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An operator‑theoretical study 
on the BCS‑Bogoliubov model 
of superconductivity near absolute 
zero temperature
Shuji Watanabe

In the preceding papers the present author gave another proof of the existence and uniqueness of the 
solution to the BCS‑Bogoliubov gap equation for superconductivity from the viewpoint of operator 
theory, and showed that the solution is partially differentiable with respect to the temperature twice. 
Thanks to these results, we can indeed partially differentiate the solution and the thermodynamic 
potential with respect to the temperature twice so as to obtain the entropy and the specific heat 
at constant volume of a superconductor. In this paper we show the behavior near absolute zero 
temperature of the thus‑obtained entropy, the specific heat, the solution and the critical magnetic 
field from the viewpoint of operator theory since we did not study it in the preceding papers. Here, the 
potential in the BCS‑Bogoliubov gap equation is an arbitrary, positive continuous function and need 
not be a constant.

In the BCS-Bogoliubov model of superconductivity, no one gave a proof of the statement that the solution to 
the BCS-Bogoliubov gap equation is partially differentiable with respect to the temperature. Nevertheless, with-
out such a proof, one partially differentiates the solution and the thermodynamic potential with respect to the 
temperature twice so as to obtain the entropy and the specific heat at constant volume, and one shows that the 
phase transition from a normal conducting state to a superconducting state is of the second order. Therefore, if 
the solution were not partially differentiable with respect to the temperature, then one could not partially dif-
ferentiate the solution and the thermodynamic potential with respect to the temperature and could not obtain 
the entropy and the specific heat at constant volume. Moreover, one could not show that the phase transition is 
of the second order. For this reason, we have to show that the solution is partially differentiable with respect to 
the temperature twice.

On the basis of fixed-point theorems, the present  author1, Theorems 2.3 and 2.4 (see  also2, Theorems 2.2 
and 2.10) gave another proof of the existence and uniqueness of the solution and showed that the solution is 
indeed partially differentiable with respect to the temperature twice. The present author thus showed that the 
thermodynamic potential is also differentiable with respect to the temperature twice. Here, the potential in 
the BCS-Bogoliubov gap equation is an arbitrary, positive continuous function and need not be a constant. In 
this way, the present author gave an operator-theoretical proof of the statement that the phase transition to a 
superconducting state is of the second order, and solved the long-standing problem of the second-order phase 
transition from the viewpoint of operator theory. As a result, the present author showed the existence of the first 
and second order partial derivatives of the solution with respect to the temperature, and showed that all of the 
solution, the first and second order partial derivatives are continuous functions of both the temperature and the 
energy. Therefore, thanks to these results, we can indeed differentiate the thermodynamic potential with respect 
to the temperature twice so as to obtain the entropy and the specific heat at constant volume of a superconductor.

In this paper we show the behavior near absolute zero temperature of the thus-obtained entropy, the specific 
heat, the solution and the critical magnetic field from the viewpoint of operator theory since we did not study 
it in the preceding  papers1,2.

Let u0 be the solution to the BCS-Bogoliubov gap  equation3,4, which is a nonlinear integral equation and is 
given by
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Here, the solution u0 is a function of the absolute temperature T and the energy x. The Debye angular fre-
quency ωD is a positive constant and depends on a superconductor. The potential U(·, ·) satisfies U(x, ξ) > 0 
at all (x, ξ) ∈ [ε, ℏωD]2 . Throughout this paper we use the unit where the Boltzmann constant kB is equal to 1.

Remark 1.1 In (1.1) above and (1.2) below, we introduce a cutoff ε > 0 and fix it. If we did not introduce the 
cutoff ε > 0 , then the first order derivative of the thermodynamic potential with respect to T, and hence the 
entropy could diverge logarithmically only at the transition temperature Tc . Therefore, the phase transition could 
not be of the second order. This contradicts a lot of experimental results that the phase transition is of the second 
order without an external magnetic field. So we introduce the cutoff ε > 0 . For more details,  see2, Remarks 1.1, 
1.10 and 1.11.

Remark 1.2 In the physics literature, one introduces the cutoff ε > 0 and avoids the divergence (mentioned 
in the preceding remark) of the entropy at the transition temperature Tc . Then, letting the cutoff tend to 0, one 
removes the cutoff. From the view point of operator theory, introducing the cutoff ε > 0 means that one deals 
with the Banach space C([0, Tc] × [ε, ℏωD]) (consisting of continuous functions defined on [0, Tc] × [ε, ℏωD] ) 
that the solution u0 to the BCS-Bogoliubov gap equation belongs to. On the other hand, removing the cutoff 
means that one deals with the Banach space C([0, Tc] × [0, ℏωD]) . One might think that the former Banach 
space C([0, Tc] × [ε, ℏωD]) continuously tends to the latter one C([0, Tc] × [0, ℏωD]) as the cutoff goes to zero. 
Note that there is a function that belongs to the former Banach space but not to the latter one. For example, the 
function x  → 1/x belongs to the former Banach space but not to the latter one. Under this circumstance, unfor-
tunately the present author does not know which norm, which metric (which distance), which ε-neighborhoods, 
I could use in order to prove the statement that the former Banach space continuously tends to the latter one as 
the cutoff goes to zero from the view point of operator theory. I therefore introduce the cutoff ε > 0 , fix it and 
deal with the former Banach space C([0, Tc] × [ε, ℏωD]).

For a fixed temperature T, the existence and uniqueness of the solution were established and studied  in1,2,5–21. 
See also  Kuzemsky22, Chapters 26 and 29  and23,24. For the role of the chemical potential in the BCS-Bogoliubov 
model, see Anghel and  Nemnes25 and  Anghel26,27.

In connection to this, the BCS-Bogoliubov gap equation plays a role similar to that of the Maskawa–Nakajima 
 equation28,29 which has attracted considerable interest in elementary particle physics. In Professor Maskawa’s 
Nobel lecture, he stated the reason why he dealt with the Maskawa-Nakajima equation. For an operator-theo-
retical treatment of this equation, see the present author’s  paper30.

In the BCS-Bogoliubov model, the thermodynamic potential is given by

where u0 is the solution to the BCS-Bogoliubov gap equation  (1.1), Tc is the transition temperature  (see2, Defini-
tion 1.8 for our operator-theoretical definition of Tc ) and N0 is a positive constant and denotes the density of states 
per unit energy at the Fermi surface. Here we consider only the contribution from the interval [−ℏωD , ℏωD] , 
and omit the contribution from the other intervals. In other words, we consider only the contribution from 
superconductivity. For more details,  see2, (1.5) and (1.6).

As mentioned above, thanks  to1, Theorems 2.3 and 2.4  and2, Theorems 2.2 and 2.10, we can indeed partially 
differentiate the solution with respect to the temperature T twice, and have the solution u0 , the first order par-
tial derivative ∂u0/∂T and the second order partial derivative ∂2u0/∂T2 . Moreover, all of them are continuous 
functions of both the temperature T and the energy x. Therefore, thanks to these results, we can indeed differ-
entiate the thermodynamic potential � with respect to T twice so as to obtain the entropy and the specific heat 
at constant volume. Note that the potential U(·, ·) in the BCS-Bogoliubov gap equation is an arbitrary, positive 
continuous function and need not be a constant.

Remark 1.3 If the solution u0 is an accumulating point of the set V  in2, Theorem 2.2 (resp. of the set W  in2, Theo-
rem 2.10), then we replace u0 by a suitably chosen element of V (resp. of W) in the form (1.2) of the thermo-
dynamic potential � . This is because u0 is an accumulating point. Note that such a suitably chosen element is 
partially differentiable with respect to the temperature T twice and that it is a continuous function of both the 
temperature T and the energy x. Therefore, once we replace the solution u0 by a suitably chosen element in the 
form (1.2), we can differentiate the thermodynamic potential � with respect to the temperature T twice so as to 
obtain the entropy and the specific heat at constant volume.

(1.1)u0(T , x) =
∫

ℏωD

ε

U(x, ξ) u0(T , ξ)
√

ξ 2 + u0(T , ξ)2
tanh

√

ξ 2 + u0(T , ξ)2

2T
dξ , T ≥ 0, x, ξ ∈ [ε, ℏωD].

(1.2)

�(T) = −2N0

∫

ℏωD

ε

√

x2 + u0(T , x)2 dx

+ N0

∫

ℏωD

ε

u0(T , x)
2

√

x2 + u0(T , x)2
tanh

√

x2 + u0(T , x)2

2T
dx

− 4N0T

∫

ℏωD

ε

ln
(

1+ e
−
√

x2+u0(T , x)2 /T
)

dx, 0 ≤ T ≤ Tc ,
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Main results
Thanks to Theorem 2.2  in2, the solution u0 to the BCS-Bogoliubov gap equation   (1.1) satisfies that at all 
x ∈ [ε, ℏωD],

Let T0 (> 0) be in a neighborhood of absolute zero temperature T = 0 and let (T , x) ∈ [0, T0] × [ε, ℏωD] . 
Since ∂u0/∂T is a continuous function, the value ( ∂u0/∂T )(T , x) is approximately equal to ( ∂u0/∂T )(0, x) , i.e.,

The same is true for ∂2u0/∂T2 . Therefore we apply the following approximation.
Approximation (A)      Let T0 (> 0) be in a neighborhood of absolute zero temperature T = 0 and let 

(T , x) ∈ [0, T0] × [ε, ℏωD] . Since all of the solution u0 , the first order partial derivative ∂u0/∂T and the second 
order partial derivative ∂2u0/∂T2 are continuous functions of both the temperature T and the energy x, we apply 
the following approximation:

Here, X > 0 and n is every nonnegative integer.

Remark 2.1 The approximation u0(T , x) ≈ u0(0, x) follows from ( ∂u0/∂T )(0, x) = 0 and the approximation 
( ∂2u0/∂T

2 )(T , x) ≈ 0 . Here, (T , x) ∈ [0, T0] × [ε, ℏωD].

Theorem 2.2 Let u0 be the solution to the BCS-Bogoliubov gap equation (1.1) given by Theorem 2.2 in2. Suppose 
Approximation (A) and let T ∈ [0, T0] . Then the thermodynamic potential � is partially differentiable with respect 
to the temperature T twice, and so there exist the entropy S and the specific heat CV at constant volume. The entropy 
S, the specific heat CV at constant volume and the solution u0 are approximated as follows:

Moreover, the critical magnetic field at absolute zero temperature and the specific heat at the transition tem-
perature Tc satisfy

Remark 2.3 Since ℏωD/(2Tc) is very large in many superconductors, we often let ℏωD/(2Tc) → ∞ and 
ε/(2Tc) → 0 in the physics literature.

Corollary 2.4 Suppose that u0(0, 2Tcη)/Tc is a constant and does not depend on superconductors, and let 
ℏωD/(2Tc) → ∞ and ε/(2Tc) → 0 . Then Hc(0)

2/(Tc CV (Tc)) does not depend on superconductors and becomes 
a universal constant.

Remark 2.5 As far as the present author knows, similar results are obtained in the physics literature under the 
restriction that the potential U(·, ·) in the BCS-Bogoliubov gap equation is a constant. But Theorem 2.2 holds 
true even when the potential U(·, ·) is not a constant but an arbitrary, positive continuous function.

Remark 2.6 Suppose that the potential U(·, ·) is a constant, i.e., U(·, ·) = U0 . Here, U0 is a positive constant. 
Then the solution u0 to the BCS-Bogoliubov gap equation does not depend on the energy x and becomes a func-
tion of the temperature T only. We denote the solution by u0(T) . Then the forms of S(T), CV (T) and u0(T , x) in 
Theorem 2.2 are reduced to the following well-known forms, respectively: At T ∈ [0, T0],

∂u0

∂T
(0, x) = 0 and

∂2u0

∂T2
(0, x) = 0.

∂u0

∂T
(T , x) ≈

∂u0

∂T
(0, x) (= 0).

∂u0

∂T
(T , x) ≈

∂u0

∂T
(0, x) (= 0),

∂2u0

∂T2
(T , x) ≈

∂2u0

∂T2
(0, x) (= 0),

(X/T)n

cosh(X/T)
≈ 0.

S(T) ≈
4N0

T

∫

ℏωD

ε

√

ξ 2 + u0(0, ξ)2 exp

(

−
√

ξ 2 + u0(0, ξ)2

T

)

dξ ,

CV (T) ≈
4N0

T2

∫

ℏωD

ε

{

ξ2 + u0(0, ξ)
2
}

exp

(

−
√

ξ 2 + u0(0, ξ)2

T

)

dξ ,

u0(T , x) ≈ u0(0, x)− 2

∫

ℏωD

ε

U(x, ξ) exp

(

−
√

ξ 2 + u0(0, ξ)2

T

)

dξ .

Hc(0)
2

Tc CV (Tc)
=

4π
∫

ℏωD/(2Tc)

ε/(2Tc)

η2

cosh2 η
dη

∫

ℏωD/(2Tc)

ε/(2Tc)

{
√

η2 + (2Tc)−2 u0(0, 2Tcη)2 − η }2
√

η2 + (2Tc)−2 u0(0, 2Tcη)2
dη.
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as ℏωD/(2Tc) → ∞ and ε/(2Tc) → 0 . The form of Hc(0)
2/(Tc CV (Tc)) in Theorem 2.2 is reduced to

Therefore, if u0(0)/Tc does not depend on superconductors, then Hc(0)
2/(Tc CV (Tc)) does not depend on super-

conductors and becomes a universal constant as ℏωD/(2Tc) → ∞ and ε/(2Tc) → 0 . Actually, u0(0)/Tc does 
not depend on superconductors since

as is shown in the physics literature.

Proof of Theorem 2.2
We first give a proof for the behavior of the entropy S at T ∈ [0, T0] in Theorem 2.2. Thanks  to1, Theorems 2.3 
and 2.4  and2, Theorems 2.2 and 2.10, we can indeed partially differentiate the solution u0 to the BCS-Bogoliubov 
gap equation with respect to T twice. Therefore, we can also differentiate the thermodynamic potential � with 
respect to T twice. A straightforward calculation gives

Under Approximation (A), we have

Note that the sixth term on the right side of (3.1) is negligible. This is because the sixth term becomes (at 
T ∈ [0, T0])

which is negligible compared to the seventh term.

S(T) ≈
2
√
2π N0 u0(0)

3/2

√
T

exp

(

−
u0(0)

T

)

, CV (T) ≈
2
√
2π N0 u0(0)

5/2

T3/2
exp

(

−
u0(0)

T

)

,

u0(T) ≈ u0(0)− U0

√

2π T u0(0) exp

(

−
u0(0)

T

)

Hc(0)
2

Tc CV (Tc)
=

4π
∫

ℏωD/(2Tc)

ε/(2Tc)

η2

cosh2 η
dη

∫

ℏωD/(2Tc)

ε/(2Tc)

{
√

η2 + (2Tc)−2 u0(0)2 − η }2
√

η2 + (2Tc)−2 u0(0)2
dη.

u0(0)/Tc = 4 exp

[
∫ ∞

0
( ln η )/( cosh2 η ) dη

]

,

(3.1)

∂�

∂T
(T) = −N0

∫

ℏωD

ε

1
√

ξ 2 + u0(T , ξ)2

∂u2

∂T
(T , ξ) dξ

+ N0

∫

ℏωD

ε

∂u2

∂T
(T , ξ)

1
√

ξ 2 + u0(T , ξ)2
tanh

√

ξ 2 + u0(T , ξ)2

2T
dξ

−
N0

2

∫

ℏωD

ε

∂u2

∂T
(T , ξ)

u0(T , ξ)
2

( ξ2 + u0(T , ξ)2 )3/2
tanh

√

ξ 2 + u0(T , ξ)2

2T
dξ

+
N0

4T

∫

ℏωD

ε

∂u2

∂T
(T , ξ)

u0(T , ξ)
2

ξ 2 + u0(T , ξ)2

(

cosh

√

ξ 2 + u0(T , ξ)2

2T

)−2

dξ

−
N0

2T2

∫

ℏωD

ε

u0(T , ξ)
2

(

cosh

√

ξ 2 + u0(T , ξ)2

2T

)−2

− 4N0

∫

ℏωD

ε

ln
(

1+ e
−
√

ξ2+u0(T , ξ)2 /T
)

dξ

− 4N0

∫

ℏωD

ε

1

e

√
ξ2+u0(T , ξ)2 /T + 1

{

√

ξ 2 + u0(T , ξ)2

T

−
∂u2

∂T
(T , ξ)

2
√

ξ 2 + u0(T , ξ)2

}

dξ .

(3.2)
S(T) = −

∂�

∂T
(T) ≈

4N0

T

∫

ℏωD

ε

√

ξ 2 + u0(0, ξ)2

e

√
ξ2+u0(0, ξ)2 /T + 1

dξ

≈
4N0

T

∫

ℏωD

ε

√

ξ 2 + u0(0, ξ)2 e
−
√

ξ2+u0(0, ξ)2 /T dξ .

−4N0

∫

ℏωD

ε

ln
(

1+ e
−
√

ξ2+u0(T , ξ)2 /T
)

dξ ≈ −4N0

∫

ℏωD

ε

e
−
√

ξ2+u0(0, ξ)2 /T dξ ,



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15983  | https://doi.org/10.1038/s41598-021-95322-x

www.nature.com/scientificreports/

We next give a proof for the behavior for the specific heat CV at constant volume at T ∈ [0, T0] . To this end 
we differentiate ∂�/∂T with respect to T again and obtain the second order partial derivative ∂2�/∂T2 . The 
second order partial derivative of the first term on the right side of (3.1) becomes

which is approximated by 0 at T ∈ [0, T0] under Approximation (A). On the other hand, the second order partial 
derivative of the last term on the right side of (3.1) includes

which is the only term that we have at T ∈ [0, T0] under Approximation (A). We deal with the other terms on 
the right side of (3.1) similarly.

As a result, we obtain under Approximation (A) that (at T ∈ [0, T0])

Therefore, under Approximation (A), we have the following behavior for the specific heat CV  at constant 
volume at T ∈ [0, T0]:

We give a proof for the behavior for the solution u0 at T ∈ [0, T0] . A straightforward calculation gives

Approximation (A) implies

is approximately equal to

Therefore, we have

We finally give a proof for the rest of Theorem 2.2. Note that Theorem 2.19 (v)  in2 gives

Moreover, Lemma 5.2  in2 gives

Therefore,

The proof of Theorem 2.2 is complete.

−N0

∫

ℏωD

ε

[

1
√

ξ 2 + u0(T , ξ)2

∂2u2

∂T2
(T , ξ)−

1

2{ ξ 2 + u0(T , ξ)2 }3/2

{

∂u2

∂T
(T , ξ)

}2
]

dξ ,

−
4N0

T3

∫

ℏωD

ε

{

ξ 2 + u0(T , ξ)
2
} e

√
ξ2+u0(T , ξ)2 /T

( e
√

ξ2+u0(T , ξ)2 /T + 1 )2
dξ ,

∂2�

∂T2
(T) ≈ −

4N0

T3

∫

ℏωD

ε

{

ξ 2 + u0(0, ξ)
2
}

e
−
√

ξ2+u0(0, ξ)2 /T dξ .

(3.3)
CV (T) = −T

∂2�

∂T2
(T)

≈
4N0

T2

∫

ℏωD

ε

{

ξ 2 + u0(0, ξ)
2
}

e
−
√

ξ2+u0(0, ξ)2 /T dξ .

u0(T , x)− u0(0, x) =
∫

ℏωD

ε

U(x, ξ)

{

u0(T , ξ)
√

ξ 2 + u0(T , ξ)2
−

u0(0, ξ)
√

ξ 2 + u0(0, ξ)2

}

dξ

− 2

∫

ℏωD

ε

U(x, ξ)
1

e

√
ξ2+u0(T , ξ)

2

T + 1

dξ .

u0(T , ξ)
√

ξ 2 + u0(T , ξ)2

u0(0, ξ)
√

ξ 2 + u0(0, ξ)2
.

u0(T , x) ≈ u0(0, x)− 2

∫

ℏωD

ε

U(x, ξ) e−
√

ξ2+u0(0, ξ)
2

T dξ .

Hc(0)
2 = 32πN0T

2
c

∫

ℏωD/(2Tc)

ε/(2Tc)

{
√

η2 + (2Tc)−2u0(0, 2Tcη)2 − η }2
√

η2 + (2Tc)−2u0(0, 2Tcη)2
dη.

C
N
V (Tc) = 8Tc

∫

ℏωD/(2Tc)

ε/(2Tc)

N0 η
2

cosh2 η
dη.

Hc(0)
2

Tc C
N
V
(Tc)

=
4π

∫

ℏωD/(2Tc)

ε/(2Tc)

η2

cosh2 η
dη

∫

ℏωD/(2Tc)

ε/(2Tc)

{
√

η2 + (2Tc)−2u0(0, 2Tcη)2 − η }2
√

η2 + (2Tc)−2u0(0, 2Tcη)2
dη.
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Corollary 2.4 follows immediately from the form Hc(0)
2/(Tc C

N
V
(Tc) ) just above.
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