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Parasitic helminth infections, while a major cause of neglected tropical disease burden,
negatively correlate with the incidence of immune-mediated inflammatory diseases such
as inflammatory bowel diseases (IBD). To evade expulsion, helminths have developed
sophisticated mechanisms to regulate their host’s immune responses. Controlled experi-
mental human helminth infections have been assessed clinically for treating inflamma-
tory conditions; however, such a radical therapeutic modality has challenges. An
alternative approach is to harness the immunomodulatory properties within the worm’s
excretory–secretory (ES) complement, its secretome. Here, we report a biologics discov-
ery and validation pipeline to generate and screen in vivo a recombinant cell-free secre-
tome library of helminth-derived immunomodulatory proteins. We successfully expressed
78 recombinant ES proteins from gastrointestinal hookworms and screened the crude
in vitro translation reactions for anti-IBD properties in a mouse model of acute coli-
tis. After statistical filtering and ranking, 20 proteins conferred significant protection
against various parameters of colitis. Lead candidates from distinct protein families,
including annexins, transthyretins, nematode-specific retinol-binding proteins, and
SCP/TAPS were identified. Representative proteins were produced in mammalian
cells and further validated, including ex vivo suppression of inflammatory cytokine
secretion by T cells from IBD patient colon biopsies. Proteins identified herein offer
promise as novel, safe, and mechanistically differentiated biologics for treating the
globally increasing burden of inflammatory diseases.
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Inflammatory bowel disease (IBD) includes debilitating conditionssuch as ulcerative
colitis (UC) and Crohn’s disease. IBD affects over 6 million people worldwide, with a
higher incidence in industrialized compared to developing countries, although inci-
dence is also rising in the latter due to increasing urbanization (1, 2). Currently used
therapeutics to treat IBD include antibiotics, steroids, and antibodies against inflam-
matory cytokines such as tumor necrosis factor (TNF) or mucosal homing molecules
such as integrin α4β7 (3, 4). However, current treatment strategies can have serious
off-target effects and often become ineffective over time, and there is currently no
cure for IBD (5, 6). New and safer induction and maintenance therapies are desper-
ately needed.
Intestinal parasitic helminths secrete a suite of bioactive molecules to avert and

subvert host inflammatory responses directed at worm expulsion (7, 8). Such anti-
inflammatory capacities shaped by evolutionary selection pressure have received
growing attention due to their potential to treat inflammatory diseases. Controlled
experimental helminth infections have been trialed in inflammatory intestinal condi-
tions including IBD and celiac disease (9–12). Complimentary studies have shown
that factors excreted or secreted (ES) by worms can have therapeutic effects similar to
live worms. This has been demonstrated using either complex mixtures of naturally
derived helminth ES (containing hundreds of potential immunomodulatory factors)
or individual recombinant proteins (8, 13). However, these approaches are hindered
by difficulties in scaling up and standardizing quantity, purity, and homogeneity of
natural ES products. Similarly, efforts required to express individual proteins within
a helminth’s secretome (hundreds of proteins) and characterize their biological activi-
ties are prohibitive.
To tackle these challenges, we set out to design a high-throughput screening system

to identify anti-inflammatory proteins and potential IBD drug leads within the secre-
tome of a gut-dwelling hookworm.

Significance

Inflammatory bowel diseases (IBD)
are on the rise. Many studies have
highlighted an inverse correlation
between infection with parasitic
helminths and the incidence of
immune-mediated inflammatory
diseases, such as IBD. The
mechanisms by which parasitic
helminths suppress inflammation
and prevent the onset of
inflammatory diseases is not well
understood. This study describes
a discovery and validation pipeline
of antiinflammatory biologics from
the recombinant secretome of
gut-dwelling hookworms as novel
and safe drug leads. Numerous
proteins from distinct families
protected mice against inducible
colitis, and lead proteins
suppressed production of
inflammatory cytokines from IBD
patient gut biopsy T cells ex vivo,
highlighting a gold mine of new
biologics inspired by coevolution
of humans and their macrobiome.
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Results

Cell-Free Expression of Recombinant Hookworm ES Proteome.
Based on the published ES proteome and transcriptome of
Ancylostoma caninum (14, 15), we compiled a list of 91 full-
length protein-coding genes (SI Appendix, Table S1) from dif-
ferent protein families (Fig. 1A), focusing on molecules with a
predicted signal peptide, and/or members of a protein family
with previously reported interactions with mammalian tissues or
inflammatory responses (Fig. 1A). The corresponding comple-
mentary DNAs (cDNAs) fused to an N-terminal enhanced green
fluorescent protein (eGFP) tag were expressed in a Leishmania
tarentolae in vitro translation system (LTE) (Fig. 1 B–E). Of the

91 cDNA sequences, 78 proteins were successfully expressed as
in vitro translation reactions (IVTRs) in this system.

Over 25% of the IVTRs Alleviate Defined Experimental Colitis
Parameters. We next tested whether a single administration of
the crude recombinant protein-containing IVTRs displayed
efficacy in the 2,4,6-trinitrobenzene sulfonic acid (TNBS)
model of acute colitis, which enabled high-throughput in vivo
screening of our recombinant secretome (Fig. 2 A–D). Mice
were treated with IVTRs containing the hookworm protein of
interest, or eGFP alone as a control, via intraperitoneal injec-
tion 1 d before TNBS administration or were left untreated
(naïve). As expected, mice treated with IVTR containing eGFP

A
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Fig. 1. Cell-free expression of recombinant hookworm ES proteome. (A) Predicted ES protein sequences were assembled into protein families (Pfam) using
Blast2Go. Where Blast2Go did not assign a Pfam status, a manual BlastP search was performed. If manual searches did not assign a Pfam, the protein was
deemed to be “hypothetical.” (B) Schematic depiction of the production of the hookworm cell-free secretome library using a L. tarentolae in vitro translation
system. (C) Representative IVTRs of nine hookworm recombinant proteins fused to eGFP that were monitored over time by measuring the RFU. (D) Protein
expression in IVTRs was visualized by Coomassie-stained SDS-PAGE gel loaded with IVTRs shown in B. (E) the same gel as shown in D but scanned for eGFP
fluorescence. The fluorescent bands represent eGFP fluorescence of hookworm recombinant proteins.
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alone prior to TNBS administration exhibited rapid weight loss
(Fig. 2A), elevated clinical scores (Fig. 2B), and macroscopic
pathology scores (Fig. 2C) compared to naïve mice. In a repre-
sentative experiment where 12 randomly selected hookworm
protein-containing IVTRs were screened, we observed that one
IVTR (#23) was able to reduce all three disease parameters
(Fig. 2 A–C), while six other IVTRs reduced either clinical
score or macroscopic colon pathology (Fig. 2 B and C). We then
generated combined clinical Z-scores to rank and compare the
effects of each of the 78 hookworm protein-containing IVTRs
across all screening experiments, based on the four disease out-
comes (weight change, clinical score, macroscopic pathology, and
colon length). This resulted in an overall difference of means
score and a P value for each protein compared to eGFP control,
which we used to rank the proteins and identify 20 proteins that
displayed significant protection in the TNBS colitis model. These
20 proteins became our lead therapeutic candidates for further
testing and validation and included 12 members of the Sperm-
Coating Protein/Tpx-1/Ag5/PR-1/Sc7 (SCP-TAPS) superfamily,
two transthyretins (TTR), a nematode-specific fatty acid and
retinol-binding protein (FAR), two homologs of tissue inhibitor
of metalloproteinase (TIMP), a lysozyme, an annexin, and a
hypothetical protein (Fig. 2D and Table 1). Of note, two of the
identified candidates—the TIMP-like netrin domain-containing
protein Ac-TMP-1 (Ac-AIP-1) and Ac-NIF (a SCP protein)—
had been previously reported to display efficacy in mouse models
of colitis, thereby independently validating our approach (16, 17).

Expression of Efficacious IVTR Proteins in Mammalian Cells
and Validation. In vitro translation products are not readily
scalable for preclinical and clinical studies, so we took 8 of the
top 10 most efficacious IVTR candidates—ensuring that all
protein families were represented and avoiding redundancy in
the heavily represented SCP/TAPS family—and expressed
them in Expi293F human embryonic kidney cells and purified
the recombinant proteins. Five of the proteins (Ac07322,
Ac08034, Ac07727, Ac22177, and Ac-FAR-2) were success-
fully produced and purified in sufficient quantities to test in
the TNBS colitis model and to explore the impact of cocultur-
ing the purified proteins ex vivo with colon biopsies from
UC patients.

We assessed the efficacy of the five mammalian-cell-produced
recombinant proteins in the TNBS colitis model, compared to
phosphate-buffered saline (PBS) vehicle control and an irrele-
vant control protein (bovine serum albumin, BSA) that was
expressed and purified in identical fashion. As expected, PBS
vehicle-treated mice displayed weight loss, elevated clinical
scores, and macroscopic pathology scores after TNBS adminis-
tration, and this was not affected by cotreatment with the nega-
tive control recombinant BSA (Fig. 3 A–C). Critically, of the
five tested hookworm proteins, the transthyretin Ac08034 and
the annexin Ac07727 were able to significantly limit weight
loss, clinical scores, and macroscopic scores, while Ac-FAR-2
and Ac22177 significantly suppressed at least one disease
parameter compared to control mice (Fig. 3 A–C).

A
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C

D

Fig. 2. Twenty of the tested IVTRs alleviated experimental colitis. BALB/c mice were injected intraperitoneally with 200 μL of IVTRs (protein concentration:
100 μg/mL) 1 d prior to intrarectal administration of TNBS and were monitored daily for 3 d before mice were killed. n = naïve. (A) Mean percent change of
initial weight from a representative experiment where 12 IVTRs containing different hookworm proteins fused to eGFP were screened for activity compared
to eGFP-only IVTR control and naïve mice (n = 5 per group). (B) Clinical scores (mean and individual data points) combining fecal consistency, motility, piloer-
ection and weight change at day 3. (C) Macroscopic colon pathology scores (mean and individual data points) at day-3 necropsy. *P ≤ 0.05, **P ≤ 0.01,
Mann–Whitney U test compared to eGFP control. (D) Combined statistical analyses of the efficacy of all 78 expressed hookworm protein-containing IVTRs
compared to respective eGFP-IVTR control. The x axis depicts the difference in mean of the combined z-scores of clinical outcomes (weight loss, colon
length, clinical scores, and macroscopic scores) between treatment and control (eGFP IVTR), and the y axis shows the P value where P < 0.01 or –log10 > 2
were regarded as significant. Proteins that achieved significant protection in both categories are highlighted in red (or turquoise) and were selected for fur-
ther validation, whereas proteins that failed to achieve significant protection in both categories are shown in dark blue. Proteins shown in turquoise have
previously been reported (in purified recombinant form) to alleviate experimental colitis. The proteins that were subsequently expressed in mammalian cells
are annotated with their protein name and Pfam status.
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Bioactivity of Five Proteins in Intestinal T Cells from Colitis
Patients. To assess potential translational value, we tested
whether the five lead recombinant proteins produced in
Expi293F cells displayed bioactivity against gut immune cells
from UC patients. Twelve clinically diagnosed patients with
UC, who were not currently taking other biologic therapies,
were recruited to the study. Details of the participants are
included in SI Appendix, Table S2. Fresh colon biopsies taken
from noninflamed regions of gut tissue were collected, and
single-cell suspensions of intraepithelial and lamina propria
lymphocytes were isolated. Since T cells are one of the major
immune cell subsets involved in IBD progression (18, 19),

we examined whether the hookworm proteins could suppress
cytokine responses from T cells stimulated ex vivo with T cell
receptor (TCR) engaging anti-CD3 and anti-CD28 coated
beads (Fig. 4 A–D). Responses were compared to unstimulated
cells cultured with PBS alone, or cells cultured with TCR stim-
ulation and either PBS vehicle only, the negative control
protein BSA, or the positive control cyclosporine A (CSA). To
account for patient-to-patient variability, each dataset (per
patient) was normalized to the PBS + anti-CD3/CD28 bead
stimulated condition, as indicated by the dotted lines (100%)
in the graphs. Analysis of culture supernatants using a bead-
based multiplex assay to detect human inflammatory cytokines

Table 1. Top-ranked proteins from TNBS colitis screen of hookworm IVTRs

Rank IVTR ID Gene name Protein family

1 13 ANCCAN_22177 Sperm Coating Protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS)
2 85 ANCCAN_00478

(Ac-ASP-2)
SCP/TAPS

3 23 ANCCAN_12569 SCP/TAPS
4 80 ANCCAN_07727 Annexin
5 16 ANCCAN_12564 SCP/TAPS
6 2 ANCCAN_07322 Lysozyme
7 70 ANCCAN_08034 Transthyretin (TTR)-52
8 22 ANCCAN_26187 SCP/TAPS
9 19 ANCCAN_07062 SCP/TAPS
10 79 ANCCAN_10127

(Ac-FAR-2)
Fatty acid and retinol-binding (FAR)

11 73 ANCCAN_13497
(Ac-TMP-1/Ac-AIP-1)

Tissue Inhibitor of Metalloprotease (TIMP)

12 83 ANCCAN_01926 No putative conserved domains
13 15 ANCCAN_19762 SCP/TAPS
14 72 ANCCAN_17044 TTR-52
15 9 ANCCAN_06741 SCP/TAPS
16 74 ANCCAN_16282 TIMP
17 11 ANCCAN_04194

(Ac-NIF)
SCP/TAPS

18 21 ANCCAN_12561 SCP/TAPS
19 17 ANCCAN_11005 SCP/TAPS
20 28 ANCCAN_11519 SCP/TAPS

The list includes the 20 top-ranked proteins in order of performance in the TNBS colitis screen and includes the rank (left column), IVTR ID
(middle left column), gene name and protein name if known (middle right column), and protein family (right column). Gene accession codes
(ANCCAN number) correspond to entries in Nematode.net (www.nematode.net/NN3_frontpage.cgi); where a gene has been previously
reported in a publication, its gene name is also provided in parentheses.

A B C

Fig. 3. Validation of efficacious proteins in TNBS colitis after expression in mammalian cells. BALB/c mice were injected intraperitoneally with 20 μg of
recombinant hookworm proteins generated in Expi293F human embryonic kidney cells 1 d prior to intrarectal administration of TNBS and daily thereafter
until termination. Control mice received either recombinant BSA expressed using the same production methods or PBS vehicle. (A) Mean percent change of
initial weight. (B) Clinical scores (mean and individual data points). (C) Macroscopic scores of colon pathology (mean and individual data points). Data are
combined from three individual experiments, where n = 10 to 20 for each treatment group. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, Mann–Whitney U test
compared to PBS control.
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revealed that TCR stimulation in the presence of PBS alone
led to secretion of the IBD-relevant cytokines TNF, interferon
(IFN)-γ, and interleukin (IL)-17A, and this response was unaf-
fected by cotreatment with BSA control and was significantly
suppressed by CSA (Fig. 4 A–C). Interestingly, Ac07727 signif-
icantly reduced the secretion of all three of these cytokines,
while Ac07322 (despite not protecting in TNBS colitis when
expressed in Expi293F cells), Ac-FAR-2, and Ac08034 were
able to suppress secretion of at least two of the inflammatory
cytokines (Fig. 4 A–C). One of the proteins (Ac22177) did not
significantly suppress secretion of any of the cytokines, in part
because of the influence of “nonresponding” outlier patients
(Fig. 4 A–C and SI Appendix, Table S2). A summary of the effi-
cacy of the six hookworm proteins is presented in Fig. 4D,
highlighting that similar to our animal studies (Fig. 3) the pro-
teins Ac-FAR-2, Ac07727, and Ac08034 were the strongest
performers when tested on human UC patient colon T cells
(Fig. 4). None of the lead proteins tested for cytotoxicity with
human peripheral blood mononuclear cells (PBMC) showed
any signs of toxicity at a range of concentrations spanning those
used for the colon biopsy study (SI Appendix, Fig. S1).

Ac-FAR-2 Binds Hydrophobic Ligands. Finally, we aimed to shed
some light on possible mechanisms of action (MoA) of select
lead proteins. Ac-FAR-2, Ac07727, Ac22177, and Ac08034
belong to structurally disparate protein families but share an
association with lipid/retinol binding and/or signaling (20–22),
highlighting one pathway by which gastrointestinal helminths

may confer substantial immunoregulatory activity (23, 24). To
test this possibility in more depth, we performed a fluorescence-
based ligand binding analysis using all-trans retinol and fatty
acid probes. Ac-FAR-2 substantially increased retinol’s fluores-
cence emission (Fig. 5A), indicative of entry into a binding site
in the protein that shields it from solvent water. Retinol was par-
tially displaced competitively by oleic acid (Fig. 5A, indicated by
reduced fluorescence intensity), suggesting that the retinol bind-
ing site is congruent or overlapping with a site for fatty acids.
We explored this further using a saturated fatty acid tagged with
an environment-sensitive fluorophore, 11-[5-(dimethylamino)-1-
naphthalenesulfonylamino]undecanoic acid (DAUDA). Ac-FAR-2
not only produced a substantial increase in DAUDA’s fluores-
cence emission but also a blue shift in peak emission from 532 nm
to 483 nm (Fig. 5B), a shift that indicates entry into a strongly
apolar binding site environment. DAUDA was readily displaced
from Ac-FAR-2’s binding site by arachidonic acid (Fig. 5B), a
precursor of eicosanoids that are active in inflammation and
immune responses (25). Binding of fatty acids was further con-
firmed using the intrinsically fluorescent natural, unmodified
fatty acid, cis-parinaric acid (cPnA) (SI Appendix, Fig. S2A).

We next tested the binding of retinol or DAUDA for our
three lead proteins side by side and found that Ac-FAR-2, but
not Ac07727, Ac22177, or Ac08034, bound these lipids (Fig.
5 C and D), and this was also true for the binding of cPnA (SI
Appendix, Fig. S2B). Finally, we tested whether these proteins
may possess binding sites for different classes of hydrophobic
molecule by using a fluorescent probe that binds nonspecifically

A B

C D

Fig. 4. Lead proteins reduce inflammatory cytokine release by intestinal T cells from human colitis patients. Intraepithelial lymphocytes and lamina propria
cells were isolated and combined from fresh colon biopsies collected from UC patients. Cells were treated with either PBS control, purified recombinant
hookworm proteins, or bovine serum albumin, generated in Expi293F cells, and then stimulated with αCD3/CD28 Dynabeads (TCR stimulation). Patient-to-
patient variability was accounted for by normalizing all data to the PBS (vehicle)-treated samples (100%, indicated by a dotted line in Fig. 4 A–C). Ac-FAR-2
was used at 10 μg/mL based on earlier studies in our laboratory, and all other proteins at 50 μg/mL. Positive control cells were treated with CSA or were left
unstimulated (PBS). (A–C) Cell-free supernatants were collected and analyzed after 3 d of culture for TNF, IFNγ, and IL-17A secretion. Values were normalized
to PBS-treated and stimulated conditions for each respective patient (dotted line). Data are combined from two independent sample collection days,
with each colored symbol representing an individual patient sample (n = 5 to 12 per treatment group) and the mean value for each treatment shown as a
horizontal line. (D) Heat map depicting the combined mean cytokine values from A–C. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, one-sample t test.
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to apolar surfaces or pockets in proteins, 8-anilino-1-naphthale-
nesulfonic acid (ANS). Importantly, while we did not observe
binding of ANS to Ac07727, Ac22177, or Ac08034, Ac-FAR-2
demonstrated clear binding of this molecule (Fig. 5E). While
ANS will likely enter a retinol or fatty acid-binding pocket, this
could equally indicate that Ac-FAR-2 may bind a range of
hydrophobic molecules beyond the suspected function of bind-
ing retinol and fatty acids.

Discussion

Overall, our in vivo/ex vivo screening platform enabled the iden-
tification of three distinct lead proteins (Ac-FAR-2, Ac07727,
and Ac08034), from a starting pool of 78, that alleviated disease
outcome in experimental colitis and, importantly, significantly
reduced inflammatory cytokine release by intestinal T cells from
UC patients. None of these protein families had previously been
reported to have antiinflammatory properties when produced by
helminths. It is noteworthy that members of some of these pro-
tein families have been implicated in antiinflammatory processes,
but mostly through the overexpression (or absence) of endoge-
nous protein in inflamed tissues. For example, annexin A1 (the
family to which Ac07727 belongs) replicates many of the described
antiinflammatory effects of glucocorticoids and is overexpressed
in inflamed gut tissue, where it acts as a proresolving mediator
of wound healing (26). Moreover, intestinal delivery of a
nanoparticle-encapsulated annexin A1 peptide mimetic acceler-
ated mucosal healing and accelerated recovery from inducible
colitis in mice (27), and annexin A1–deficient mice are more
resistant to anti-TNF treatment in dextran sulfate sodium–induced
colitis than wild-type controls (28). Ac-FAR-2 belongs to a

nematode-specific family of fatty acid-binding proteins, and
its homolog Ac-FAR-1 binds to retinol (29). An antiinflam-
matory role for this protein family has not been reported until
now, and it might sequester extracellular retinol and prevent its
binding to serum amyloid A and/or block its receptor-mediated
uptake into myeloid cells, thereby interfering with gut trafficking
of lymphocytes and adaptive immune processes that may con-
tribute to inflammation (30, 31). Indeed, our study confirms the
capacity of Ac-FAR-2 to bind not only retinol and fatty acids
but also a nonspecific hydrophobic probe, indicative of a poten-
tial MoA through such activities. Further, according to our find-
ings, Ac-FAR-2 binds at least two classes of lipids (retinol and
arachidonic acid) that are precursors of biologically active lipids
such as retinoids and eicosanoids, including leukotrienes and
prostaglandins. Leukotrienes and prostaglandins are known to
play a role in inflammatory processes, and indeed some antiin-
flammatory drugs act through blocking the synthesis or inhibit-
ing receptor binding by these molecules (25). While we have
shed light on the MoA of Ac-FAR-2, it is clearly important mov-
ing forward to prioritize mechanistic studies of the remaining
lead proteins and understand how they exert their respective
antiinflammatory functions.

Genes encoding SCP/TAPS proteins accounted for 12 of the
20 proteins identified in our initial in vivo colitis screen. SCP/
TAPS proteins are massively expanded in the genomes of hook-
worms and other gastrointestinal helminths, but little is known
about their functions (32). Two of these SCP/TAPS proteins
were Neutrophil Inhibitory Factor (NIF) and ASP-2, and both
of these proteins have been shown to bind to human cell-surface
proteins involved in inflammatory pathways (33, 34). Intrigu-
ingly, a secreted SCP/TAPS protein from the gastrointestinal

A B

C D E

Fig. 5. Ac-FAR-2 binds hydrophobic ligands. Binding was assessed by spectrofluorometric analysis. (A) Binding of all-trans retinol to Ac-FAR-2, with no or
competitive displacement with successive additions of 10-fold increasing concentrations of oleic acid. (B) Binding of DAUDA to Ac-FAR-2, with no or succes-
sive additions of 10-fold increasing concentrations of arachidonic acid. (C and D) Failure of individual lead proteins Ac08034, Ac22177, and Ac07727 to bind
all-trans retinol (C), DAUDA (D), or ANS (E) compared with Ac-FAR-2. Fluorescence intensity was converted to relative arbitrary units (AU). The small sharp
peaks at shorter wavelengths are from water Raman scatter.
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nematode Heligmosomoides polygyrus binds to sterols, highlighting
the diverse array of ligands (lipids in particular) and possible
functions of this important family of proteins (35). It should be
noted, however, that Ac22177, the best-performing SCP/TAPS
family member in the mouse colitis study, did not bind retinol
or the lipids tested herein.
A limitation of the current study is that we focused on colitis

as a model of inflammatory disorder. The TNBS colitis model
has been suggested to be a better model for Crohn’s disease
than UC. However, the rationale of our study was to rapidly
screen in vivo a large number of molecules for their efficacy in
gut inflammation, so the rapid onset of inflammation in the
TNBS model was ideal in this scenario. In line with this, colon
biopsies from UC patients were readily available. Future stud-
ies, however, should evaluate our lead proteins in additional
models of gut inflammation as well as in small intestinal biop-
sies from Crohn’s disease patients. Further, elucidation of the
therapeutic and prophylactic efficacy of our lead proteins in
other immune-mediated inflammatory diseases with shared
common pathogenic cells and pathways and in clinical settings
should be performed in the future (36). Their mechanisms of
action, including putative receptors they engage and the molec-
ular pathways affected, are likely to be differentiated from exist-
ing therapeutic strategies given the coevolutionary nature of the
host–parasite relationship. Moreover, the relative safety and tol-
erability of experimental hookworm infection (7) suggests that
therapies based on these secreted proteins are likely to be safe
and well-tolerated.
Importantly, our approach employing in vivo administration

of IVTRs to mice experiencing inducible colitis can be applied
to drug discovery from the secretomes of other organisms, partic-
ularly where there are limited quantities of crude starting mate-
rial. Hookworms secrete a broad arsenal of proteins into the gut,
and our findings emphasize the diversity of structures that appear
to converge upon a common theme of lipid and retinoid binding
to suppress inflammation. This work highlights the value of par-
asitic helminths as both a source of next-generation biologics as
well as a tool for druggable target/pathway discovery guided by
millennia of host–parasite coevolution.

Materials and Methods

Study Design. The overarching goal of the study was to generate a bank of
recombinant hookworm secreted proteins expressed as IVTRs for an initial in vivo
screen in a mouse model of acute colitis. These crude IVTRs allowed us to rapidly
generate small quantities of recombinant proteins fused to eGFP in a eukaryotic
cell-free system. Importantly, we controlled each mouse colitis study with a
group that received IVTR containing recombinant eGFP alone. Sample sizes for
colitis studies were determined on the basis of previous experience and statisti-
cal analyses, with a view to this first experiment being a high-throughput initial
screen. Standard measurements were used in the TNBS model of acute colitis to
determine efficacy, including weight change, clinical score, and macroscopic
pathology score in a manner that enabled us to screen many test proteins. Lead
proteins identified from the in vivo colitis screen of IVTRs were then expressed in
mammalian cell lines and purified to ensure that proteins were produced in a
way that is amenable to preclinical and ultimately clinical development. For the
human component of our study, 12 UC patients were recruited, including men
and women. Gut biopsy tissue was cultured with purified lead proteins
expressed in mammalian cells, and modulation of T cell cytokine production was
assessed. Sample sizes, replicates, and statistical measurements are included in
the figures and legends and in the text where appropriate.

Mice. Male and female specific pathogen free (SPF) BALB/cArc mice were pur-
chased from the Animal Resources Centre and used at 5 to 10 wk of age. The
animals were maintained in SPF conditions and rested for minimum 7 d

between arrival at our facilities and experiments. All experiments were approved
by the James Cook University Animal Ethics Committee, and in compliance
with the National Health and Medical Research Council Australian Code for
the Care of Animals for Scientific purposes and the Queensland Animal Care
and Protection Act.

Protein Selection. A total of 78 A. caninum ES proteins for IVTR recombinant
expression were selected from Mulvenna et al. (15) based on their detection in
adult worm ES products using liquid chromatography tandem mass spectrome-
try. The remaining 13 proteins were selected from the most highly up-regulated
messenger RNA sequences corresponding to secreted proteins from the tran-
scriptome of serum-activated infective third-stage larvae (as opposed to nonacti-
vated larvae) as described by Datu et al. (14). Where PacBio cDNA sequences
were partial and did not contain the full open reading frame (ORF), cDNAs were
aligned to the reference genome in WormBase ParaSite (https://parasite.
wormbase.org/index.html) to obtain complete ORFs.

Cell-Free Recombinant Protein Expression. ORFs with signal peptide-
encoding regions removed were synthesized by Protein CT Biotechnologies
with incorporation of KpnI and HindIII 50 and 30 restriction sites, respectively,
to facilitate cloning into pLTE-GFP-3C and cell-free expression in L. tarentolae
lysates as described (37). The cloning strategy ensured that recombinant pro-
teins contained an N-terminal eGFP tag fused to the C-terminal hookworm
protein. Sufficient IVTR (600 μL) for each recombinant protein was prepared to
enable intraperitoneal injection of 100 μL IVTR to each of five mice per group.
IVTRs were prepared in RNase/DNase-free 96-well culture plates. Relative fluores-
cence units (RFU) produced by translation of eGFP-fused recombinant protein in
the IVTR was continuously monitored for 2 h on a POLARstar Omega spectropho-
tometer plate reader (BMG Labtech) at 485-nm excitation and 520-nm emission.
IVTRs were centrifuged for 1 min at 300 × g and the supernatant retained.
Protein expression was further validated by sodium dodecyl sulfate polyacryl-
amide gel electrophoresis (SDS-PAGE) under reducing and nonreducing condi-
tions. Gels were stained for GFP activity using a VersaDoc Imaging System
(Bio-Rad) and total IVTR protein content using Colloidal Coomassie.

Recombinant Protein Expression in Human Embryonic Kidney Cells.

Select IVTRs that conferred protection in the TNBS colitis model were expressed in
Expi293F human embryonic kidney cells (Thermo Fisher). ORFs consisted of the
signal peptide from A. caninum Ac-ASP-2 (MLVLVPLLALLAVSVHG) followed by the
respective ORF (minus the endogenous signal peptide) and a C-terminal 6-His
tag. cDNAs were synthesized with mammalian codon bias by Genscript and
cloned into the pcDNA3.1 plasmid (Thermo Fisher) by restriction cloning. Plas-
mids were purified and introduced into Expi293F cells by lipofection using an
ExpiFectamine 293 transfection kit (Thermo Fisher) as per the manufacturer’s
instructions. Recombinant proteins were purified on an AKTA FPLC by immobi-
lized metal affinity chromatography using His-trap excel nickel column and buffer
exchanged into tissue culture grade DPBS using Amicon ultra-15 centrifugal con-
centrators and quantified using a Bicinchoninic Acid kit (Thermo Fisher). Recombi-
nant proteins were assessed for endotoxin using a Limulus Amoebocyte Assay
(Thermo Fisher) and only used if endotoxin levels were less than 0.5 endotoxin
units per mg protein. Wherever possible, endotoxin-free plasticware was used.

Testing Proteins in the TNBS-Induced Colitis Model. Following anesthesia
with 200 mL of 6.25% ketamine (Ketamil; Provet) and 6.25% xylazine (Xylazil;
Provet) in PBS, mice were administered intrarectally with 100 μL of 1.5 mg
(5% wt/vol) TNBS solution in 50% EtOH. Test proteins were administered intra-
peritoneally with 200 mL of 100 mg/mL protein in PBS on day �1 (Fig. 2) or
days �1, +1, and +2 of the TNBS colitis protocol (Fig. 3). The mice were moni-
tored daily for weight loss and clinical scores (combined from weight loss, piloer-
ection, fecal consistency and mobility, each scored from 0 to 2 except for weight
loss which was scored from 0 to 4). Macroscopic scores on day of euthanasia
included colon tissue adhesion, ulceration, bowel wall thickening and mucosal
edema, each scoring from 0 to 3.

Isolation of Cells from Human Colon Biopsies. Samples were obtained at
the Gastroenterology unit of the Prince Charles Hospital in Chermside, QLD. The
study designated HREC/2018/QPCH/44524 was approved on 10 October 2018
by the Human Research Ethics Committee at Prince Charles Hospital. Studies
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with human samples were acknowledged by the James Cook University Human
Research Ethics Committee (H8306). Up to 10 punch biopsies were collected
from the colon and stored in 5% fetal bovine serum (FBS) in PBS on ice until fur-
ther processing. To isolate immune cells, all biopsies from each patient were
pooled and placed in Mg2+- and Ca2+-free Hanks’ balanced salt solution supple-
mented with 5 mM ethylenediaminetetraacetic acid, 1 mM dithiothreitol (DTT),
and 5% FBS and incubated for 30 min at 37 °C in a shaking incubator at
250 rpm. The supernatants were collected through a 70-mm strainer, resus-
pended in RPMI with 10% FBS, and kept on ice until further processing. The
remaining tissues were placed in RPMI with 0.2 mg/mL DNase-I (Merck) and
400 U/mL collagenase type I (Gibco) and incubated for 30 min at 37 °C in a
shaking incubator at 250 rpm. The samples were then filtered and meshed
through a 70-mm cell strainer, resuspended in RPMI with 10% FBS, and com-
bined with the fractions set aside after incubation with DTT.

Human Cytokine Release Assays. A total of 50,000 cells were plated per
well in 96-well round bottom plates (Falcon). The cultures were supplemented
with 50 μg/mL recombinant protein or CSA, except for Ac-FAR-2, which was
added at 10 μg/mL based on previous optimization. Human T-Activator
CD3/CD28 Dynabeads (Thermo Fisher) were added according to the manufac-
turer’s recommendation. The cells were incubated at 37 °C, 5% CO2 overnight,
and supernatants were collected and cryopreserved at �80 °C until further
processing. For cytokine release analysis the supernatants were thawed on ice
and analyzed using a Legendplex Human Inflammation Panel I kit (Biolegend)
as per the manufacturer’s recommendations.

Cytotoxicity Assay. The lead proteins Ac07727, Ac08034, and Ac-FAR-2 were
tested for cytotoxic effects on human PBMC from two healthy donors (James
Cook University human ethics approval number H8523 and Australian Red Cross
agreement number 21-10QLD-06). CellTox Green cytotoxicity assay was per-
formed according to the manufacturer’s instruction, with some adjustments.
PBMCs (1 × 106/mL) cultured in 1:1,000 CellTox Green dye medium (Promega)
were treated with either PBS, purified recombinant hookworm proteins, or lysis
buffer for 18 h at 37 °C and 5% CO2. Lead recombinant proteins, Ac07727 and
Ac08034, were used at 100, 50, and 25 μg/mL Ac-FAR-2 was used at 20, 10,
and 5 μg/mL based on earlier studies. Positive control cells were treated with
4% lysis buffer or were left untreated (PBS). Samples containing dye medium
only were included for the subtraction of background fluorescence. After over-
night culture, fluorescence (RFU) was measured using a FLUOstar Omega micro-
plate reader with an excitation filter of 485-12 and an emission filter of 520.
A gain adjustment of 500 was applied. Background fluorescence was subtracted
from all readings for analysis, and the mean values ± SD were plotted using
GraphPad Prism version 9.3.1.

Fluorescence-Based Binding Assays. Lipid binding by proteins was detected
spectrofluorometrically in a PerkinElmer instrument, using all-trans retinol or the
fluorescent fatty acid analog DAUDA, which bears the environment-sensitive
dansyl fluorophore, the intrinsically fluorescent natural fatty acid cPnA, or the non-
specific hydrophobic probe ANS. DAUDA and cPnA were obtained from Molecular
Probes/Invitrogen and all other compounds were obtained from Sigma. The exci-
tation wavelengths were 345 nm, 350 nm, 319 nm, and 390 nm for DAUDA,
retinol, cPnA, and ANS, respectively, which were at concentrations of 1 μM,
4 μM, 4 μM, and 10 μM, respectively, in 2 mL PBS, pH 7.2, in a quartz cuvette.
Emission spectra were recorded over wavelength ranges appropriate for each flu-
orophore to encompass peak emission in water and any shift upon entry into a
binding site. Competitive displacement of fluorescent lipids was detected by a
reversal of fluorescence enhancement upon addition of the ligand to a pre-
formed complex of protein and fluorescent probe. The fluorescence spectra are
uncorrected and were analyzed using MICROCAL ORIGIN software. All proteins
were at a concentration of 1 mg/mL and added to the cuvette in 10- or 20-μL
amounts. Oleic and arachidonic acids competitors were added in 10-μL amounts
to the cuvettes to yield approximate concentrations in the micromolar range in
the cuvette and a series of 10-fold increasing concentration increments in com-
petitive displacement experiments.

Statistical Analysis. Data were analyzed using GraphPad Prism 9.0. Compari-
son of data to control populations (Figs. 2 A–C and 3 A–C) was performed by
Mann–Whitney U test. Normalized data (Fig. 4) were compared to 100% by one-
sample t test. Technical errors were removed from data prior to analysis. Sample
sizes and statistical analysis methods are indicated in the figure legends.

To assess the performance of IVTRs in the TNBS colitis model (Fig. 2D), we
generated combined clinical Z-scores. The raw data of the four outcomes were
used to calculate a combined Z-score (SI Appendix, Fig. S3). The Z-score transfor-
mation combined the four major outcomes of TNBS colitis—percent of starting
weight on day 3 (weight change), macroscopic pathology, clinical score and
colon length—per mouse within a group of five mice treated with the same IVTR.
The Z-score transformed the raw data into units of SD and showed whether the
value of the raw score was below or above the population mean. In this case,
the transformation reflected the number of SDs of the raw score of a given colitis
parameter for a test group of mice was from the mean of the whole population
in the screen. When the population mean scores of both the test (hookworm
protein-containing IVTR) and respective experimental negative control (eGFP
only IVTR) groups were the same value then the Z-score was zero. A positive
Z-score was when the test group mean was higher than the negative control
group mean. The four assessed parameters were summed to produce the com-
bined Z-score value, which was compared to the negative control group of each
experiment using a two-tailed Student’s t test with two-sample unequal variance
(heteroscedastic). The determined P value then allowed each test group to be
compared against others across the entire screen.

To assess �log10 P value, day-3 colon length and weight loss raw scores
from test groups (hookworm protein IVTRs) were compared to the control (eGFP
IVTR) group, and significance was determined by a two-sample t test. Macro-
scopic score and clinical score raw data scores from test groups were compared
to the control group and significance was determined by a Mann–Whitney
U test. We adjusted resultant P values for multiple testing and transformed the
four outcomes to produce the geometric mean of P value for each experiment.
The geometric mean was chosen because it is less likely to be influenced by out-
liers and therefore would not skew the ranking of overall efficacy. The signifi-
cance of the geometric mean of test groups compared to the control group was
determined.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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