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Abstract

PRESENILIN 2 (PSEN2) is one of the genes mutated in early onset familial Alzheimer’s dis-

ease (EOfAD). PSEN2 shares significant amino acid sequence identity with another

EOfAD-related gene PRESENILIN 1 (PSEN1), and partial functional redundancy is

seen between these two genes. However, the complete range of functions of PSEN1 and

PSEN2 is not yet understood. In this study, we performed targeted mutagenesis of the zeb-

rafish psen2 gene to generate a premature termination codon close downstream of the

translation start with the intention of creating a null mutation. Homozygotes for this mutation,

psen2S4Ter, are viable and fertile, and adults do not show any gross psen2-dependent pig-

mentation defects, arguing against significant loss of γ-secretase activity. Also, assessment

of the numbers of Dorsal Longitudinal Ascending (DoLA) interneurons that are responsive

to psen2 but not psen1 activity during embryogenesis did not reveal decreased psen2 func-

tion. Transcripts containing the S4Ter mutation show no evidence of destabilization by non-

sense-mediated decay. Forced expression in zebrafish embryos of fusions of psen2S4Ter 5’

mRNA sequences with sequence encoding enhanced green fluorescent protein (EGFP)

indicated that the psen2S4Ter mutation permits utilization of cryptic, novel downstream trans-

lation start codons. These likely initiate translation of N-terminally truncated Psen2 proteins

lacking late endosomal/lysosomal localization sequences and that obey the “reading frame

preservation rule” of PRESENILIN EOfAD mutations. Transcriptome analysis of entire

brains from a 6-month-old family of wild type, heterozygous and homozygous psen2S4Ter

female siblings revealed profoundly dominant effects on gene expression likely indicating

changes in ribosomal, mitochondrial, and anion transport functions.

Introduction

PRESENILIN 2 (PSEN2) was first identified as a candidate locus for mutations causing familial

Alzheimer’s disease (AD) with early onset (EOfAD) when a point mutation resulting in the
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substitution of an isoleucine residue for an asparagine residue (N141I) was found in a Volga

German AD family in 1995 [1]. PSEN2 is similar in structure to the major EOfAD gene PRE-
SENILIN 1 (PSEN1) and the two genes encode proteins with 62% amino acid sequence identity

[2]. The age of onset of Alzheimer’s disease (AD) caused by mutations in PSEN2 ranges from

39 to 75 years, which overlaps both with PSEN1 EOfAD-associated mutation disease onset

ages and with late onset, sporadic AD [3]. The later mean onset age of AD caused by PSEN2
mutations compared to mutations in PSEN1 is still unexplained, but some studies suggest that

it may be caused by the partial replacement of PSEN2 function by PSEN1 [4]. However, the

functions of PSEN1 and PSEN2 have not yet been determined comprehensively. Moreover,

despite the partial functional redundancy between PSEN1 and PSEN2, in vitro studies have

shown that the protein products of the two genes also play divergent roles in cellular physiol-

ogy ([5, 6] and reviewed in [7]).

Both PSEN1 and PSEN2 proteins are components of γ-secretase complexes. The absence of

PSEN1 is thought to reduce γ-secretase activity in mammalian cells [8, 9], while the absence of

both PSEN1 and PSEN2 is thought to eliminate it completely [10, 11] although some data does

not agree with this (reviewed in Jayne et al. [12]). In mice, the loss of Psen1 causes premature

differentiation of neural progenitor cells (NPC) and inhibition of Notch signaling leading to

skeletal defects [13], and, ultimately, perinatal lethality [14]. Mouse embryos lacking both

Psen1 and Psen2 activity are more severely affected, showing earlier lethality and a develop-

mental phenotype similar to loss of Notch1 activity [15, 16]. However, by itself, the absence of

Psen2 activity in mice does not appear to affect development significantly [17]. In zebrafish,

the inhibition of either Psen1 or Psen2 translation caused decreased melanocyte numbers in

trunk and tail and other effects of decreased Notch signaling indicating a possibly greater role

in Notch signaling for Psen2 protein in zebrafish compared to in mammals [18]. Inhibition of

Psen2 translation also led to increased Dorsal Longitudinal Ascending (DoLA) interneuron

number, while inhibition of Psen1 translation showed no effect on this neuronal cell type [18].

Although mammalian Psen1 and Psen2 show compensatory regulation with forced down-

regulation of one causing up-regulation of the other [19, 20], only Psen2 down-regulation

causes markedly decreased γ-secretase activity in the microglial cells of mice. The inhibition of

γ-secretase activity caused by forced down-regulation of Psen2 led to exaggerated proinflam-

matory cytokine release from microglia, indicating that Psen2 plays an important role in cen-

tral nervous system innate immunity [20]. Furthermore, a negative regulator of monocyte pro-

inflammatory response, miR146, was found to be constitutively down-regulated in the micro-

glia of a Psen2 knockout mouse strain, supporting that Psen2 dysfunction may be involved in

neurodegeneration through its impacts on the pro-inflammatory behavior of microglia [21].

Also, Psen2 (but not Psen1) knockout mice show reduced responsiveness to lipopolysaccharide

as well as decreased expression of nuclear factor kappa-light-chain-enhancer of activated B

cells (NF-kappaB), reduced mitogen-activated protein kinase (MAPK) activity and reduced

pro-inflammatory cytokine production. This indicates that Psen2 has a specific function(s) in

innate immunity independent of Psen1 [22].

The particular role of mammalian PSEN2 protein in inflammation is consistent with its

restricted localization to the mitochondrial associated membranes (MAM) of the endoplasmic

reticulum (ER) [23]. MAM formation has been shown to influence inflammatory responses, is

the site of autophagosome initiation, and plays a major role in regulating mitochondrial activ-

ity (reviewed in Marchi et al. [24]).

Considerable evidence supports roles for PRESENILIN proteins in the function of mito-

chondria [25], which are central to energy production in cells and to other cellular processes

affected in AD such as apoptosis, reactive oxygen species production, and calcium homeostasis

[26]. In human cell lines, it has been reported that PSEN2, but not PSEN1, modulates the
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shuttling of Ca2+ between the ER and mitochondria since mitochondrial Ca2+ dynamics are

reduced by PSEN2 down-regulation and enhanced by the expression of mutant forms of

PSEN2 [27]. In mouse cell lines, deficiency of Psen2 led to reduced expression of subunits

responsible for mitochondrial oxidative phosphorylation with altered morphology of the mito-

chondrial cristae, as well as an increase in glycolytic flux. This indicated that absence of Psen2

protein causes an impairment in respiratory capacity with a corresponding increase in glyco-

lytic flux to support cells’ energy needs [28].

Despite the identification of hundreds of different EOfAD mutations in human PSEN1 and

PSEN2, none of these appear to remove all gene function (i.e. none are null mutations) [12].

All PRESENILIN EOfAD mutations follow the “reading frame preservation rule” meaning that

they all produce at least one transcript variant containing an open reading frame (ORF) ter-

mined by the original (non-mutant) stop codon [12].

As part of an effort using zebrafish to identify the specific cellular changes caused by

EOfAD-like mutations in these genes, we wished to examine null mutations so that their

effects could be excluded from consideration. In this paper we describe an unsuccessful

attempt to generate a null mutation of the zebrafish orthologue of the human PSEN2 gene,

psen2, by introduction of a premature termination codon downstream of the asssumed trans-

lation start codon. Unexpectedly, the mutation appears to force utilization of downsteam

methionine codons for translation initiation. This generates N-terminally truncated proteins

that act dominantly in an EOfAD-like manner.

Materials and methods

Animal ethics

All experiments using zebrafish were conducted under the auspices of the Animal Ethics Com-

mittee of the University of Adelaide. Permits S-2014-108 and S-2017-073.

sgRNA design and synthesis

The target sequence of Ps2Ex3 sgRNA is 5’-CAGACAGTGAAGAGGAC TCC-3’. This target

sequence was cloned into the plasmid pDR274 (Addgene plasmid # 42250) [29]. The Ps2Ex3

pDR274 plasmid was linearized with HindIII-HF1 (NEB, Ipswich, Massachusetts, USA,

R3104S), and then used as a template for synthesis of Ps2Ex3 sgRNA with the MAXIscript™ T7

Transcription Kit (Ambion, Inc, Foster City, California, USA, AM1312).

Injection of zebrafish embryos

Ps2Ex3 sgRNA (90 ng/μL final concentration) was mixed with Cas9 nuclease (Invitrogen,

Carlsbad, California, USA, B25640), and then incubated at 37˚C for 15 min to maximize cleav-

age efficiency after injection. Tübingen strain wild type zebrafish embryos were generated by

mass mating and injected at the one-cell stage with 5–10 nL of this mixture. The injected

embryos were subsequently raised for mutation screening.

Mutation detection in G0 injected embryos using T7 Endonuclease I

Mutation detection was based on the T7 Endonuclease I assay [30]. Since mismatches, small

insertions or deletions generated through non-homologous end joining (NHEJ) result in fail-

ure of base-pairing in heteroduplexes at mutation sites, T7 Endonuclease I is able to recognize

and cleave at the sites of these mutations.

To test whether the CRISPR/Cas9 system had functioned in the injected G0 embryos, 10

embryos were randomly selected from each injected batch and pooled together for genomic
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DNA extraction at ~24 hours post fertilization (hpf). To extract the genomic DNA, these 10

embryos were placed in 100 μL of 50 mM NaOH and then heated to 95˚C for 15 min, and then

1/10th volume of 1 M Tris-HCl, pH 8.0 was added to each sample to neutralize the basic solu-

tion after cooling to 4˚C [31]. A pair of primers (5’- AGGCCACATCACGATACAC -3’ and

5’-TGACCCGTTTGCTGTCTG-3’) binding to the flanking regions of the intended cleavage

site was designed to amplify the test region (~472 bp) through PCR. The PCR conditions for

this amplification reaction were 95˚C, 2 min; 31 cycles of [95˚C, 30 s; 58˚C, 30 s; 72˚C, 30 s];

then 72˚C, 5 min. The PCR products were purified using the Wizard1 SV Gel and PCR

Clean-Up System (Promega, Wisconsin, USA, A9281) and annealed (denaturation at 95˚C for

5 min and then slow cooling of the samples at the rate of -2˚C/sec from 95˚C to 85˚C and then

-0.1˚C/sec from 85˚C to 25˚C for annealing of heteroduplexes) before addition of T7 Endonu-

clease I (NEB, Ipswich, Massachusetts, USA, M0302S). Heteroduplexes containing small muta-

tions at the intended site should be cleaved into two fragments, ~313 bp (upstream) and ~159

bp (downstream).

When the T7 Endonuclease I assay on injected G0 embryos showed the presence of muta-

tion at the target site, the remaining embryos from the same injection batch were raised for

further mutation screening and breeding.

Mutation detection in adult G0 and F1 fish using T7 Endonuclease I and

Sanger sequencing

When a G0 injected fish had grown to sufficient size (>2 cm in length, 2 to 3 months old), the

tip of its tail (~2 mm in length) was biopsied (clipped) under Tricaine (1.68μg/mL) anesthesia

for genomic DNA extraction. The clipped tail was placed in 100 μL of 50 mM NaOH and then

heated to 95˚C for 15 min to extract genomic DNA. The sample was then cooled to 4˚C, and a

1/10th volume of 1 M Tris-HCl, pH 8.0 was then added to each sample to neutralize the basic

solution [31]. The same T7 Endonuclease I assay used previously for mutation detection in G0

embryos was then applied to the genomic DNA extracted from the G0 adult fish biopsy. How-

ever, since each G0 mutation-carrying fish was probably mosaic for several different mutations

at the target site, each G0 fish was outbred to a wild type Tübingen fish, to produce F1 progeny,

some of which could be heterozygous for single mutations. The F1 fish were biopsied and

screened using the T7 Endonuclease I assay when large enough. For F1 fish found to carry

mutations, the PCR-amplified fragments were sent to the Australian Genome Research Facility

(AGRF, North Melbourne, VIC, Australia) for Sanger sequencing to identify the mutations.

An 8-bp deletion resulting in a frameshift downstream of the start codon of psen2, psen2-
S4Ter (Fig 1), was identified. PCR primers specifically detecting this mutation were designed

(psen2S4Ter forward primer: 5’-TTCATGAATACCTGAAGAGG-3’, wild type forward primer:

5’- TTCATGAATACCTCAGACAGTG-3’, and reverse primer: 5’-GAACAGAGAATGTAC
TGGCAGC-3’) for further screening. The PCR conditions for psen2S4Ter mutant detection are

95˚C, 2 min; 31 cycles of [95˚C, 30 s; 55˚C, 30 s; and then 72˚C, 30 s]; 72˚C, 5 min. The length

of PCR products is ~230 bp. The PCR conditions for wild type-specific detection are 95˚C, 2

min; 31 cycles of [95˚C, 30 s; 60˚C, 30 s; and 72˚C 30 s]; 72˚C, 5 min and the anticipated length

of the PCR products is ~230 bp.

Breeding of psen2S4Ter mutant fish

The initial F1 fish carrying the psen2S4Ter mutation was outbred to a wild type fish to generate

a population of F2 progeny that was 50% heterozygous mutants and 50% wild type fish. Two

F2 heterozygous mutant fish were then inbred to generate a family of F3 fish consisting of (the-

oretically) 50% heterozygous mutants, 25% homozygous mutants and 25% wild type fish. This
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F3 family was raised to six months of age before brain removal and total brain RNA extraction

for RNA-seq and other analyses.

Total RNA extraction from 6-month-old zebrafish brains

Individual fish were genotyped using PCR. Fish of the desired genotype were then selected and

euthanized by sudden immersion in an ice water slurry for at least 30 seconds before immedi-

ate decapitation. The entire brain was then removed from the cranium for extraction of total

RNA for either digital quantitative PCR (dqPCR) on cDNA or RNA-seq (below).

For dqPCR tests, six wild type, six heterozygous and six homozygous fish from the F3 family

were selected. Three of each genotype were then exposed to acute hypoxia (dissolved oxygen

content of the water was ~1.0 mg/L) for ~2.5 h, while the remaining three of each genotype

were exposed to normoxia. Fish were then euthanized and brains removed (as above) for total

RNA was extracted using the RNeasy Mini Kit (QIAGEN, Venlo, Netherlands, 74104). cDNA

was synthesised from brain RNAs using the SuperScript™ III First-Strand Synthesis System

Fig 1. Predicted protein sequence of psen2S4Ter. (A) An 8-bp deletion resulted in a frameshift downstream of the

nominal translation start codon of psen2 creating a stop codon as the 4th codon. (B) Comparison of the epidermal

pigmentation of adult, male zebrafish. Wild type (upper), psen2S4Ter homozygous (middle), and psen2N140fs

homozygous (lower) zebrafish. The S4Ter mutation permits apparently normal melanotic epidermal pigmentation

while the N140fs mutation does not.

https://doi.org/10.1371/journal.pone.0232559.g001

PLOS ONE Transcriptome analysis of a dominant psen2 mutation in zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0232559 July 13, 2020 5 / 25

https://doi.org/10.1371/journal.pone.0232559.g001
https://doi.org/10.1371/journal.pone.0232559


(Invitrogen, Carlsbad, California, USA, 18080051) with Random Primers (Promega, Madison,

Wisconsin, USA, C1181).

For RNA-seq, four wild type, four psen2S4Ter heterozygous and four psen2S4Ter homozygous

mutant brains (all from female fish) were extracted from the same family. Total RNA from

these brains was extracted using the mirVana™ miRNA Isolation Kit (Ambion, Inc, Foster

City, California, USA, AM1560). RNA samples were sent to the Australian Cancer Research

Foundation (ACRF) Cancer Genomics Facility, Adelaide SA, Australia for sequencing.

Allele specific transcript expression analysis by dqPCR

Primers for dqPCR, including a reverse primer specifically detecting the wild type allele (5’-
TCGTTGTAGGAGTCCTCTTCACTG-3’), a reverse primer specifically detecting the psen2S4Ter

allele (5’-TCGTTGTAGGAGTCCTCTTCAGG-3’) and a common forward primer (5’-TT
CCTCACTGAATTGGCGATG-3’), were designed for allele specific expression analysis of the

F3 family using the QuantStudio™ 3D Digital PCR System (Life Sciences, Waltham, MA, USA)

with the QuantStudio™ 3D Digital PCR 20K Chip Kit v2 and Master Mix (Life Sciences, Wal-

tham, MA, USA, A26317) and SYBR™ Green I Nucleic Acid Gel Stain (Life Sciences, Waltham,

MA, USA, S7563). The dqPCR conditions for assays of mutant allele or wild type allele expres-

sion were 96˚C, 10 min; 49 cycles of [62˚C, 2 min; 98˚C, 30 s]; 62˚C, 2 min. The lengths of the

anticipated PCR products are ~130 bp. 25 ng of total cDNA (Stated cDNA concentrations are

based on measured concentrations of RNA under the assumption that subsequent reverse

transcription is completely efficient.) from a sample was loaded into one chip for the dqPCR.

The chips were read using QuantStudio™ 3D AnalysisSuite Cloud Software (Life Sciences, Wal-

tham, MA, USA).

Testing for aberrant psen2 transcript splicing due to the S4Ter mutation

Fifteen 24-hour-old zebrafish embryos were collected into one tube. Total RNA was extracted

using the QIAGEN RNeasy mini Kit (QIAGEN, Hilden, Germany). 400ng of total RNA from

each brain was then used to synthesize 20μL of first-strand cDNA by reverse transcription

(SuperScript III kit, Invitrogen, Camarillo, California, USA). 40ng of each cDNA preparation

(a quantity calculated from the RNA concentration on the assumption that reverse trans-

cription of RNA into cDNA was complete) was used to perform PCR using GoTaq1 DNA

polymerase (Promega, Madison, USA). Each 25μL PCR reaction contained 0.2mM of deoxyri-

bonucleotide triphosphates (dNTPs), 0.4μM of each PCR primer, 1 unit of GoTaq1 DNA

polymerase and 40ng of zebrafish embryo cDNA template. PCR cycling was performed with

35 cycles of a denaturation temperature of 95˚C for 30s, then an annealing temperature of

60˚C for 45s and then an extension temperature of 72˚C for 1.5 minutes. PCR products were

electrophoresed through a 1.5% agarose gel in 1×TAE buffer for separation and identification.

PCR primers: 5’UTR_F: 5’-TTTTGACGGAGTATTTTCGCAT-3’, Exon3_F: 5’-CTCTTC
ATCCCTGTCACGCTCT-3’, Exon3_R: 5’-CTCGGTGTAGAAACTGACGGACTT-3’, Exon7_

R: 5’-TTCCACCAGCATCCTCAACG-3’.

Construction of the psen2 EGFP fusion expression vectors

DNA sequence corresponding to the 5’UTR and the first 113 codons of the psen2 gene fused to

sequence encoding the N-terminal end of EGFP (but excluding EGFP’s translation start

codon) was synthesized by Integrated DNA Technologies Inc. Coralville, Iowa, USA) and

ligated into the pcGlobin2 vector between the BamH I and EcoR I restriction sites to construct

expression vector psen2WT-EGFP. The same procedure was followed to construct expression

vector psen2S4Ter-EGFP that is identical to psen2WT-EGFP except that psen2S4Ter-EGFP
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lacks the 8 nucleotides deleted in the psen2S4Ter mutant allele (i.e. 5’- CAGACAGT -3’).

The complete sequences of these fusion genes are given in S1 Appendix in S1 File.

In-vitro mRNA transcription and microinjection

The psen2WT-EGFP and psen2S4Ter-EGFP expression vector constructs were restricted with

XbaI before transcription using the mMessage mMachine T7 kit (Thermo Fisher Scientific

Inc, Waltham, Massachusetts, USA) to generate mRNA. All mRNAs were precipitated with

LiCl and then redissolved in water for injection of 2–5 nL at a concentration of 400 ng/μL. No

obvious developmental abnormalities were seen after injection of these mRNAs into zebrafish

embryos. At ~24 hpf, both the psen2WT-EGFP mRNA-injected and the psen2S4Ter-EGFP

mRNA-injected embryos showed weak EGFP fluorescence (as visualized by fluorescence

microscopy). For mRNA-injected and non-injected embryos (as negative controls) 15

embryos were collected for subsequent western immunoblot analysis.

Western immunoblot analyses

Embryos at 24 hpf were first dechorionated and their yolks were removed in embryo medium

containing Tricaine methanesulfonate. Embryos were then placed in RIPA extraction buffer

(Sigma-Aldrich Corp. St. Louis, Missouri, USA) containing Complete Proteinase Inhibitor

(Sigma-Aldrich), homogenized and incubated at 4˚C (with rotation). Cell debris was sedi-

mented from the protein sample by centrifugation at 16,000 x g for 30 seconds, LDS sample

buffer (Invitrogen) was added to the supernatant, the protein sample was heated at 80˚C for 20

minutes and then stored at -80˚C. Sample Reducing Agent (Thermo Fisher Scientific) was

added to samples prior to being loaded onto NuPAGE™ 4–12% Bis-Tris Protein Gels (Invitro-

gen). The separated proteins were subsequently transferred to a PVDF membrane (Bio-Rad

Laboratories, Hercules, California, USA) using the Mini Gel Tank and Blot Module Set

(Thermo Fisher Scientific). For EGFP protein detection, the PVDF membrane was blocked

with blocking reagent (Roche Holding AG, Basel, Switzerland) and then probed with the pri-

mary antibody, polyclonal anti-GFP goat (Rockland Immunochemicals Inc., Gilbertsville,

Pennsylvania, USA), followed by secondary antibody, horseradish peroxidase (HRP) conju-

gated anti-goat antibody (Rockland). For subsequent beta-tubulin (protein loading control)

detection, the PVDF membrane was blocked in 5% skim milk and then probed with the pri-

mary antibody, monoclonal beta-tubulin (E7, DSHB) followed by secondary antibody, horse-

radish peroxidase conjugated anti-mouse antibody (Rockland). Bound antibody was detected

by chemiluminescence using SuperSignal™ West Pico PLUS Chemiluminescent Substrate

(Thermo Fisher Scientific) and imaged by the ChemiDoc™ MP Imaging System (Bio-Rad

Laboratories).

RNA-seq data generation and quality control

Paired-end (2x150bp) RNA-seq libraries were provided by the ACRF Cancer Genomics Facil-

ity. Briefly, RNA samples were depleted for rRNA using the methods of Adiconis [32] and

sequences derived from mammalian rRNA, before being prepared using the KAPA Hyper

RNA Library Prep kit (Roche Holding AG), and sequenced on an Illumina NextSeq 500 (Illu-

mina, San Diego, California, USA). Libraries were generated for n = 4 samples from each of

the genotypes: wild type (WT, psen2+/+), heterozygous (Het, psen2S4Ter/+) and homozygous

(Hom, psen2S4Ter/psen2S4Ter), ranging in size from 27,979,654 to 37,144,975 reads. Libraries

were trimmed using cutadapt v1.14 to remove Illumina Adapter sequences. Bases with a

PHRED score< 30 were also removed along with NextSeq-induced polyG runs. Reads shorter

than 35bp after trimming were discarded. Trimmed reads were aligned to GRCz11 using
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STAR v2.7.0 [33], and gene descriptions based on Ensembl release 98. For the purposes of

genotype confirmation, trimmed reads were additionally aligned using kallisto v0.43.1 [34] to

a modified version of the Ensembl transcriptome, where the sequence for the psen2S4Ter allele

was additionally included. RNA-seq data has been deposited in the Gene Expression Omnibus

database (GEO) under Accession Number GSE148468.

Differentially expressed gene analysis of RNA-seq data

Unique alignments corresponding to strictly exonic regions from gene models in Ensembl

release 98 were counted using featureCounts from the Subread package v1.5.2 [35], giving

total counts per sample which ranged between 11,852,141 and 16,997,219. Genes with counts

per million (CPM) > 1.5 in at least four samples were retained, whilst genes whose biotype

corresponded to any type of rRNA were additionally excluded, giving 16,640 genes for differ-

ential expression analysis. As GC bias was suspected, given variable rRNA depletion across

samples, gene-level counts were normalized for GC and length bias using CQN [36], before

estimating fold change using the GLM likelihood-ratio test in the R package edgeR [37]. Dif-

ferential expression was determined for the presence of the mutant allele and the comparison

between heterozygous and homozygous mutants. P-values from likelihood-ratio tests were

adjusted using both the Benjamini-Hochberg FDR procedure, and the Bonferroni adjustment

to provide two complementary viewpoints on the data. Genes were considered to be differen-

tially expressed in the presence of a mutant allele if satisfying one of two criteria, either 1) a

Bonferroni-adjusted p-value < 0.01, or 2) an FDR-adjusted p-value < 0.01 along with a logFC

estimate beyond the range ±1. For the comparison between mutant genotypes, genes were

considered to be exhibiting differential expression if obtaining an FDR-adjusted p-value <

0.05 in this comparison. Code for the complete analysis is available at https://uofabio

informaticshub.github.io/20170327_Psen2S4Ter_RNASeq/

Genotype confirmation in RNA-seq data

Genotypes were confirmed for each RNA-seq sample using transcript-level counts for the

psen2 wild-type allele and the psen2S4Ter allele. No expression of the WT allele was observed in

any homozygous mutant, whilst no expression of the mutant allele was observed in homozy-

gous WT samples. A ratio of approximately 1:1 between mutant and WT alleles was observed

in all heterozygous mutant samples, as expected.

Enrichment analysis

Enrichment testing was performed using Hallmark, KEGG and GO gene sets from the

MSigDB database [38], with GO terms excluded if the shortest path back to the root node

was< 3 steps. For the comparison between mutant and wild-type samples, enrichment analy-

sis was performed on the set of 615 DE genes using goseq [39], setting gene-level correlation

with sample-specific rRNA content as a covariate. For the comparison between mutant geno-

types, the number of DE genes was considered to be too small for this type of analysis. An

additional enrichment analysis on the complete data set was performed using fry on compari-

sons both between mutant and wild-type, and between mutant genotypes, as fry more appro-

priately handles inter-gene correlations than approaches like GSEA [40].

In situ transcript hybridization analysis of DoLA neuron number

This was performed as previously described [41] on embryos from a pair mating of two S4Ter
heterozygous mutants. After counting of DoLA neurons in an embryo, the embryo was
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subjected to DNA extraction as for the tail biopsies (above) and then its psen2 genotype was

determined by allele-specific PCRs.

Results

Generation of a putatively null mutation in zebrafish psen2
As part of a program analyzing the function of genes involved in familial Alzheimer’s disease,

we wished to identify changes in the expression of genes in adult brains due to simple loss of

PSEN2 activity. We previously identified the psen2 gene in zebrafish [42] and the ENSEMBL

database (http://asia.ensembl.org) reports one psen2 transcript (ENSDART00000006381.7)

with 11 exons and the translation start codon residing in exon 2. Therefore, we used the

CRISPR Cas9 system to generate a frameshift mutation just downstream of this transcript’s

nominal translation start codon (intended to allow ribosomes to initiate translation but not

translate Psen2 protein). A frameshift mutation (a deletion of 8 nucleotides) starting in the 4th

codon and resulting in the creation of a translation termination codon was isolated (Fig 1A).

The mutant allele is designated psen2S4Ter. As expected from our studies of a previous frame-

shift mutation in psen2, N140fs, zebrafish homozygous for the S4Ter mutation are viable and

fertile. However, unexpectedly, unlike N140fs, the epidermal pigmentation pattern of S4Ter
appears normal with normal melanotic striping (Fig 1B). This suggests that γ-secretase in the

melanosomes of epidermal melanophores is sufficient for formation of melanin pigment.

No decreased stability of mutant allele transcripts under normoxia or hypoxia

Premature termination codons in transcripts frequently cause nonsense-mediated decay

(NMD) when located more than 50–55 nucleotides upstream of an exon-exon boundary [43].

Also, hypoxia appears to be an important element in AD [44, 45] and increases the expression

of PSEN gene transcripts in both human and zebrafish cells [46, 47]. We have recently shown

that mutations in zebrafish psen1 accelerate age-dependent changes in responses to acute hyp-

oxia [48]. Therefore, we sought to determine whether transcripts of the psen2S4Ter allele are

less stable than wild type transcripts and to observe the expression of mutant allele transcripts

under acute hypoxia. We used dqPCR with allele-specific primer pairs to quantify relative

transcript numbers in cDNA synthesized from the brains of 6-month-old wild type, heterozy-

gous and homozygous mutant fish under normoxia or acute hypoxia (see Materials and Meth-

ods). The results of this analysis are shown in Fig 2. In heterozygous fish under normoxia,

both wild type and mutant allele transcripts are expressed at similar levels in 6-month-old

brains, with the wild type allele expressed at approximately half the level seen in wild type fish

(i.e. that possess two wild type alleles). As expected, acute hypoxia increases the expression of

the wild type transcript and this is also observed for the mutant transcript that shows no evi-

dence of destabilization (Fig 2).

No increase in DoLA neuron number in embryos homozygous for S4Ter
Currently, we do not have an antibody against zebrafish Psen2 protein that would allow us to

demonstrate loss of Psen2 activity in homozygous mutants. Also concerning (as noted above)

is that a frameshift allele of psen2 that we described previously, N140fs, shows loss of surface

melanotic pigmentation when homozygous, suggesting loss of γ-secretase activity [49] whereas

homozygous S4Ter mutants do not. Therefore, we sought an alternative method to demon-

strate loss of psen2 function due to the S4Ter mutation.

Inhibition of psen2 mRNA translation has been shown to increase the number of a particu-

lar spinal cord interneuron–the Dorsal Longitudinal Ascending (DoLA) neuron in zebrafish
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Fig 2. Allele-specific mRNA expression in the brains of 6-month-old fish of different genotypes under normoxia

or acute hypoxia (as copies per 25 ng of brain cDNA in each dqPCR). (A) The levels of wild type psen2 allele mRNA

in the psen2S4Ter/+ fish (~700 copies) were significantly (p = 0.0039) lower than in their wild type siblings (~1,300

copies) under normoxia. Under hypoxia, the levels of wild type psen2 allele mRNA in both the psen2S4Ter/+ fish

(~1,000 copies) and their wild type siblings (~1,800 copies) were apparently up-regulated, but only the higher levels in

the wild type fish showed a statistically significant increase (p = 0.0117) compared to the normoxic controls. (B) The

levels of psen2S4Ter allele mRNA in the psen2S4Ter/+ fish (~700 copies) appeared to be lower than in the psen2S4Ter/
psen2S4Ter fish (~1,000 copies) under normoxia. However, this comparison did not reach statistical significance

(p = 0.0777). Under hypoxia, the levels of psen2S4Ter allele mRNA in both the psen2S4Ter/+ fish (~1,000 copies) and the

psen2S4Ter/psen2S4Ter fish (~1,900 copies) were upregulated. This up-regulation in the psen2S4Ter/psen2S4Ter fish was

clearly significant (p = 0.0002), while that in the psen2S4Ter/+ fish was apparent, but not regarded as statistically
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embryos at 24 hours post fertilization (hpf) [41]. Therefore, if S4Ter decreases psen2 function,

it might be expected to increase DoLA number (although, as an endogenous mutation rather

than blockage of gene expression using a morpholino, S4Ter might induce genetic compensa-

tion to suppress this phenotype [50]). To examine the effect of S4Ter on DoLA number, we

collected embryos from a pair-mating of two psen2S4Ter/+ fish to generate a family of embryos

comprised, theoretically, of 50% heterozygous mutants, 25% homozygous mutants and 25%

wild type genotypes. The embryos were allowed to develop to the 24 hpf stage before in situ
transcript hybridization against transcripts of the gene tbx16 that labels DoLA neurons [51].

After the number of DoLA neurons in each embryo had been recorded, each embryo was gen-

otyped using PCRs specific for the mutant and wild type alleles. One-way ANOVA followed

by Dunnett’s T3 multiple comparisons test found no significant differences in DoLA number

between any two genotypes. This does not support that S4Ter reduces psen2 activity (Fig 3).

Nevertheless, transcriptome analysis (below) shows distinct differences between the brain

transcriptomes of S4Ter mutant and wild type siblings.

No apparent effects of the S4Ter mutation on transcript splicing

The retention of melanotic pigmentation and normal DoLA neuron number in S4Ter homo-

zygous fish implied that this mutant allele still produces a functional protein. To understand

significant (p = 0.1185). Data is shown as the mean ± SD. Values of p were determined by a two-way ANOVA followed

by Tukey’s HSD test. The dqPCR raw data is given in S1 & S2 Tables in S1 File.

https://doi.org/10.1371/journal.pone.0232559.g002

Fig 3. DoLA neuron number assessment of psen2 activity. 42 embryos at 24 hpf from a pair-mating of a psen2S4Ter/
+ female and a psen2S4Ter/+ male were subjected to in situ hybridization to detect DoLA neurons that were then

counted. Subsequent genotyping of individual embryos revealed 21 heterozygous mutants, 16 homozygous mutants

and 5 wild type embryos. Data is shown as the mean ± SD. Values of p were determined by a one-way ANOVA

followed by Dunnett’s T3 multiple comparisons test. Raw data is given in S3 Table in S1 File.

https://doi.org/10.1371/journal.pone.0232559.g003
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how this might occur, we first checked to see whether the mutation influenced transcript splic-

ing. The psen2 translation initiation codon and the S4Ter mutation both exist in the second

exon of the gene. To test for changes in transcript splicing, we generated cDNA using total

RNA purified from wild type and S4Ter homozygous embryos at 24 hpf. We then performed

PCR using primer pairs binding to sequences in exons 1 and 3, 3 and 7, and 1 and 7 (See Mate-

rials and Methods and S2 Appendix in S1 File). Each PCR amplified a single cDNA fragment

of the expected size that was essentially identical between the wild type and mutant embryos.

(Size differences due to the deletion of 8 nucleotides in the S4Ter mutant allele could not be

resolved). Therefore, there is no evidence that the S4Ter mutation changes the splicing of

nascent psen2 transcripts.

The S4Ter mutation allows downstream Met codons to initiate translation

The S4Ter mutation might still allow production of a functional protein if a downstream Met

codon could act to initiate translation, and the resultant protein retained γ-secretase catalytic

activity. Three Met codons exist in the N-terminal-encoding region of the psen2 ORF (Fig 4A);

codons 34, 88, and 97. Codon 34 exists in the cytosolic-coding region before the first trans-

membrane domain (TM1), while codon 88 codes for a Met residue near the cytosolic surface

of TM1 and codon 97’s Met residue is deep within TM1. Since the transmembrane domains of

PRESENILIN proteins show high sequence conservation during evolution, we assumed that a

protein lacking TM1 could not function so that a functional Psen2 protein might only form if

codon 34 or 88 (and remotely possibly 97) were used to initiate translation. Therefore, we

fused the known 5’UTR sequences and the first 113 codons of the psen2 ORF (that includes

codons for all TM1 residues) to sequence coding for enhanced green fluorescent protein

(EGFP, excluding the EGFP start codon) and incorporated this into the vector pcGlobin2 for

synthesis of mRNA. Both wild type and S4Ter-mutant versions of this construct were pro-

duced (see Fig 4A). Synthetic mRNAs from these constructs were injected into zebrafish

embryos at the 1-cell stage and western immunoblots of 24 hpf embryos were subsequently

probed with an antibody detecting EGFP. This revealed the expected translation initiation

from the wild type sequence predominantly at codon 1 (Fig 4B). However, in the presence of

the S4Ter mutation, there was apparent translation initiation at codon 34 and at either one or

both of codons 88 and 97 (although the western immunoblot lacked the resolution to distin-

guish which, Fig 4B). (Fluorescence in embryos from the EGFP fusion proteins of both con-

structs was observable but weak, data not shown.) Translation initiation may also have

occurred at any of three other out-of-frame potential start codons (see black arrows in Fig 4C)

but the protein products of these would not be observable using an antibody detecting EGFP.

Therefore, it is highly likely that the S4Ter mutant allele produces one or more forms of N-ter-

minally truncated Psen2 protein. Notably, all the putative truncated protein products would

lack the N-terminal “acidic cluster” region defined by Sannerud et al. [52] as important for

localization of, specifically, PSEN2-orthologous proteins to late endosomes and lysosomes (Fig

4C). Interestingly, the putative truncated Psen2 proteins caused by the S4Ter mutation would

obey the reading frame preservation rule of the PRESENILIN EOfAD mutations and so might

reasonably be expected to produce dominant, EOfAD-like effects on brain transcriptomes (see

later and Discussion).

Large zebrafish families facilitate reduction of genetic and environmental

noise

An advantage of genetic analysis in zebrafish is the ability to reduce genetic and environmental

variation in statistical analyses through breeding of large families of siblings that are then
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Fig 4. Testing for translation initiation at novel downstream start codons. (A) The constructs, psen2WT-EGFP (upper) and psen2S4Ter-EGFP (lower) used to test

for translation initiation at Met codons downstream of the S4Ter mutation. S1 represents the wild type translation start site and S2-4 are potential downstream

translation initiation sites within the first 113 codons. (B) Western immunoblotting of lysates from embryos injected with the constructs described in A. Translation

initiation at S1 (S1-EGFP) does not permit initiation at S2-4. However, in the presence of the S4Ter mutation, initiation is evident at S2 (S2-EGFP) and either S3 or S4

or both (S3/4-EGFP). The identity of the low intensity ~35kDa protein band is not known but it may be a degradation product of larger fusion protein species. Free

EGFP can be produced from EGFP fusion protein species in the lysosome [53, 54]. (C) A representation of the fusion proteins predicted to be produced after injection

into embryos of psen2S4Ter-EGFP mRNA and translation initiation at S2, S3, or S4. Note that their representation here as inserting into a lipid bilayer cannot be

assumed. Green arrows indicate the positions of downstream alternative possible in-frame start codons (Met codons) in the zebrafish Psen2-coding sequence

(represented as a protein sequence). Black arrows indicate the approximate positions of out-of-frame possible alternative start codons. No proteins produced by

translation from such out-of-frame start codons would be detectable with the anti-GFP antibody used in B. The S4 residue affected by the S4Ter mutation is shown in

red. The “acidic cluster” of residues at the N-terminal of zebrafish Psen2 as defined in Fig 3A of Sannerud et al. [52] is indicated by the blue background and the

residues shaded grey in the protein alignment in that figure are indicated here by orange halos. The zebrafish fusion proteins are shown alongside a representation of

human PSEN2 protein modified from the interactive diagram at Alzforum.org (version 2.4–2019, used with permission of FBRI LLC). Amino acid residues altered by

known coding variants are color-coded as pathogenic (dark orange), non-pathogenic (green) or of uncertain pathogenicity (blue). Residue numbers, numbered

transmembrane domains (TM), and the boundaries of numbered exons (Ex) containing the coding sequence are shown.

https://doi.org/10.1371/journal.pone.0232559.g004
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raised under near identical environmental conditions (i.e. in the same fish tank or recirculated

water aquarium system). The initial heterozygous individual fish identified as carrying the

psen2S4Ter mutation was outbred to a wild type fish of the same strain (Tübingen) and then

two heterozygous individuals were mated to produce a large family of siblings with wild type

(+/+), heterozygous (psen2S4Ter/+), or homozygous (psen2S4Ter/psen2S4Ter) genotypes.

Laboratory zebrafish become sexually mature at between 3 and 5 months of age. Therefore,

to examine the transcriptome of young adult zebrafish brains we identified individuals of the

desired genotype using PCRs specific for the mutant and wild type alleles on DNA from tail

biopsies (“tail clips”) and then removed brains from fish of the desired genotypes at 6 months

of age. Total RNA was then purified from these and subjected to either RNA-seq analysis

(described below) or digital quantitative PCR (dqPCR) as shown previously in Fig 2).

RNA-seq data and analysis of psen2S4Ter effects

To analyze and compare the brain transcriptomes of 6-month-old wild type, heterozygous and

homozygous mutant siblings, four female fish of each genotype were examined (Fig 5A). An

exploratory principal component analysis (PCA) of gene expression across all samples was

generated using gene-level, log2-transformed counts per million (Fig 5B), indicating that the

difference between wild type (+/+) samples and mutant samples was the dominant source of

variability, with PC1 (30.9% of variance) clearly separating the homozygous (Hom) and het-

erozygous (Het) mutant fish brains from those of the wild type (WT) fish. The Hom and Het

mutant fish were largely overlapping with respect to both PC1 and PC2, with the latter

accounting for 15.2% of variance in the total data set.

Differentially Expressed genes (DE genes)

As the Heterozygous and Homozygous psen2S4Te brains showed very similar patterns of gene

expression, we fitted a statistical model for the presence of the mutant allele with an additional

term to capture the difference between the two mutant genotypes (Fig 5). In the analysis based

on the presence of the mutant allele, genes were considered to be DE using either 1) A Bonfer-

roni-adjusted p-value < 0.01 or, 2) An FDR-adjusted p-value < 0.01 along with an estimated

logFC outside of the range ±1. However, as far fewer DE genes were detected when comparing

brain transcriptomes between mutant genotypes, a simple FDR of 0.05 was chosen as the DE

criterion for that comparison (see Sheet 1 & 3 in S2 File). Ultimately, 615 genes were declared

to be DE due to any presence of the psen2S4Ter mutant allele, while 7 genes were declared to

be DE between brains with Hom and Het genotypes. Heatmaps (Fig 6) for the most highly

ranked (by FDR) of these DE genes show that the DE genes cluster according to genotype as

expected.

As mentioned previously, one explanation for the apparently normal epidermal pigmenta-

tion and DoLA neuron number phenotypes observed in psen2S4Ter homozygous fish might be

the phenomenon of “genetic compensation” as defined by Rossi et al. [55] where NMD of

mutant gene transcripts results in increased expression of related sequences [56]. Therefore,

although we did not see evidence of NMD for transcripts of the psen2S4Ter allele, we inspected

our brain transcriptome data to see whether expression of the related gene, psen1, was

increased in psen2S4Ter Het or Hom brains relative to wild type. The presence of the psen2S4Ter

allele saw a mean 1.24-fold increase in psen1 transcript levels compared to that in wild type

brains (p = 0.15) while Hom brains showed a mean 0.91-fold decrease in psen1 transcript levels

compared to Het brains (p = 0.53). Therefore, there is no evidence of differential expression of

psen1, and so no evidence of genetic compensation, in brains due to the S4Ter mutation.
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Results from enrichment analyses

To predict what changes in molecular/cellular processes might be reflected by the differential

expression of genes, enrichment analyses were conducted using the Hallmark, KEGG and GO

gene sets defined in the MSigDB database (38). A detailed description of the analyses is pub-

licly available at: https://uofabioinformaticshub.github.io/20170327_Psen2S4Ter_RNASeq/

Fig 5. Brain transcriptome analysis. (A) Pair-mating of two Het zebrafish produces a family made up of WT, Het,

and Hom siblings in a ~1:2:1 ratio respectively. At six months of age, the transcriptomes of entire brains from four

female sibling fish each of WT, Het, and Hom genotypes were analyzed. (B) PCA showing PC1 and PC2 using logCPM

values from each sample. The largest source of variability within this data set was clearly the difference between wild

type samples and those containing one or two copies of the psen2S4Ter allele. (C) Volcano plots displaying gene

differential expression (DE) p-values versus fold-change. Left: DE genes from comparison of Het and Hom brains.

Right: DE genes from comparison of brains of fish possessing the S4Ter allele (i.e. either Het or Hom) versus WT. The

dominant nature of the S4Ter mutation is indicated by the relatively restricted differences between Het and Hom

transcriptomes compared to S4Ter vs. WT.

https://doi.org/10.1371/journal.pone.0232559.g005
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Full results of enrichment analyses are also listed in Sheet 2 & Sheet 4 in S2 File. Overall,

two strategies for enrichment analysis were used: 1) Testing for enrichment within discrete sets
of DE genes (WT versus presence of psen2S4Ter only). 2) Testing for enrichment within the com-
plete gene lists, i.e. regardless of DE status, but using direction of fold-change and p-values as a

ranking statistic.).

During analysis, we found that the RNA-seq data indicated considerable (and variable)

ribosomal RNA (rRNA) content, presumably due to somewhat inefficient depletion of zebra-

fish rRNA from samples, using a human genome-based rRNA depletion kit. While rRNA

sequences could be excluded from the subsequent RNA-seq data bioinformatically, that the

primary enrichment within DE genes indicated pathways such as KEGG_RIBOSOME and

CYTOSOLIC_RIBOSOME raised concerns that the rRNA contamination might somehow

have biased the sampling of cellular RNA, although a mechanism for this is not immediately

obvious. Our caution was also raised by recent work showing that gene length might bias the

detection of DE gene transcripts in RNA-seq data sets [57]. In particular, as a set, ribosomal

protein genes have short lengths and may be prone to artefactual identification as DE due to

this bias [57]. However, when examining the complete gene lists using fry, additional terms

which were clearly distinct to rRNA became evident, such as OXIDATIVE PHOSPHORYLA-
TION (dre00190), MITOCHONDRIAL ENVELOPE (GO:0005740) and ANION TRANSPORT
(GO:0006820) (Fig 7). As these terms share virtually no genes with ribosomal-related gene

sets, this increases our confidence that these represent real biological differences that are

affected by the presence of the psen2S4Ter allele.

The presence of the psen2S4Ter mutation was predicted to affect a number of metabolic path-

ways, particularly XENOBIOTIC METABOLISM (M5934) from the Hallmark gene sets. How-

ever, pathways similar to those seen for an EOfAD-like mutation in the zebrafish psen1 gene

[58], were also observed in the brains of fish with psen2S4Ter, particularly those involving

energy production by mitochondria. When homozygous and heterozygous psen2S4Ter brains

were compared, the pathways were even more closely focused around oxidative phosphoryla-

tion and mitochondrial function, probably reflecting a critical role for the Psen2 protein in

regulating mitochondrial energy production. All pathway enrichment data as generated under

fry is given in Sheet 2 & Sheet 4 in S2 File.

Discussion

Well over 200 mutations causing familial Alzheimer’s disease have been identified in the

human PSEN1 and PSEN2 genes. However, none of these mutations are obviously null (e.g.

are frameshift or nonsense mutations that block all mRNAs from producing a protein that

includes the normal C-terminal residues) [12]. Knowledge of the molecular effects of null

mutations in these genes is, therefore, useful since, by exclusion, it could help us determine the

functions critically affected by EOfAD mutations.

Alzheimer’s disease takes decades to develop, but we are unable to investigate in detail the

molecular changes occurring in the brains of young human carriers of EOfAD mutations since

biopsies cannot be taken. Consequently, analysis in animal models is necessary. In this study,

we attempted to generate a null mutation in the zebrafish psen2 gene. We identified an 8-bp

deletion in the zebrafish psen2 gene that forms a premature termination codon (PTC) at the

Fig 6. Heatmaps of DE genes. Plotted values are logCPM based on CQN-normalized counts. (A) The most highly ranked 40 (of

the 615) DE genes by FDR identified when comparing WT fish to genotypes possessing the psen2S4Ter allele. (B) The 7 most highly-

ranked genes (FDR< 0.05) which were detected as DE between Het and Hom mutant genotypes. Unique sample name identifiers

are given beneath each column.

https://doi.org/10.1371/journal.pone.0232559.g006
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fourth codon position downstream of the start codon (psen2S4Ter). However, this PTC appar-

ently fails to block translation and, instead, reveals cryptic downstream translation start

codons that likely drive formation of N-terminally truncated Psen2 protein(s). One or more of

these proteins apparently possesses γ-secretase activity since psen2S4Ter homozygous fish pos-

sess melanotic surface pigmentation and normal DoLA neuron numbers in 24 hpf embryos.

Translation initiation at cryptic downstream start codons would also explain the lack of NMD

of S4Ter allele transcripts. The failure of NMD is unlikely to be due to the proximity of the

PTC to a downstream exon/exon splice boundary since the nearest such boundary would be

far more than 55 nucleotides distant in a spliced mRNA [59].

The psen2S4Ter allele shows dominance and may be EOfAD-like

Transcriptome analysis of 6-month-old entire brains from wild type, and psen2S4Ter heterozy-

gous and homozygous zebrafish showed relatively few differences between the heterozygous

and homozygous fish centered around mitochondrial function while extensive changes from

wild type were caused by any presence of the psen2S4Ter allele. The differences that were seen

between heterozygous and homozygous brains were in similar functions to those seen for any

presence of psen2S4Ter compared to wild type, only more extreme: effects on mitochondrial

function (particularly oxidative phosphorylation) and ribosomal functions. This pattern of

effects is most easily explained as psen2S4Ter displaying a dominant negative phenotype.

Fig 7. UpSet plot indicating distribution of DE genes within larger significant terms from the GO gene sets. For this visualization, GO terms

were restricted to those with 15 or more DE genes, where this represented more than 5% of the gene set, along with an FDR< 0.02 and more than

3 steps back to the ontology root. The 20 largest GO terms satisfying these criteria are shown with the plot being truncated at the right hand side

for simplicity. A group of 28 genes is uniquely attributed to the GO MITOCHONDRIAL ENVELOPE (orange shading), with a further 18 being

relatively unique to the GO MRNAMETABOLIC PROCESS. The next grouping of 15 genes is unique to GO REGULATION OF
NUCLEOBASE-CONTAINING COMPOUNDMETABOLIC PROCESS followed by 25 genes, spread across two clusters of terms which largely

represent GO RIBOSOMAL ACTIVITY. In between these are 13 genes uniquely associated with the GO ANION TRANSPORT.

https://doi.org/10.1371/journal.pone.0232559.g007
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However, because homozygous fish retain melanotic skin pigmentation, we know that the pro-

tein produced by psen2S4Ter likely retains some γ-secretase activity [49].

Care must be taken when interpreting gene/protein function from transcriptome data.

Effects seen on transcript levels can reflect direct regulatory interactions or cells’ indirect

responses as cells adjust gene expression to maintain homeostasis. So while the presence of the

psen2S4Ter allele appeared to affect ANION TRANSMEMBRANE TRANSPORT and related

GOs, this might be e.g. a homeostatic response to deficient endolysosomal acidification (see below)

instead of a more direct regulation of genes involved in anion transport. While transcriptome anal-

yses are useful for generation of hypotheses, these must subsequently be tested by direct interro-

gation of the organism/tissue/cells involved. Unfortunately, further investigation of the S4Ter
mutation is complicated by the fact that the mutation likely causes translation of multiple novel

forms of Psen2 protein, which confounds simple interpretation of any S4Ter phenotypic effects.

All the novel forms of Psen2 protein that result from S4Ter likely lack the N-terminal

“acidic cluster” of amino acid residues defined by Sannerud et al. [52]. These authors showed

that, in humans, this N-terminal region binds to the trans-Golgi network (TGN)/endosomal

adaptor complex protein (AP) complex AP-1 in a phosphorylation-dependent manner, and

that this is necessary for normal localization of PSEN2 to late endosomes/lysosomes. The inter-

action with AP-1 was also shown to be necessary for the restriction of PSEN2 to the late endo-

somes/lysosomes of the somatodendritic compartment of mouse primary hippocampal

neurons and its exclusion from axons [52]. The γ-secretase activities provided by PSEN1 and

PSEN2 differ somewhat in their substrate proclivities [52, 60]. Since γ-secretase cleaves over 90

known substrates [61] it is reasonable to expect that changing the subcellular localization of

Psen2 in zebrafish would alter the γ-secretase cleavage of many of these substrates in a manner

that might explain the dominant nature of the S4Ter mutation.

Sannerud et al. did not find that any of the EOfAD mutations of PSEN2 they tested changed

the localization of the protein, although they did suggest that even subtle alterations of PSEN2

protein localisation might affect signaling by Notch receptors. Interestingly, they did see

changes in PSEN1 protein localization due to EOfAD mutations. This leads us to speculate

that, if PSEN1 and PSEN2 proteins interact physically in cells, (a possibility suggested previ-

ously but us [62] and others [63]), then forms of PSEN2 lacking their N-terminal “acidic clus-

ter” might significantly affect PSEN1 protein localization to produce EOfAD-like effects.

Previous research on PRESENILIN protein function suggests a number of non-mutually exclu-

sive possibilities for the effects of psen2S4Ter on mitochondria. In 2009, Area-Gomez et al. [23]

noted that, in mouse brain, PSEN2 protein is concentrated in the mitochondria-associated mem-

branes of the ER, MAM. In later papers, these researchers noted that loss of PSEN gene activity

causes increased association of ER membranes with mitochondria (i.e. increased MAM) [64] and

decreased oxidative phosphorylation (oxygen consumption) in mouse embryonic fibroblasts [65].

While the decreased oxidative phosphorylation could be mimicked by chemical inhibition of γ-

secretase, the extent of MAM formation was less sensitive to γ-secretase activity. Increased MAM

formation was also observed in fibroblasts from people with EOfAD mutations in PSEN2, (or in

PSEN1, or in those with late onset, sporadic AD) [64]. The effects of EOfAD mutations in PSEN2
on the MAM may relate to its interaction with MITOFUSIN 2 (MFN2, see below).

A more indirect manner in which PSEN2 may affect mitochondrial function is via an effect on

iron homeostasis. In 2010, Lee et al. [66] showed that the PSEN1 holoprotein (i.e. not the endo-

proteolytically-cleaved, γ-secretase-active form of PSEN1) was required for normal acidification

of lysosomes by promoting N-glycosylation of the V0a1 subunit of v-ATPase that is required for

its correct localization to the lysosome. (Note that it has not yet been demonstrated formally that

PSEN2 plays a similar role although, in work yet to be published formally, we claim that homozy-

gosity for psen2S4Ter causes decreased autophagic flux in zebrafish larvae [67]). Recently, Yambire
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et al. demonstrated that deficient lysosomal acidification causes a cellular deficiency of ferrous

iron leading to brain mitochondrial dysfunction and inflammatory responses [68].

In a 2016 review, we suggested that mutant PRESENILIN holoproteins may interfere with

the (putative) multimerization of normal holoproteins, thereby acting in a dominant negative

manner to interfere with the holoproteins’ normal activity in promoting N-glycosylation of

the V0a1 subunit of v-ATPase. (We suggested that the involvement of PRESENILIN holopro-

teins in multimerization may explain the “reading frame preservation” rule that states that all

EOfAD mutations in the PSEN genes must preserve an open reading frame that uses the origi-

nal stop codon [12]). Curiously, the two PRESENILIN activities mentioned above—their regu-

lation of MAM formation and of endolysosomal acidification—appear to be mediated by the

C99 fragment (β-CTF) of the EOfAD-implicated protein APP [65, 69]. This supports that one

or both of these activities play important roles in the pathogenic mechanism of EOfAD.

Another possibility for an effect of psen2S4Ter on mitochondria is by altering the interaction

of Psen2 protein with Mitofusin 2 (Mfn2). MFN2 modulates MAM formation although its role

in regulating mitochondrial energy production is debated [70, 71]. PSEN2 holoprotein binds

directly with MFN2, apparently through PSEN2’s cytosolic loop domain [72]. In contrast,

MFN2 does not appear to bind PSEN1 [72]. An EOfAD mutant form of human PSEN2

(N141I) shows increased localization to the MAM of brain in transgenic mice [72]. It is possi-

ble that decreased localization of a S4Ter-mutant form(s) of zebrafish Psen2 to late endo-

somes/lysosomes might cause its increased localization to MAM with consequences for Ca2+

ion homeostasis, cellular energy regulation, and lipid synthesis.

In conclusion, the psen2S4Ter mutation is not the null allele we had hoped to isolate and prob-

ably results in production of N-terminally truncated Psen2 proteins. These truncated proteins

may act in a dominant, EOfAD-like manner through a variety of molecular mechanisms that

are not mutually exclusive. The S4Ter mutation shows effects on mitochondrial function as we

previously observed for an EOfAD-like mutation of psen1 [58]. The mutation also appears to

have significant effects on anion transport and ribosomal functions, although an unexpected

(and currently inexplicable) correlation of gene differential expression with degree of rRNA

contamination in brain RNA samples raises questions around the validity of the latter result.
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