
Introduction 

Chronic kidney disease (CKD) affects an estimated 8% to 

16% of adults worldwide [1]. Despite its wide prevalence, it 

has been challenging to run large and adequately powered 

randomized trials in patients with CKD [2]. Large, multi-year 

trials are expensive to conduct. Trials of patients with kidney 
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disease often exclude a large proportion of the potential 

subjects.  

Finally, a high level of nonadherence among enrolled 

subjects can sharply reduce a study’s statistical power. A 

sound and efficient trial design that can handle missing data 

is essential to conducting a successful trial that advances 

treatment. 
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CKD progresses slowly. Therefore, definitive clinical 

endpoints, such as the need for dialysis or kidney transplant, 

have been replaced by surrogate endpoints that are related 

to kidney function or damage. These surrogate endpoints 

can be measured in a shorter follow-up time than that 

required for more definitive endpoints like the need for 

dialysis. A meta analysis of over 60,000 subjects in 47 

randomized clinical trials [3] concluded that the slope of 

the estimated glomerular filtration rate (eGFR) is a viable 

surrogate for clinical endpoints in CKD trials. Indeed, the U.S. 

Food and Drug Administration supports the use of eGFR 

slope as a surrogate endpoint in trials of therapies for rare 

types of CKD [4]. 

Various approaches have been suggested to analyze 

data on the eGFR slope in randomized controlled trials 

[3]. For clinical trials, acute slope is defined as that ‘from 

randomization to the first 3 months in follow-up,’ while 

the chronic slope is that ‘from 3 months to end of the trial.’ 

Finally, the total slope is that ‘from randomization to 1, 2, 

3, or 4 years.’ Many factors can influence the decision to 

use chronic slope versus the total slope in a clinical trial. 

Acute effects can complicate the interpretation of the 

treatment effect on both chronic and total slopes. A negative 

acute effect can attenuate or reverse the statistical power 

advantages of the total slope compared to the clinical end 

point. A negative acute effect can also increase the risk that 

use of the chronic slope as a surrogate end point could lead 

to a type 1 error relative to the clinical end point. Therefore, 

the acute, chronic and total slopes may all need to be 

assessed. One approach is to compare the chronic slopes 

by excluding the first 3 months of data from both arms, and 

then fitting a mixed effects model to the remaining data and 

testing for a difference in the mean slopes. An alternative 

method is to analyze all of the data with an acute effect 

term in the model so that the data are assumed to arise 

from a mixed effects model comprising two different slopes 

(a piecewise linear model). After this model is fit, the total 

slope is estimated by dividing the predicted mean change 

from baseline by the duration of treatment. This estimate 

is not technically a slope, because the mean trajectory is 

not a straight line but rather a rate of change. Both of these 

approaches assume that subjects stay on the treatments to 

which they were randomized for the duration of follow-up. 

A different approach to estimating the rate of change 

(without the acute effect) is to have all of the subjects 

withdraw from the study drug at the end of a fixed period. 

Then, one can make end of trial measurements after the 

acute effect has worn off. This approach was successfully 

used in the Replicating Evidence of Preserved Renal 

Function: an Investigation of Tolvaptan Safety and Efficacy 

(REPRISE) trial in autosomal dominant polycystic kidney 

disease (ADPKD) [5]. The REPRISE trial was also notable 

for its use of two run in phases in order to minimize loss to 

follow up. Although some subjects discontinued the study 

drug during the trial, 96% of randomized subjects stayed 

in the trial and attended the final visit at 12 months. The 

subjects who withdrew from the trial were included in the 

analysis. Their annualized rate of change was estimated at 

the time of withdrawal by dividing their change in eGFR 

from baseline by their duration of follow-up. 

In this study, the efficacy of a traditional randomized 

controlled trial design (parallel trial) with that of three two 

period trial designs was compared (Fig. 1). In each of the 

two period designs, the eGFR was measured at baseline, at 

the end of period 1, and at the end of period 2. A withdrawal 

phase at the conclusion of each trial period permits off drug 

measurement of the eGFR. The first design is the open label 

trial, during which all subjects receive the experimental drug 

in period 1, and no drug in period 2. The second design is 

the delayed start trial [6], during which the subjects were 

double blinded and randomized to either the experimental 

drug or placebo in period 1; during period 2, the subjects 

received the experimental drug on an open label basis. The 

third design is the crossover trial, during which subjects were 

double-blinded and randomized to receive both treatments 

(including one in period 1 and the other in period 2). 

Using simulated data from models fit to two recent trials 

of CKD treatments, the type 1 error rates and the powers 

of these trial designs were calculated. The influence of 

these data on the results of a variety of analysis strategies 

and on the presence of a carryover effect were assessed. 

The objective of this work is to compare different designs 

in terms of the number of patients and total follow-up 

duration needed to achieve the objectives of a clinical 

trial under different scenarios. Wherever appropriate, 

recommendations are given for trial designs with their 

respective rationales.  

Lawrence. Comparison of trial designs and analysis

63www.krcp-ksn.org



Methods 

Data were simulated using a mixed effects model of the 

following form: 

Yij = Xi + β1(tij) + β2 uij + β3 × (tij − uij) I(uij > 0) + b1i + b2i tij + eij 

In this model, Yij is the observed eGFR of subject i at time 

tij; Xi is the ideal unobserved GFR for subject i at baseline; uij 

is the amount of time up to time tij that the subject was on 

treatment; I(uij > 0) is 1 if uij > 0, and 0 otherwise. β1, β2, and 

β3 are fixed effects terms. β1(•) is a function that describes the 

trajectory in the placebo group. When there is a constant 

rate of change, this term can be replaced by β1 × tij. β2 is the 

effect of the treatment on the chronic slope and β3 is the 

carryover effect; b1i and b2i are random effects assumed to 

be normally distributed with a mean of zero. In order to 

illustrate the difference between tij and uij, assume patient i 

is assigned to the treatment in period 1 and that the duration 

of treatment is T. Then, uij = T whenever tij > T. The residual 

error terms in the model, eij, are assumed to be mutually 

independent and normally distributed as N(0,σ2); they are 

also assumed to be independent of the random effects. No 

acute effect is used in the model, because it is assumed that 

all of the measurements were made while the patient was off 

of treatment. 

The data from the Tolvaptan Efficacy and Safety in 

Management of Autosomal Dominant Polycystic Kidney 

Disease and its Outcomes (TEMPO) 3-4 study [5] and REPRISE 

trials [7] were used to identify reasonable parameter values to 

simulate data from trials of each design. These trials studied 

patients with ADPKD. ADPKD causes bilateral, progressively 

enlarging kidney cysts. Despite progressive growth of the kidney 

cysts over a patient’s lifetime, the early course of ADPKD is 

actually characterized by hyperfiltration and relatively normal 

GFR for many decades. This feature of ADPKD makes GFR 

an insensitive marker of underlying renal parenchymal 

damage. It may be necessary to consider the cause of 

kidney disease when determining an individual patient’s 

response. The parameters were also modified to investigate 

different possible scenarios under the null hypothesis (no 

treatment effect) and the alternative hypothesis (beneficial 

treatment effect). The parameter values used are shown 

in Supplementary Appendix 1 (available online). The rate 

of change during placebo treatment was −4 mL/min per 

1.73 m2 annually, while that during experimental treatment 

was −3, for a chronic treatment effect of 1. The exception 

was in the case of a carryover effect in the crossover design 

(explained below). 

In the TEMPO trial, subjects were randomized to receive 

the experimental drug or placebo, and were followed for 

3 years before continuing to an open label extension. In 

Period 1

Study drug or placebo; db Withdrawal

Withdrawal

Withdrawal Withdrawal

Study drug

No drug

Placebo or study druga; db

Study drug

Study drug or placebo; db

Study drug or placebo; db

Parallel

Open 
label

Delayed 
start

Crossover

Period 2

Figure 1. The parallel trial and the three designs of two period trials. Stars indicate the timepoints of estimated glomerular 
filtration rate measurements. 
db, double blind. 
aWhichever treatment a given subject did not receive in period 1.
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the REPRISE trial, the subjects were followed for 1 year. 

Therefore, it was assumed that the follow-up duration is 2 

years per period. This follow-up is the average of the 1- and 

3-year follow-up periods in the two referenced studies. For 

two-period designs, it is ethical and feasible for patients 

to consent to at least 2 years of follow-up on experimental 

treatment and at most 2 years on placebo. 

In all designs, two eGFR measurements were assumed 

at baseline and at each timepoint when all subjects were 

off the study treatment. In the parallel and delayed-start 

designs, two measurements were taken at baseline and two 

at the end of the study. In the other two period designs, two 

measurements were taken at baseline, two at the end of 

period 1, and two at the end of period 2. 

For the crossover design, two different scenarios are 

considered for the potential carryover effect. This design 

was meant to allow for the possibility that the drug imparts 

a structural change that persists after the drug is stopped. 

The first scenario was the absence of a carryover effect. In 

the second scenario, there was a moderately large carryover 

effect equal to 25% of the chronic effect in period 1. In other 

words, one quarter of the effect of the drug on the chronic 

slope was assumed to remain in period 2 for the subjects 

who were randomized to the experimental drug in period 

1. In addition, those subjects’ mean slope in period 2 (when 

they were not taking the drug) increased by 25% of the 

increase in period 1 (when they were taking the drug). 

Analysis 

For the parallel and delayed-start designs (Fig. 1), we 

averaged each subject’s two baseline values and the two end 

of study values. A subject’s change from baseline was the 

difference between the two average values. The annualized 

rate of change was the change from baseline divided by the 

duration of follow-up. Finally, a two sample t test is used to 

compare the two arms. 

For the crossover design (Fig. 1), three analysis strategies 

were used. The first strategy was to fit a mixed effects model 

that included a common chronic effect for the treatments 

in periods 1 and 2. The null hypothesis was that the chronic 

treatment effect is zero. The likelihood ratio test was used to 

test this null hypothesis. In the other two analysis strategies, 

we first calculated the averages of the two measurements 

taken at baseline, at the end of period 1, and at the end of 

period 2. Next, a single value for period 1 was calculated by 

subtracting the baseline from the end of period 1 value, and 

then dividing by the duration of follow-up. A single value 

for period 2 was calculated by subtracting the end-of-period 

1 value from the end-of-period 2 value and then dividing 

by the duration of follow-up. Finally, either a pooled test or 

two stage test was performed [8]. The two stage test started 

by testing for a statistically significant carryover effect that 

was large enough to analyze based on the data of period 1 

being more powerful than are the pooled data from periods 

1 and 2. If a significant carryover effect was observed, then 

the period 1 data were used alone as if it were a parallel 

trial. The significance level must be adjusted to evaluate the 

treatment effect in the second period (unpublished data). 

The preliminary test for carryover is correlated with the test 

of treatment effect from the first period alone. Therefore, the 

actual significance level of the two-stage procedure is higher 

than is nominal level α, even when there is no residual 

carryover. 

For the two-period open-label design, the first averages 

of the two measurements taken at baseline (at the end of 

period 1) and at the end of period 2 were calculated. Next, 

a single value for period 1 was calculated by subtracting 

the baseline from the end of period 1 value and dividing by 

the duration of follow-up. A single value was calculated for 

period 2 by subtracting the end of period 1 value from the 

end-of-period 2 value and dividing by the duration of follow-

up. The treatment effect for each subject was calculated by 

subtracting the annualized rate of change in period 2 from 

that in period 1. This is mathematically equivalent to the 

following formula: [2 × {end-of-period 1 value} − {baseline 

value} − {end-of-period 2 value}] ÷ [duration of each period]. 

The duration of each period was assumed to be equal. The 

numerator can also be rewritten as follows: [{end-of-period 

1 value} − {baseline value} – {(end-of-period 2 value) – (end-

of-period 1 value)}]. Therefore, the numerator was the 

difference of the treatment effect between the two periods. A 

one-sample t test was then performed to determine whether 

the mean treatment effect across subjects was greater than 

zero. 

Asymptotic relative efficiency 

When the treatment effect is small, a large sample size is 

needed to achieve a given power. The ratio of the sample 
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sizes needed is termed the asymptotic relative efficiency 

(ARE). The ARE was calculated to compare several trial 

designs and analysis strategies. 

Type 1 error rate 

Three different scenarios in which there was no treatment 

effect are considered. The natural history of subjects in a 

trial will depend on their characteristics, including disease 

stage and external factors. These factors cannot necessarily 

be predicted in advance or controlled by the trial’s eligibility 

criteria. Renal function estimating equations are not linear 

functions of age.  

Therefore, a constant rate of change cannot always be 

expected. In scenarios in which there is no treatment effect, 

β2 = β3 = 0. In the first scenario, a constant rate of change over 

time was assumed (decline of 4); that is β1(tij) = –4 tij. In the 

second scenario, the natural history of the rate of change 

was assumed to decline slightly over time. This rate of 

change was defined by a decline of 4.0 annually in period 1 

and 3.5 annually in period 2, as follows: β1(tij) = –4 tij when tij 

≤ 2 and β1(tij) = –8 – 3.5 (tij – 2) when tij > 2. The third scenario 

assumed an increasing rate of change over time. This rate of 

change was defined by a decline of 4.0 annually in period 1 

and 4.5 annually in period 2, as follows: β1(tij) = –4 tij when tij 

≤ 2 and β1(tij) = –8 – 4.5 (tij – 2) when tij > 2. The targeted type 1 

error rate used for the hypothesis tests was the conventional 

one sided 0.025. 

Power 

Two different scenarios were investigated, including those 

with and without a carryover effect. The placebo arm was 

assumed to have a constant decline of 4. If there were no 

carryover effect, the chronic effect would be equal to 1. If 

there were a carryover effect, the treatment decline would be 

3.75 (for a carryover effect of 0.25). 

Results 

Type 1 error rate 

All of the designs and analyses had the target type 1 error 

rate, with the exception of the open label two period design 

with an increasing rate of change (Table 1). Therefore, 

when the rate of change is not constant over time (even by 

a small margin), there can be a marked effect on the type 1 

error rate. This phenomenon is unrelated to any potential 

bias caused by unblinding. It is only the result of different 

rates of change in periods 1 and 2. It was assumed that the 

experimental treatment was given in period 1; however, the 

problem related to an inconstant rate of change can also 

occur if the experimental treatment is applied in period 2. 

Power 

Table 2 shows the observed power for the different designs 

and tests under various scenarios. For parallel and delayed-

start designs, no patient undergoes follow-up on placebo 

after taking the experimental treatment. Therefore, no 

carryover effect is assumed. The delayed start design had the 

lowest power in this scenario. The crossover design had the 

greatest power, which did not differ considerably among the 

three analysis strategies. In general, a mixed effects model 

may be attractive, particularly when there are partial missing 

data. For example, if most subjects have two observations 

per visit but some only have one observation, a mixed 

effects model would handle this by assigning more weight 

Table 1. Type 1 error rate (n = 500)

Design and analysis
Rate of change scenario

Constant Declining Increasing
Parallel 0.025 0.025 0.025
Open-label two-period 0.025 0.000 0.605
Delayed start 0.025 0.025 0.025
Crossover mixed effects 0.025 0.025 0.025
Crossover pooled 0.025 0.025 0.025
Crossover two-stage 0.025 0.025 0.026
100,000 simulated trials; margin of error = 0.001.

Table 2. Power by study design (n = 500)

Design and analysis
Scenario

No carryover effect Carryover effect
Parallel 0.826 NA
Open-label two-period 0.993 0.916
Delayed start 0.471 NA
Crossover mixed effects 0.995 0.977
Crossover pooled 0.994 0.964
Crossover two-stage 0.989 0.963
100,000 simulated trials; margin of error ≤ 0.003.
NA, not applicable.
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to the patients with two observations. The mixed effects 

model also appropriately handles variability in the timing 

of observations. For example, if period 1 ends at 2 years and 

one patient has two end of period 1 measurements (taken 

at visits on days 710 and 740), the mixed effects model uses 

those exact days in the model, while other analyses do not. 

However, the efficiency of the mixed effects model comes at 

the cost of assuming that the correct model is used. Other 

analyses do not make any strong model assumptions. The 

mixed effects model is a likelihood based method. Other 

recommended methods (that were not considered here) 

include multiple imputation and Bayesian approaches [9]. 

Asymptotic relative efficiency 

The mathematical calculations for the ARE are provided 

in Supplementary Appendix 1. We assumed that two 

measurements were taken at baseline and two at the 

end of the study in order to assess the impact of multiple 

measurements at each time point in the parallel design. If 

only one measurement was made at each time point, then 

approximately 56% more subjects would be needed to 

achieve adequate power (than if two measurements were 

made at each point). The ARE was calculated at 1.56. 

In comparing the crossover design with pooled analysis 

to the parallel design, the ARE was approximately 2.38. 

The gain in efficiency of the crossover design was in part 

a result of the additional follow-up of each subject. This 

gain in efficiency was also attributable to the elimination 

of the between subject variability in the random slope. 

Importantly, a crossover design involves a twofold greater 

duration of follow-up for each subject. Therefore, in order 

to achieve the same power in a trial of parallel design to one 

in a crossover design, the total duration of follow-up would 

need to be 19% greater (2.38-fold the number of subjects, 

each of whom was followed up for half as much time). 

Discussion 

The crossover design is recommended in CKD trials because 

of its efficiency, control of the type 1 error rate, ethicality 

of all subjects receiving active treatment, and its appeal 

to patients. For any given type 1 error rate and power, the 

crossover design requires fewer patients than does a parallel 

design or delayed start design. The two period open label 

design is not recommended because it does not control the 

type 1 error rate in some scenarios. The delayed start design 

may be attractive to patients with conditions for which 

no effective treatment is available, because all patients in 

a given trial are guaranteed to receive the experimental 

therapy (either from the start or after the end of period 1). 

The crossover design also has this benefit. The delayed start 

design has considerably lower power than does either the 

parallel design or the crossover design. 

Of the analysis strategies compared here, the mixed 

effects model analysis is expected to be most efficient if the 

assumed model is correct, and the subjects have various 

patterns of missing data. If all of the subjects have the same 

number of observations at each time point, then the mixed 

effects model is expected to be similarly efficient to the 

pooled analysis strategy. If there is a possibility of a large 

carryover effect, a two stage analysis may be more powerful 

than is pooled analysis. In the alternative scenario shown in 

Table 2, there was a moderate amount of carryover (25% of 

the treatment effect). In that scenario, two stage analysis and 

pooled analysis had approximately equivalent power. If the 

carryover effect were larger, the two stage test would have 

greater power. 

One frequent concern in CKD trials is missing data. This 

issue can be mitigated by providing incentives for subjects 

to remain in a trial, even if they no longer wish to take the 

study drug. Regardless, a portion of subjects in any CKD trial 

will die, undergo kidney transplantation, or start dialysis. A 

concern with parallel trials is that the two groups may not be 

comparable after a large number of subjects is lost to follow 

up. However, in a crossover trial (in which each subject serves 

as his/her own control), the estimate of the treatment effect 

is not confounded by differences in covariate distribution 

between the two groups. 

In future trials of CKD treatments, a two period design 

is recommended with an endpoint of the rate of change in 

eGFR. Our simulations and theoretical calculations generally 

agree with the empirical observations of Lathyris et al. [10]. 

Based on their review of meta-analyses (that included both 

crossover and parallel studies), Lathyris et al. concluded 

that crossover trials tend to agree with parallel arm trials. 

However, the group also found that parallel arm trials tended 

to make more conservative treatment effect estimates than 

did crossover trials. We also recommend a longer duration of 

total follow-up and a much smaller sample size in crossover 
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trials compared to those of parallel trials. Finally, a crossover 

trial may be ethically preferable to a parallel trial, because all 

of the subjects will receive the study drug. This feature may 

also facilitate subject recruitment. 
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