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Research has undergone considerable development in understanding a small subset of
human immunodeficiency virus type 1 (HIV-1)-infected, therapy-naive individuals who main-
tain a favorable course of infection surviving for longer periods of time. Although, viral,
host genetic, and immunological factors have been analyzed in many previous studies
in order to delineate mechanisms that contribute to non-progressive HIV disease, there
appears to be a no clear cut winner and the non-progressive HIV disease in <1% of HIV-
infected individuals appears to be a complex interplay between viral and host factors.
Therefore, it is important to review them separately to signify their potential contribution
to non-progressive HIV disease. With respect to virological features, genomic sequencing
of HIV-1 strains derived from long-term non-progressors has shown that some individuals
are infected with attenuated strains of HIV-1 and harbor mutations from single nucleotide
polymorphisms to large deletions in HIV-1 structure, regulatory, and accessory genes.The
elucidation of functional attributes of defective/attenuated HIV strains may provide bet-
ter understanding of viral pathogenesis and the discovery of new therapeutic strategies
against HIV. This review mainly focuses on the defects in viral genes that possibly guide
non-progressive HIV disease.
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INTRODUCTION
Since the beginning of the AIDS epidemic in 1980s’, scientists have
made great efforts to understand the nature of human immunode-
ficiency virus (HIV) disease and of its causal agent, the HIV. After
primary human immunodeficiency virus type 1 (HIV-1) infec-
tion, majority of infected individuals display a gradual decline in
peripheral blood CD4+ T lymphocytes throughout the course of
the illness accompanied by progressive loss of protective immunity
against pathogens (1). However, the natural course of HIV infec-
tion such as the progression rates to AIDS and clinical manifesta-
tions of diseases associated with infection differs greatly. About 1%
of HIV-1+ patients are able to maintain stable CD4+ T-cell counts
within the normal range for a prolonged period of time and remain
asymptomatic without anti-retroviral therapy (ART). These HIV-
1 infected asymptomatic individuals are often referred to as long-
term non-progressors (LTNPs). Within this group, a subset of
individuals shows plasma HIV-RNA values persistently below
detectable level (50 copies/ml), and termed “elite” or “natural
controllers”(EC) (2). Study of mechanisms that contribute to non-
progressive HIV disease have revealed complex interplay between
viral and host factors. In this section, viral genomic features that
associated with benign course of HIV infection will be discussed
to delineate our understanding of viral factor in non-progression.

HIV-1 GENOMIC ATTENUATION THAT CONTRIBUTE TO
NON-PROGRESSIVE HIV DISEASE
Human immunodeficiency virus type 1 genome and proteins has
been the subject of extensive research since its discovery in 1983
(3). Among nine genes coded by HIV-1, three genes, gag, pol,
and env, are found in all retroviruses and are essential to make
structural proteins. The other six genes, tat, rev, nef, vif, vpr, and
vpu, often described as regulatory and accessory genes, code for

proteins that are unique to HIV with important roles on the viral
replication and the development of AIDS through many com-
plicated mechanisms. Early identifications of viral attenuation
in vitro (4, 5) coupled with the observation of low viral loads
in vivo and decreased disease progression rate point to the possi-
bility that viruses present in these individuals may be attenuated
or defective. Extensive analysis of the HIV-1 genomes, particularly
in the regulatory/accessory genes, has shown that certain genetic
defects may confer protection to the host.

ACCESSORY GENE ATTENUATION AND DISEASE
PROGRESSION
Although initial thought to be dispensable for infection, HIV-1
accessory proteins have now been considered to be important fac-
tors that determine the replication and pathogenesis for efficient
infection in vivo.

NEF
Nef has emerged as one of the most important proteins for
viral life cycle and pathogenesis. This accessory protein exhibits
a spectrum of biological activities including down-regulation of
human leukocyte antigen class I (HLA-I), down-regulation of
CD4, enhancement of virion infectivity, and stimulation of viral
replication (6–11). Infection by HIV-1 with truncated nef has
been shown to contribute to low-level virus replication and non-
pathogenicity (12–14). This was further supported by animal study
of macaques infected by a nef-deleted SIVmac239 that displayed
the absence of disease progression and maintained greatly reduced
viral load (15). However, subsequent study using nef-deleted
SIVmac239 as live attenuated vaccine fail to demonstrate the safety
and efficacy in neonatal macaques (16). In addition to large dele-
tions in nef, single amino acid substitution via point mutation

www.frontiersin.org December 2013 | Volume 4 | Article 355 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00355/abstract
http://www.frontiersin.org/people/u/70143
mailto:bin.wang@sydney.edu.au
http://www.frontiersin.org
http://www.frontiersin.org/HIV_and_AIDS/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang Viral factors in non-progression

that impairs the viral fitness and replication were also reported to
slow the disease progression. The detection of significant increased
incidence of single amino acid polymorphism at position 138 in
LTNPs/SPs (17–19) and the discovery of 40% of HIV-infected chil-
dren who experiencing delay disease progression carrying amino
acid substitutions at the AWLEAQ (56–61) and the Rxx (22–
24) domain responsible for the abolishing of CD4 and MHC-1
down-regulations (20) demonstrated functionally defective nef

HIV-1 can be raised without gross gene deletion (Table 1).
Mutation studies from several groups have further identified
residues involved in nef biological activities such as residues of R25,
RD35/36, T80, GL96/97, D108, D111, DW123/124, RY134/135,
C142, EE154/155, LL164/165, DD174/175, RRE179, RF184/185
participated in the CD4 down regulation (21–25). Genetic muta-
tions occurred within these residues may potentially disrupt Nef
functions and contribute to non-progressive HIV infections.

Table 1 | Summary of HIV-1 genetic mutations that associated with non-progressive HIV disease.

Locations Functional changes Reference

Structure

genes

gag S67A and D102E No functional support Miura et al. (26)
Single and double amino acid deletions in gag’s p17

and p6

No functional support Alexander et al. (27)

Stop codons in the gag p17 and p27 No functional support Wang et al. (28)

pol M184V/I Reduced replication capacity Harrison et al. (29)

env V2 loop extension Restrict the capacity of HIV-1 to replicate in

macrophages

Shioda et al. (30), Wang

et al. (31)

Single amino acid deletion in gp41 Reduced replication capacity Alexander et al. (27)

Regulatory

genes

tat HIV-1OYl; substitution of cysteine residue for a serine Unable to trans-activate Huet et al. (32)

rev Three amino acids extension at the 3′ end of rev

exon 2

No functional support Papathanasopoulos et

al. (33)

Polymorphism of codon 78 (L78I) Reduce the export of Rev from the nucleus

to the cytoplasm

Iversen et al. (34)

Glu74Pro, Val 104 Leu, and Ser 106 Pro RRE binding ability Churchill et al. (35)

Accessory

genes

vpr Amino acid substitutions at position 72 (F72L) Reduce nuclear accumulation and decrease

incorporation of vpr into the forming virions

Caly et al. (36)

Amino acid substitutions at position 77 (R77Q) Reduce cytopathicity Lum et al. (37), Mologni

et al. (38)

C-terminus amino acid deletions 83–89 Defective in nuclear localization; lost ability

to induce G2 arrest and cell death

Wang et al. (39), Zhao

et al. (40)

vif 195 nucleotides deletion (aa54–117), insertion in

position 63, premature stop codons at positions 70

and 174

No functional support Rangel et al. (41)

V13I, V55T, and L81M No functional support De Maio et al. (42)

Amino acid substitutions at position (R132S) Reduced replication capacity Hassaine et al. (43),

Fujita et al. (44)

vpu Four-amino-acid insertion in the N terminus No functional support Alexander et al. (27)

nef 160–430 nucleotides deletion in nef-LTR region Low-level virus replication and reduced

pathogenicity

Deacon et al. (12)

109–139 nucleotides deletion in nef gene and

159–204 deletion in nef-LTR region

No functional support Salvi et al. (13)

84 to >400 bp nucleotides deletion in nef-LTR region

(CRF01_AE)

No functional support Kondo et al. (14)

Amino acid polymorphism of at position 138 (LTNP/SP) Decreased viral replication Premkumar et al. (17),

Kirchhoff et al. (18);

Tolstrup et al. (19)

Amino acid substitutions at position 22–24 or 56–61 Abolishing nef mediated CD4 and MHC-1

down-regulations

Corro et al. (20)
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VPR
The viral protein R (vpr) of HIV-1 is a highly conserved small
basic protein and contributes to viral replication and disease pro-
gression in vivo. vpr Functions include G2 cell cycle arrest and
apoptosis, T-cell depletion, and nuclear localization of the HIV
preintegration complex (36, 37, 45). vpr Also plays a critical role
in long-term AIDS disease by inducing infection in non-dividing
cells such as macrophages (46). Functional analysis of vpr pro-
tein has provided insights into the biological role played by this
protein during the virus life cycle (47–49) and also implied the
mutations potentially affect vpr functions. The phenylalanine to
leucine mutation at amino acid position 72 (F72L) detected from
a non-progressor has been shown to reduce nuclear accumula-
tion and decrease incorporation of vpr into the forming virions
(36), while R77Q mutations at the C-terminal conserved motif
between 71 and 82 has the ability to reduce cytopathicity and are
more frequently detected in LTNPs (37, 38). This mutation may
also interfere with vpr-mediated cell cycle arrest (Table 1) (37, 38,
50). The gross defect of vpr gene was uncommon and comparative
study of long-term asymptomatics and progressors often showed
full-length and intact open reading frames (51) and only an early
study reported vpr gene defects clustered at the C-terminus (amino
acid 83–89) in long-term non-progressing mother child pair that
may potentially affect its secondary structure (39). Subsequent
functional analyses of these naturally occurring C-terminus poly-
morphisms have indicated defective in their ability to localize onto
the nuclear envelope, lost ability to induce G2 arrest and lost the
ability to induce cell death in some of the clones (Table 1) (40).

VPU
The Vpu is a transmembrane protein with a key function in
interacting with newly synthesized CD4 molecule in the rough
endoplasmic reticulum (RER) resulting in its degradation via
the proteasome pathway (52, 53). The other functions of Vpu
include enhancement of virion release from virus-producer cells
and down-regulation of MHC I and II (54–57).

There is very limited data available on genetic defects in the vpu
gene and its association with disease progression as most studies
revealed the absence of gross deletions or insertions in the Vpu
derived from LTNPs (51, 58). So far, only one non-progressive
individual with a four-amino-acid insertion in the N terminus
of Vpu was reported (27). However, the presence of 4-bp inser-
tion in nef and 3′-LTR sequences resulting the truncation of Nef
by one amino acid short of consensus C-terminal cysteine in the
same individual made it difficult to determine the significance
of Vpu contribution to the non-progressive status. Interestingly,
although there is insufficient patient derived data on Vpu defects
and disease progression, it was proposed that lack expression of a
functional Vpu protein, such as HIV-2 and most SIV isolates, may
be responsible for slower disease progression and cause less disease
severity (59).

VIF
The HIV-1 Vif protein (virion infectivity factor) has a essential role
in promoting HIV-1 infectivity by enhancing viral replication and
inducing the degradation of the endogenous anti-retroviral factor,
apolipoprotein B mRNA editing enzyme catalytic polypeptide-
like 3G (APOBEC3G) (60, 61). The importance of vif gene has

been well recognized, but only few polymorphisms have been
described in possible association with a retarded progression to
AIDS. After sequencing vif and nef gene from 14 slow pro-
gressors and 46 normal progressors, Rangel et al. revealed the
co-circulating of intact and truncated vif gene in one slow pro-
gressor. In the same study, the presence of amino acid insertion
at position 63 and premature stop codon were also observed
in two other slow progressors. But the detection of stop codon
in the vif gene in a normal progressive patient with high viral
load also suggesting such inhibitory mutations in the vif gene
may be less important in virus load reduction (41). A very
recent study of a group of 11 children with an extremely slow
disease progression found unusual substitutions such as V13I,
V55T, and L81M. Databases search suggested an increased fre-
quency of these mutations in sequences from elite controllers (42).
Whether these changes linked to Vif functional alternation require
further investigations. In addition, R132S substitution has been
described to present in LTNP and SP with in vitro evidence of
reduced viral replication (43, 44). In contrast, one amino acid
insertion at position 61 and the substitutions of A62D/N/S and
Q136P was indicated to be associated with an accelerated AIDS
outcome (62).

REGULATORY GENE ATTENUATION AND HIV DISEASE
PROGRESSION
Tat (T rans-Activator of T ranscription) and Rev (Regulator of
V irion protein expression) are two essential viral regulatory fac-
tors to promote high levels of viral gene expression (63–66). Duo
to the function importance, defective HIV-1 rev and tat gene are
rarely reported. HIV-1 Tat promotes efficient transcription of the
viral genome, which requires structural changes of Tat to bind to
a RNA stem-loop structure called TAR (transactivation response
element) (67, 68). Study of an unusual HIV-1 strain isolated from
a healthy Gabonese individual who presented an atypical west-
ern blot has revealed functionally defective of Tat resulting from
the substitution of an essential cysteine residue for a serine (32).
Although the defected Tat has a similar structure to active Tat,
it is unable to trans-activate (69). This virus, identified as HIV-
1OYl, grew to low titers of reverse transcriptase activity, and is
lack of obvious cytopathic effect. Important to note that 10 years
post infection, 23 of HIV-1 OY1 infected women showed retro
conversion and HIV was no longer detectable (70).

In HIV-1 Rev, early study by Iversen et al. (34) revealed the poly-
morphism of codon 78 (L78I) in the activation domain might
contribute to non-progression status (Table 1). Substitutions in
this highly conserved leucine-rich activation domain are known
to reduce the export of Rev from the nucleus to the cytoplasm (34,
71) and associate with decrease in viremia (72). A three amino
acids extension (GlyCysCys) at the 3′ end of rev exon 2 instead
of characteristic 16-amino acid truncation commonly shared by
HIV subtype C was also reported in HIV-1 subtype C infected
slow-progressing siblings (33). In well-characterized Sydney Blood
Bank Cohort, in addition to nef attenuation, several members have
also displayed functional defect in Rev by evaluation of RRE bind-
ing ability (35). Three rare amino acid changes at highly conserved
residues (Glu 74 Pro, Val 104 Leu, and Ser 106 Pro) were likely to
be associated with such functional defect in two of the cohort’s
members (Table 1) (35).
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STRUCTURAL GENES AND HIV DISEASE PROGRESSION
HIV-1 env gene (gp160) product consists of two subunits, gp120
and gp41, and play a crucial role in viral infectivity by binding
to CD4 and chemokine receptors expressed on the surface of
susceptible cells. The chemokine receptors usage, generally CCR5
and/or CXCR4, are determined largely by amino acid sequence of
the variable loop 3 (V3) of gp120 (73). CCR5-using viruses (R5
viruses) are presence in the vast majority of primary infections
while a receptor switch toward CXCR4 occurs in about 50% of the
infected individuals which is associated with increasing in viral
load, accelerated CD4+ T-cell decline and progression to AIDS
(74–76). Therefore, the coreceptor switch could be a key element
of HIV pathogenesis and a significant contribution to disease pro-
gression. However, the reasons for the coreceptor switch remain
poorly understood (77). In LTNPs cohort, HIV-1 strains isolated
displayed not only the exclusive CCR5 usage but also decreased
entry efficiency suggesting lower env fitness in LTNPs cohort that
may contribute to viral suppression (78).

Apart from V3 loop, the sequence changes in the first and
second hypervariable loops (V1 and V2) also affect the viral phe-
notypic property and cellular host range. Several independent
studies have shown V2 loop extension in individuals with slow
or no disease progression (Table 1) (30, 31). This elongation of
V2 may potentially restrict the capacity of HIV-1 to replicate in
macrophages (30).

In comparison to HIV-1 gp120, the mutations in the fusion
protein subunit gp41 were less frequently reported in their influ-
ence in the disease progression rate. A single amino acid deletion
in the fusion peptide region of the transmembrane domain in one
LTNP was speculated to be responsible for the slow/low growth
phenotype of the virus isolated from this individual (27).

GAG AND POL
Miura et al. studied viral gag sequences from 50 non-progressions
and 80 progressors revealed three codon changes (67A, 102E, and
389I) that were significantly different between the two groups (26).
Two of the three codons, S67A and D102E, showed a strong asso-
ciation with the non-progressive HIV disease. However, recombi-
nant viruses with these two mutations failed to provide evidence
on the impact of viral replication capacity indicating these differ-
ences may merely reflect the historic population consensus amino
acid at the time of infection (Table 1) (26). Similarly, functional
study of single and double amino acid deletions observed in gag’s
p17 and p6 from 5 of the LTNPs revealed no difference in facilitat-
ing the incorporation of vpr into the HIV-1 particles (27). Apart
from the sequence polymorphisms, stop codons in the gag p17,
p27, and in pol RT in proviral DNA from one LTNP have also been
reported as a consequence of G-A hypermutation (28). The highly
homogeneous sequences with the inactive mutations over 8-year
period in this individual suggesting only limited proviral integra-
tion events occurred. However, the detection of persist antibody
responses to both p17 and p24 proteins by western blot during the
same period suggesting the presence of intact virions during the
course of infection and possible persistent viral replication within
some privileged sites (28).

Human immunodeficiency virus type 1 pol gene codes viral
enzymes critical for viral replication. It is also the major drug tar-
get. Although the emergence of resistance mutations in the pol

gene region associated with a reduced sensitivity to anti-retroviral
drugs, those resistant mutations often result in the decreased cat-
alytic activity and viral replicative capacity (79, 80). Whether the
transmission and infections of drug resistant HIV-1 strain with
reduced fitness lead to better disease outcome remains as a debat-
able topic, significantly lower viral load have been found in patients
harboring M184V/I when compared to individuals carrying wild-
type virus (Table 1) (29). Theoretically infection by viruses with
impaired replicative capacity may have less serious impact to the
hosts.

THE EFFECT OF DIFFERENT HIV-1 SUBTYPES AND HIV-2 ON
DISEASE PROGRESSION RATES
Much of the understanding of disease progression derives from
studies in HIV-1 subtype B strains. However, HIV-1 exhibits a
high degree of inter- and intra-subtype genetic diversity (81).
Such differences in the genetic characteristics of HIV not only
play a role in the dynamics of HIV infection but also influence
the biological properties including infectivity, transmissibility, and
pathogenicity (82–85). Although there is no data supporting the
infection of particular HIV-1 subtype with non-progressive HIV
disease, individuals infected by subtype A appear to experience
less risk of progression to death compare to non-A subtype (86,
87). In contrast, infection by HIV-1 subtype D has been shown to
have a higher frequency of syncytium formation and X4 use, and
consequently increased risk of progression to death (83, 85). Stud-
ies of HIV group O and HIV-2 also revealed significant reduced
replicative and transmission fitness. This extremely low replicative
capacity in comparison with that of HIV-1 group M strains has
led to decreased group O and HIV-2 transmission and contributes
to the low viral load and benign course of infection (88–90).

CONCLUSION
In conclusion, study the viral factors in non-progression of HIV
disease have provided great opportunities in understanding HIV
gene functions and their contributions to viral pathogenesis.
Genetic defects have been observed in many HIV-1 infected non-
progressors. However, the lack of consistent pattern of genetic
features in the LTNPs also suggest that control of HIV replica-
tion is not attributable to shared viral genetic defects or shared
viral polymorphisms. In addition, it remains unclear how these
defective mutations emerged initially and maintained in long-term
in the LTNPs. Furthermore, many of the defective mutations are
revertible and capable to evolve into virulent phenotype, hence the
use of the defective virus as attenuated vaccine strains may not be
completely safe. It is also worth to note that it is uncommon to dis-
cover defective virus from LTNPs and certain host characteristics
need to be considered in the control of slowing disease process.
A profound understanding of underlying host factors that force
viral attenuation or defects to emerge in LTNPs, will provide new
lead to HIV elimination and possible cure.
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