in mammals [61]

S375N N N N N N N
Increased polymerase activity,

Increased virulence in mammals,
Human host marker

[49]

H436Y Y Y Y Y Y Y
Increased polymerase activity and

virulence in mallards, ferrets
and mice

[60]

A469T T T T T T T Conferred in contact transmissibility
in guinea pigs. [62]

L473V V V V V V V Increased polymerase activity and
replication efficiency [63]

V652A A A A A A A Increased virulence in mice [41]

M677T T T T T T T Pathogenic in mice [51]

PB1-F2 N66S S N N S - - Increased virulence in mammals [64]

PA

S37A A A A A A A
Significantly increased viral growth

and polymerase activity in
mammalian cells

[65]

S224P
(with N383D) S S S S P S

Enhanced the pathogenicity and
viral replication of H5N1 virus

in mice
[66]

H266R R R R R R R
Increased polymerase activity.

Increased virulence in mammals
and birds

[67,68]

F277S F S S S H H Contributed to the virulence and
mammalian adaptation [67]

C278Q Q Q Q Q Q Q Adapt to mammalian hosts [69]

N321K I * N N N N V Increased polymerase activity [37]

K328R K R K K K K Increased virulence in mice [40]

L336M L L L L M M Increased virulence in mammals [70]

K356R K K K K R R Increased virulence in mammals
and mice [71]

N383D
(with S224P) D D D D D D

Enhanced the pathogenicity and
viral replication of H5N1 virus

in mice
[66]

S409N S S S S N N Enhanced Transmission, Human
host marker [70]

S/A515T T T T T T T
Increased polymerase activity.

Increased virulence in mammals
and birds

[60]

PA-X R195K R R R R - K Increased virulence in mammals [72]

HA

Cleavage site PSIQRS↓GLF PSIQRS↓GLF PSIQRS↓GLF PSIQRS↓GLF PSIQRS↓GLF PSIQRS↓GLF [39]

D/E94N E E E E D E Increased virus binding to 2,6,
Enhanced virus fusion [33]

I116M I I I I I I Potential to alter the virulence of
H1N1pdm09 in swine [34]

S121N S S S S S S Increased virus binding to 2,6,
Increased replication in mammals [35]

A134V A A A A A A Increased virus binding to 2,6 [36]

G139R G G G G G G Increased virus binding to 2,6 [37]

S142G S S S S S S Potential to alter the virulence of
H1N1pdm09 in swine [34]

D221G/N G G G G D E Change in receptor binding [35]

Q222L Q Q Q Q Q Q Increased virus binding to 2,6 [73]
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Table 3. Cont.

Viral Protein Amino Acid W4 K64 SK14 M520 CA/04/09 SW/1207 Comments Reference

NA

M26I I I I I I I Increased virulence in mice [40]

DELETED
Range from aa

50–70
NO DELE-

TION
NO DELE-

TION
NO DELE-

TION
NO DELE-

TION
NO DELE-

TION
NO DELE-

TION

the adaptation of influenza viruses
from wild aquatic birds to domestic

chickens
[39]

I106V I I I I V V Increased virulence in mice [41]

R143K K K K K K K Increased virulence in mammals
and mice [74]

T223I I I I I I I Increased virulence in mammals [42,75,76]

V241I V V V V V V
Contributed to the significantly

higher baseline IC50 value obtained
to oseltamivir for 2010/2011 viruses

[43]

N248D N N N N N N Increased virulence in mice [41]

H275Y H H H H H H Increased virulence in mammals [77]

R293K R R R R R R Highly resistant to the oseltamivir [78]

S354N N N N N N N Increased virulence in mice [79]

K/S373A/N N N N N N N Increased virulence in mammals [80]

NP

V41I I I I I I I Might contribute to viral
transmissibility [81]

V105M M M M M M M Contribute to the increased
virulence of the H9N2 [82]

D210E E E E E E E Might contribute to viral
transmissibility [81]

F253I I I I I I I Results in attenuated pathogenicity
of the virus in mice [83]

R305K R R R R K K Human host marker [48]

F313V F F F F V V Human host marker [53]

I353V I I I I V V Increased virulence in mice [41]

Q357L/K (WITH
PB2 I27K) Q Q Q Q K K Increased virulence in mammals,

Human host marker [48]

M1

V15I/T V V V V I I Increased virulence in mammals [42]

N30D D D D D S S Increased virulence in mammals [84]

A166V V V V V A A Contribute to the increased
virulence of the H9N2. [82]

M2 S31N
L55F

S
L

S
L

S
L

S
L

N
F

N
F

resistance to the adamantane
antivirals and are sensitive to

oseltamivir and zanamivir
Enhanced Transmission

[53]
[85]

NS1

A/P42S S S S S S S Increased virulence in mammals,
Antagonism of IFNinduction [86]

D74N D D D D S S Increased virulence in mammals [87]

T/D/V/R/A127N N N N N N N Increased virulence in mammals [86]

V149A A A A A A A Pathogenicity in mice, Antagonism
of IFN induction [88]

N/G205R/K
(with NEP/NS2
M51I, T48N; PB2

A469T)
S S S S N K

Decreased IFN antagonism,
Conferred enhanced in-contact
transmissibility in guinea pigs

[62]

NEP/
NS2 M31I M M M M M I Increased virulence in mammals [86]

H3 numbering. W4: A/wild bird/South Korea/WKU2019-4/2019(H1N1); K64: A/Greater white-fronted goose/South Korea/KNU2018-
64/2018; SK14: A/wild bird/Korea/SK14/2014; M520: A/duck/Mongolia/520/2015; CA/04/09: A/California/04/2009 infected-human
isolate; SW/1207: A/swine/Shandong/1207/2016 Swine infected isolate; (-) Isolate that do not have PB1-F2, PA-X; (*) new mutation site;
Sequence in Bold: mutation that only presented in the mammalian isolates; sequence in Underline: mutation that differs between isolates
K64 and W4.

In addition, both isolates have three distinct mutation sites at PB1-F2 and PA, impli-
cating that they might possess different virulence. For instance, asparagine at the amino
acid position 66 in the PB1-F2 of KNU18-64 is substituted with serine in that position
of WKU19-4, leading to increased virulence in mammal. Meanwhile, KNU18-64 isolate
carried unique mutation of PA at position 328, implicating the higher virulence of WKU19-4
over KNU18-64.

However, multiple unique mutations present in human- and swine H1N1 (PB2-
A588I/V, PB2-GQ590/591SR/K, PA-L336M, PA-F277S, PA-K356R, NP-R305K, NP-F313V,
NP-I353V, NP-Q357K, M1-V15I, M1-A166V, M2-S31N, M2-L55F, NEP/NS2-M31I) were not
found in both isolates, supporting their still low pathogenic traits.
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3.4. Replication of H1N1 in Mammalian Cells

Because the genetic information implied that the two new reassortments of H1N1 would
increase replication efficiency, the viral replication of these two isolates was tested in vitro.
To evaluate the growth kinetics of the two isolates, a human-origin virus A/California/
04/2009(H1N1), which infects other mammals was used as a control. The control H1N1
strain replicated more efficiently in MDCK cells than KNU18-64 (A/Greater white-fronted
goose/South Korea/KNU18-64/2018(H1N1)) or WKU19-4 (A/wild bird/South Korea/
WKU19-4/2019(H1N1)) (Figure 4). There is a dramatic increase in the viral titer after 12 h
post-inoculation of WKU19-4 to 4.5 log10 (TCID50/mL), whereas KNU18-64 has similar
pattern with A/California/04/09. The raw data of the TCID50 assay are provided in
Figure S2. This result may be explained by the molecular characteristic, the mutations in
WKU19-4(H1N1) at amino acid position 66, in which asparagine is substituted with serine
in the PB1-F2 protein, and a new substitution at position 321 of the PA segment, in which
asparagine is substituted with isoleucine, indicate increasing virulence in mammals and
increasing polymerase activity.

Figure 4. In vitro growth properties of KNU18-64 (A/Greater white-fronted goose/South
Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1))
in Madin–Darby canine kidney (MDCK) cells. Virus titers were determined by the 50% tissue culture
infectious dose (TCID50) assay. The cell monolayers were infected with the viruses at a multiplicity
of infection (MOI) rate of 0.01, and incubated for 72 h. Every 12 h, the virus titers were determined
by a TCID50 assay, and an enzyme-linked immunosorbent assay (ELISA) was performed with anti-
influenza nucleoprotein to detect infected cells. The virus titers are the means ± standard deviations
(SD) (n = 3), **, p < 0.01; ***, p < 0.001.

3.5. Pathogenicity in Mice

As previously described, the mouse model is widely used to determine the pathogenic
potential of the influenza virus in mammals [89]. To assess the pathogenic potential of the
new isolate in mammals, multiple concentrations of the virus (from 104 to 106 EID50/mouse)
were used to determine the virulence of each new H1N1 isolate in the mice. After intranasal
inoculation with these virus titers, changes in the body weights and survival rates of the
6-week-old female BALB/c mice were monitored for 15 dpi (Figure 5A,B). As shown in
Figure 5A,B, the body weights of the mice did not decrease in either of the KNU18-64- or
WKU19-4 infected groups. The infected mice displayed no severe clinical signs, such as
ruffled fur, depression, or labored breathing, and each mouse was still alive at 15 dpi (data
not shown).
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Figure 5. Pathogenicity of the two H1N1 isolates in vivo. For each isolate, BALB/c mice were intranasally infected with
different EID50 concentrations of the virus (104, 105, and 106 EID50/mouse). Changes to the weights of the mice are shown
for KNU18-64 (A) and WKU18-4 (B), and the survival rates were noted. The BALB/c mice were intranasally challenged
with 105 EID50 of each virus, and a H1N1 (2009) strain isolated from humans (CA/04/09(pdm09)) was used as a control
virus. Weights of the mice (C); virus titers in the lung (D); survival rates (E); mean of lung weights (F) (n = 3); Body weights
are presented as percentages of the original weight (n = 5).

To determine the virulence of the new H1N1 isolates in mammalian host, presence
of each virus was detected in the lung of mice. Of all the mice infected with the control
CA/04/09(pdm09) (H1N1), or challenged with KNU18-64 or WKU19-4, there was only
significant weight loss in the control group CA/04/09 (Figure 5C), two mice died at 7 dpi
in the control group (Figure 5E). In contrast, all the mice in the KNU18-64- and WKU19-4-
infected groups had decreased slightly in weight by 3 dpi (e.g., the mice in the WKU19-4
group retained 98.97% of their body weight), but they quickly recovered and all the mice
survived for at least 15 days.

Viral load shedding in the lungs of the mice at 3, 6, and 15 dpi was determined by
TCID50 assays, and the results are presented in Figure 5D. As shown, the mice in the control
group CA/04/09 had significantly higher virus titers in their lungs than the mice in the
KNU18-64 or WKU19-4 groups at 3 dpi (4.33 ± 0.31; 2.71 ± 0.16; 0 log10 (TCID50/mL),
respectively) and at 6 dpi (4.5 ± 0.17; 3.71 ± 0.25; 2.75 ± 0.51 log10(TCID50/mL), respec-
tively), and no viruses were detected at 15 dpi in any of the groups. The raw data of the
TCID50 assay are provided in Figure S3.



Viruses 2021, 13, 30 18 of 23

It is worth noting that there were no significant changes in body weight, despite the
mutation characteristics of the new isolates. Therefore, we carried out histopathological
examinations of the lungs of the mice in each group. The H&E-stained sections of the
KNU18-64-, WKU19-4-, and CA/04/09(pdm09) H1N1-infected lungs revealed that neu-
trophils had penetrated the alveolar air spaces at 3 and 6 dpi (Figure 6). The KNU18-64-
and WKU19-4-infected lungs exhibited cellular accumulation compared to the lungs of the
normal mice at 6 dpi. Furthermore, the lungs of the KNU18-64- and WKU19-4-infected
mice increased significantly in weight compared to those of the normal mice at 3 dpi
(Figure 5F) although it becomes non-significant at 6 and 15 dpi as presented data in Figure
S4. The real lung morphology of this experiment is presented in the Figure S5.

Figure 6. Histology of lung inflammation determined by hematoxylin and eosin (H&E) staining. For each isolate, BALB/c
mice were intranasal infected with EID50 concentrations of the virus at 105 EID50/mouse. The uninfected control (normal);
CA/04/09(pdm09) (H1N1)-, KNU18-64 (H1N1)-, and WKU19-4 (H1N1)-infected mouse lungs were collected and stained
with hematoxylin and eosin (H&E) at 3, 6, and 15 days post-infection (dpi) (scale bar, 100 µm; original magnification × 100).

4. Discussion

As a precaution, the prevalence of a newly emergent strain should be reported early,
and broad surveillance of the H1N1 strain is a requirement. In the present study, we ana-
lyzed the molecular characteristics and virulence of two new H1N1 influenza virus strains
of avian origin, which were isolated from the feces of migrating wild birds in Korea during
the winter of 2018–2019.

Recently, an avian-origin H1N1 strain (A/SK14/2014) was reported in Korea. Com-
pared to this isolate, the HA gene from both of our current isolates (KNU18-64 and WKU19-
4) are closely related to a Mongolian strain (H1N1-2015) of avian origin (Figure 2A).
Meanwhile, the HA gene from the previously reported strain is closer to a Chinese H1N4
virus of avian origin [44].
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Phylogenetic data analysis revealed that the NA gene segment of the WKU19-4
isolate closely resembles that of a Bangladesh strain from 2017, whereas KNU18-64 closely
resembles the Korea avian influenza virus H6N1 from 2017 [90].

According to the phylogenetic tree of the NA gene, the American avian influenza
virus H6N1 strains from 2015 appears to be closest to that of KNU18-64 strain. Interestingly,
MP gene of KNU18-64 is closest to those in the Alaskan–American strains, indicating that
the KNU18-64 isolate is related to the Alaskan–American influenza A viruses of avian
origin, as previously reported [28,91].

Analysis of the TCID50, plaque assay, and/or results of quantitative reverse-transcription
PCR with mathematical modeling is a powerful approach to the detailed characterization
of viral replication in vitro [22,28]. In the present study, the new isolates exhibited different
degrees of virulence, which can be explained by their molecular mutation characteristics,
as demonstrated by the kinetic growth dynamics of each virus shown. The WKU19-64
virus appeared to replicate rapidly in the mammalian MDCK cells, and its replication
decreased dramatically and stabilized after 1 dpi. In contrast, the KNU18-64 isolate ex-
hibited dynamic kinetic growth similar to that of the positive control infected with the
human-origin H1N1 (the CA/04/09 group). This may have been because the WKU19-4
isolate also contains a new substitution of asparagine for isoleucine at position 321 of the
PA segment, which may be related to the increase in polymerase activity that caused the
virus to replicate dramatically at 12 hpi.

As shown in Figure 6, both of the new isolates exhibited moderate pathogenicity
in mice, with significantly lower virus titers in the lung after 3 and 6 dpi compared to
the control, which was infected with human-origin H1N1 (the CA/04/09(pdm09) group).
In the case of WKU19-4, the virus was only observed at 6 dpi, with the lowest titer of
2.75 ± 0.51 log10 (TCID50/mL). The KNU18-64 isolate appeared more pathogenic in mice;
the kinetic virus titers were significantly higher than in WKU19-4 at both 3 and 6 dpi
(2.71 ± 0.16 log10 (TCID50/mL) and 3.71 ± 0.25 log10 (TCID50/mL)], respectively. This
result appears to corroborate the results of the molecular characterization section; the
KNU18-64 isolate carries two individual mutations in the PA protein (phenylalanine is
substituted with serine at position 227, and lysine is substituted with arginine at position
328), which lead to increased virulence in and the adaptation to mammals.

The present study suggests that the two H1N1 AIV isolates found in Korean both in
the same season generated by reassortment events occurred following the co-circulation of
Eurasian as well as Alaskan strains. Therefore, intensive surveillance of low pathogenic
AIVs in wild migratory birds is an important tool to detect major AIVs which could threaten
human health in Korea.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-491
5/13/1/30/s1, Figure S1: The geographical location of two novel isolates A/Greater white-fronted
goose/South Korea/KNU18-64/2018(H1N1) and A/wild bird/South Korea/WKU19-4/2019(H1N1)
in Korea. Figure S2: Raw ELISA data of TCID50 assay for detect virus growth kinetic in MDCK cell.
Figure S3. Raw ELISA data of TCID50 assay for viral load shedding in lung after 3 (A), 6 (B) and
15 (C) day post-infection. Figure S4. Mean lung weight at day 6 (A) and day 15 (B) post infection.
Figure S5. Lungs from infected mouse at day 3, day 6, day 15 post infection.
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