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Abstract: Shear stress exerted by the blood stream modulates endothelial functions through altering
gene expression. KLF2 and KLF4, the mechanosensitive transcription factors, are promoted by
laminar flow to maintain endothelial homeostasis. However, how the expression of KLF2/4 is
regulated by shear stress is poorly understood. Here, we showed that the activation of PIEZO1
upregulates the expression of KLF2/4 in endothelial cells. Mice with endothelial-specific deletion of
Piezo1 exhibit reduced KLF2/4 expression in thoracic aorta and pulmonary vascular endothelial cells.
Mechanistically, shear stress activates PIEZO1, which results in a calcium influx and subsequently
activation of CaMKII. CaMKII interacts with and activates MEKK3 to promote MEKK3/MEK5/ERK5
signaling and ultimately induce the transcription of KLF2/4. Our data provide the molecular insight
into how endothelial cells sense and convert mechanical stimuli into a biological response to promote
KLF2/4 expression for the maintenance of endothelial function and homeostasis.

Keywords: PIEZO1; KLF2/4; endothelial cell; mechanosensitive transcription factor; shear stress;
signal transduction

1. Introduction

Endothelial cells lining the inner layer of blood vessels regulate vascular functions
and maintain vascular homeostasis. Multiple factors, such as hormones, cytokines, neuro-
transmitters and physical forces created by the blood flow, determine the complexities of
endothelial structure and function [1–4]. Different blood flow patterns, including unidirec-
tional laminar flow (UF) with high laminar shear stress in straight vessels and disturbed
flow (DF) at curved regions, bifurcations and branch points, modulate distinct endothelial
functions and morphology. Endothelial cells respond to the changes of local shear stress
to modulate the intracellular signaling network, which leads to the alterations of gene
expression and cell morphology [5–7]. It has been well documented that abnormal shear
stress, predominantly DF, leads to endothelial inflammation and dysfunction, eventually
causing various cardiovascular diseases, including atherosclerosis, aortic dissection and
hypertension [8–11], which are the leading cause of mortality worldwide [12].

Emerging evidence shows that distinct flow patterns play different roles in the func-
tion of endothelial cells mainly through mechanosensitive transcription factors (MSTFs),
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among which the Kruppel-like factor (KLF2) and the Kruppel-like factor 4 (KLF4) are the
best-characterized and act as the master regulators of endothelial-related genes [13,14].
KLF2/4, promoted by UF but downregulated by DF, provide vascular protective effects
to maintain endothelial homeostasis through regulating the expression of multiple anti-
inflammatory genes, such as eNOS and THBD [15,16]. In addition, UF-induced KLF2
recruits the transcriptional co-activator p300 to inhibit the activation of NF-κB, which is the
leading proinflammatory MSTF upregulated by DF [17]. However, how the expression of
KLF2 and KLF4 is regulated by different flow patterns remains elusive.

Mechanosensitive ion channels sense mechanical force in the cell membrane and
rapidly convert it into electrical or chemical signals. As a critical mechanosensitive ion
channel in endothelial cells, PIEZO1 plays diverse roles in endothelial shear stress sensing,
nitric oxide (NO) generation, vascular tone, angiogenesis, atherosclerosis, vascular perme-
ability and remodeling, blood pressure regulation, etc [18–24]. It has been reported that
depending on the flow pattern, PIEZO1 transduces mechanical signals to exert different
cellular processes as either an atheroprotective or as an inflammatory signal. Both PIEZO1
and KLF2/4 respond to different patterns of blood flow. However, the possible relation-
ship between them and the underlying molecular mechanism remain unclear. Here, we
showed that the activation of endothelial PIEZO1 regulates the expression of KLF2 and
KLF4 through a Ca2+/CaMKII/MEKK3/MER5/ERK5 axis. PIEZO1-mediated Ca2+ influx
is the initial factor for the mechanotransduction process by laminar flow, resulting in the
activation of downstream kinase and ultimately inducing KLF2/4 transcriptional expression,
thus suppressing the NF-κB signaling pathway to provide an anti-inflammatory effect and
maintain endothelial homeostasis.

2. Materials and Methods
2.1. Cell Culture and Treatment

HEK293T cells and bEnd.3, immortalized mouse brain microvascular endothelial cells
(MBMECs), were cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine
serum (FBS; Gibco) and 50 µg/mL penicillin/streptomycin. Human umbilical vein en-
dothelial cells (HUVECs) were purchased from Sciencell and cultured in Endothelial Cell
Medium (ECM; Sciencell) containing 5% FBS and 50 µg/mL penicillin/streptomycin. All
cells were cultured under a condition of 5% CO2 at 37 ◦C.

MBMECs were seeded with a density of 40,000 cells per cm2. After serum starvation
overnight, MBMECs were treated with agonists, including Yoda1 (TargetMol), 2-APB
(100 µM; TargetMol), GSK1016790A (10 µM; TargetMol) and ICILIN (10 µM; TargetMol)
or pretreated with inhibitors, including KN-93 (10 µM, 2 h, TargetMol), TAE226 (10 µM,
2 h, TargetMol), Bisindolylmaleimide I (10 µM, 2 h, TargetMol), BIX02189 (10 µM, 12 h,
TargetMol), BAPTA-AM (10 µM, 2 h, TargetMol) and Ruthenium Red (RR, 10 µM, 12 h,
TargetMol). For the time-course experiments, the concentration of Yoda1 was 5 µM, and for
all dose-gradient experiments, the treated time of Yoda1 was 8 h for Western blot and 2 h
for quantitative RT-PCR unless otherwise stated.

2.2. Transfection and Infection

HEK293T cells at 70% confluence were transfected with control plasmid or plasmids
containing Flag-MEKK3 and HA-CaMKII by PEI (Polyscience). siRNA transfection was
performed by LipoRNAiMAX (Thermo Fisher, Rockford, IL, USA). Piezo1-KO MBMECs
and Mekk3-KO MBMECs were generated using Lenti-CRISPR-V2 vector (Addgene #52961).
siRNA and sgRNA sequences are listed in Supplementary Table S1.

2.3. Shear Stress Application

Shear stress was applied to MBMECs by an orbital shaker (Thermo Fisher) inside
the incub ator as previously described [25]. MBMECs were seeded in a single well of
a 6-well plate with a diameter of 3.5 cm and cultured with 2 mL medium. After cell
attachment, the plate was cultured on a shaker at 210 rpm for 5 days. Disturbed flow
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was applied to MBMECs in the center with a diameter of 12 mm, and laminar flow was
applied in the periphery within 8 mm from the edge. Control cells were exposed to static
conditions. Microfluidic Circulatory System with a peristaltic pump was built according to
the published method [26]. Microfluidic system mimics the fluid shear stress of bloodstream
by controlling the flow rate. MBMECs were seeded in a flow chamber (ibidi 80176) to form
monolayers. After cell attachment, the flow chamber was connected to the flow system,
and laminar flow was applied with 16 dyn/cm2. Poiseuille’s equation was used to calculate
the shear stress that cells experienced τ = 4Qη/πR3.

2.4. Ca2+ Imaging

MBMECs were loaded with Fluo-4 AM (2 µM, Beyotime, Shanghai, China) for 1 h at
37 ◦C in DMEM and then washed out by PBS. Yoda1 (5 µM) was added into medium, and
cells were incubated at static conditions for 10 min. Image was acquired by a Nikon NI-U
fluorescent microscope.

2.5. Immunofluorescence Staining

MBMECs were seeded on round cover slide and transfected with control or plasmids
containing Flag-MEKK3 or HA-CaMKII by lipofectamine 3000 (Thermo Fisher) for 6 h.
After 24 h culture, cells were treated with Yoda1 (5 µM) or DMSO and then fixed in 4% PFA
for 20 min followed by permeabilization (0.1% Triton X-100 in PBS) for 10 min and blocking
in 5% bovine serum albumin (BSA) in PBS for 1 h at room temperature. Cells were then
incubated with primary antibody against Flag (1:100; Sigma, Burlington, MA, USA, F3165)
and HA (1:100; Proteintech, 51064-2-AP) for 2 h at room temperature. After being washed
with PBS, cells were then incubated with corresponding secondary antibodies (1:1000;
Alexa Fluor 488- or 594-conjugated antibodies; Jackson ImmunoResearch Laboratories,
West Grove, PA, USA) for 1 h at room temperature followed by DAPI (0.5 µg/mL) staining
for detection of nuclei at room temperature for 15 min in the dark. Images were taken by a
confocal microscope (LSM880).

For cytoskeleton staining, 4% PFA fixed cells were incubated with phalloidin (1:100;
Actin-Tracker Green; Beyotime, Shanghai, China) for 1 h. Images were taken by a Nikon
NI-U fluorescence microscope.

2.6. Western Blotting and Co-Immunoprecipitation

After treatment, cells were collected in RIPA buffer containing protease and phos-
phatase inhibitor cocktail on ice. Equal amounts of proteins were loaded in SDS-PAGE
and then transferred to PVDF membranes (EMD Millipore). After blocking in 5% dried
skimmed milk or BSA, the membranes were incubated with primary antibodies at 4 ◦C
overnight with gentle agitation. Then, membranes were incubated with horseradish peroxi-
dase (HRP)-conjugated secondary antibodies for 1 h at room temperature. Proteins were
visualized using an enhanced chemiluminescent substrate (ECL) and a chemiluminescence
imaging system (ChemiScope5600, Clinx, Shanghai, China). Rabbit anti-phosph-MEKK3 an-
tibody was made by immunized rabbit with peptide: CSGTGMR(P)SVTGTPYW. Antibody
information is described in Supplementary Table S2.

For co-immunoprecipitation assay, cells were lysed with lysis buffer (50 mM Tris-HCl,
pH 7.4, 100 mM NaCl, 10% glycerol, 0.5% NP-40, 1 mM DTT, 1 mM PMSF). Anti-HA
magnetic beads (Thermo Fisher, 88837) were added to the cell lysates and incubated at
4 ◦C overnight with gentle agitation. Beads were washed by lysis buffer three times, and
proteins were eluted by SDS loading buffer for western blotting.

2.7. Reverse Transcription (RT) and Quantitative RT-PCR Analysis

Total RNA was extracted using RNAiso plus reagent (Takara), followed by quan-
tification with NanoDrop 2000 Spectrophotometer (Thermo Fisher). Equal RNA was
reverse-transcribed with PrimeScriptTM RT Master Mix (Takara), and then real-time PCR
was perfumed using SYBR Green (Vazyme, Nanjing, China) on a fluorescence quantitative
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PCR system (CFX96 Connect, Bio-Rad). Expression levels were analyzed using CT values
and compared to control group. The qPCR primer sequences are shown in Supplementary
Table S3.

2.8. Animals

The Piezo1fl/fl mice were described previously [27]. Endothelial-specific Tie2Cre
(Tg(Tek-cre)1Ywa/J, Strain #:008863) mice were from the Jackson Laboratory. Piezo1fl/fl

mice and Tie2Cre mice were used to generate compound mutants. Male ICR mice with a
body weight of approximate 25 g were purchased from Shanghai SLAC Laboratory Animal
Company. Animals were housed in SPF facility under a 12 h light/dark cycle at Zhejiang
University Laboratory Animal Center. All animal experiments were approved by the
Institutional Animal Care and Use Committee of Zhejiang University.

2.9. Isolation of Mouse Aortas and Brain Endothelial Cells and Drug Treatment

GdCl3 (20 mg/kg, Shanghai, China) or KN-93 (2 mg/kg, Shanghai, China) was given
into wild-type male ICR mice by tail vein injection every 12 h for 4 times, and thoracic aortas
were collected 12 h after the last injection. Mice were sacrificed via cervical dislocation.
Thoracic aortas were isolated as previously described [28] and followed by RNA isolation.
Briefly, mice were sacrificed via cervical dislocation, and chest cavity was opened with
dissection scissors, and abdominal aorta was cut to release the blood. Thoracic aorta
was removed using micro-dissection forceps and was flushed gently with ice-cold PBS to
remove the blood. The attached adipose tissue and small lateral vessels were removed as
much as possible using micro-dissection forceps.

Mouse primary brain endothelial cells were isolated by collagenase digestion and
density gradient centrifugation using low molecular weight dextran. Briefly, mouse brain
was dissected into 2 mm pieces and homogenized with a homogenizer. To the homogenate,
a similar volume of 30% dextran was added to give a 15% dextran solution, followed by
centrifugation at 3000× g for 15 min at 4 ◦C. The pellet was resuspended and digested in
0.1% collagenase/dispase and 0.1% DNase I in DMEM medium for 45 min at 37 ◦C. The
cell pellet was resuspended in EBM-2 medium (Lonza CC-3156) containing 5% serum and
transferred to culture dishes pretreated with 1% gelatin.

2.10. Histology and Immunofluorescence

Mouse lungs were isolated and fixed with 4% PFA at 4 ◦C for 6 h, followed by dehydra-
tion with ethanol and were cleared with xylene and embed in paraffin. Sections were cut at
6 µm thickness and used for immunofluorescence with primary antibody overnight at 4 ◦C,
followed by biotinylated secondary antibody and HRP-conjugated streptavidin (1:1000;
Jackson ImmunoResearch Laboratories) in combination with fluorogenic substrate Alexa
Fluor 488 tyramide (1:300; TSA kit, PerkinElmer, Montgomeryville, PA, USA). Sections
were heated in microwave for 3 min and then incubated with another primary antibody
CD31 (1:200; Abcam, Cambridge, UK ab182981) at 4 ◦C overnight and followed by Alexa
Fluor 594-conjugated secondary antibody (1:1000; Jackson ImmunoResearch Laboratories)
at room temperature for 2 h in the dark. Nucleus was stained with DPAI (0.5 µg/mL) at
room temperature for 15 min. Images were taken by a confocal microscope (LSM880).

2.11. RNA Sequencing and Data Analysis

Total RNA extracted from MBMECs was quantified and qualified with NanoDrop 2000
Spectrophotometer (Thermo Fisher). The cDNA libraries were sequenced using BGIseq500
platform (BGI, Shenzhen, China). The raw sequence data were trimmed and checked
with the FastQC and Trimmatic. The mouse genome sequence file and mouse genome
annotation file were downloaded from the ensemble official server. The hisat2 was used
to align the reads back to the reference genome by exon. Then, we managed to convert
and sort SAM generated by hisat2 file to BAM file through samtools. Finally, the htseq
outputted the counts. The differential-expressed genes (DEGs) were identified with DEseq2
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under selecting criteria of adjusted p value less than 0.05 and absolute value of fold change
larger than 2 (negative binomial generalized linear model fitting and Wald test).

The counts were normalized by converting them into Fragments Per Kilobase Million
(FKPM). The corresponding log10 FKPM values for DEGs were used for heat map plotting
with clusters between different Yoda1-treated time groups. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed with
Clusterprofiler. In the enrichment result, p < 0.05 or FDR < 0.05 is a meaningful pathway.
The protein interactions for differential-expressed gene overlaps from three comparisons
were obtained from STRING database. The hub genes were calculated by MCC in cytoscape.
If not otherwise stated, all the analyses were performed with R 4.1.2.

2.12. Statistical Analysis

All data are shown as the mean ± SEM (Standard Error of Mean). Statistical analysis
was performed using unpaired Student’s t test by GraphPad Prism version 8. Unpaired
Welch’s t-test was applied for the comparisons of means between two groups, and one-way
ANOVA test and Tukey post hoc test were performed for the comparisons among multiple
groups. Statistical significance was assumed if p values were less than 0.05.

3. Results
3.1. Shear Stress and Activation of PIEZO1 Enhance KLF2/4 Expression in Endothelial Cells

Previous studies have shown that UF plays a critical role in endothelial homeostasis
by inducing the expression of KLF2/4 [29,30]. To investigate the regulatory mechanism of
shear stress on the expression of KLF2/4, we performed an in vitro shear stress experiment
by culturing immortalized mouse brain microvascular endothelial cells (MBMECs) in
microfluidic chambers applied with ~16 dyn/cm2 shear stress for 3 and 6 h. We found that
the expression of Klf2 mRNA was rapidly induced at 3 h after UF stimulation and followed
by Klf4 induction at 6 h (Figure 1A). In addition, shear stress was achieved by a rotating
orbital shaker at 210 rpm in which cells were exposed to ~5 dyn/cm2 shear stress in the
center of the well to simulate DF and ~12 dyn/cm2 shear stress on the periphery to stimulate
UF (Figure S1A). The morphology of MBMECs considerably changed under different flow
patterns compared with ST (static) culture after 5 days (Figure S1B). Consistent with a
previous study, the mRNA and protein levels of KLF2 and KLF4 were markedly increased
in MBMECs after exposure to UF-induced high-shear stress compared with DF conditions
(Figure 1B,C). The phosphorylation level of YAP was also increased under UF (Figure S1C)
as previously reported [31–33]. In addition, we found a shear force-dependent KLF4
expression under UF by increasing the rotating speed (Figure S1D). KLF2/4 are highly
expressed in the endothelial cells at the thoracic aorta [34], an area exposed to a high-speed
blood flow, resembling a high-shear stress condition. To test whether mechanically activated
ion channels sense shear stress to induce Klf2 and Klf4 expression in vivo, we injected
GdCl3, a non-specific mechanically activated ion channel blocker, into mice to inhibit these
channels. To reduce the renal toxicity of GdCl3 in the mice [35], we collected whole mouse
thoracic aortas after four doses of GdCl3 injection within 2 days. We found that Klf2 and
Klf4 mRNA levels were decreased significantly after GdCl3 treatment (Figure 1D). Although
GdCl3 is likely to have other effects not limited to mechanical channel blockade, this result
suggests that there is a correlation between the blockade of mechanically activated channels
and reduced Klf2/4 mRNA expression. Taken together, our data suggest that UF-induced
Klf2/4 expression in endothelial cells is mediated by mechanically activated ion channels.
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Figure 1. Shear stress induces KLF2/4 expression through PIEZO1 activation. (A) MBMECs were
seeded in a flow chamber and exposed to unidirectional laminar flow with 16 dyn/cm2 for indicated
time, and mRNA levels of Klf2 and Klf4 were measured by quantitative RT-PCR. (B,C) MBMECs
were exposed to differential shear stress for 5 days. KLF2 and KLF4 proteins were monitored by
western blotting (B), and mRNA levels of Klf2 and Klf4 were measured by quantitative RT-PCR (C).
(D) Wild-type male ICR mice were injected with GdCl3 (20 mg/kg) via tail vein every 12 h for 4 times,
and thoracic aortas were collected for quantitative RT-PCR. (E–H) MBMECs were treated with
indicated mechanosensitive ion channel agonists including 2−APB (TRPV1/2/3 agonist, 100 µM),
GSK1016790A (TRPV4 agonist, 10 µM), ICILIN (TRPM8 agonist, 10 µM) and Yoda1 (PIEZO1 agonist,
5 µM) for the indicated time. Protein (E–H) levels of KLF4 were monitored by western blotting,
respectively, and quantified with ImageJ (I). (J) MBMECs were treated with Yoda1 with the indicated
concentration for 8 h, and KLF4 proteins were monitored by western blotting. (K) MBMECs were
treated with Yoda1 (5 µM) for the indicated time, and mRNA levels of Klf2 and Klf4 were measured by
quantitative RT-PCR. (L) MBMECs were treated with Yoda1 with the indicated concentration for 2 h,
and mRNA levels of Klf2 and Klf4 were measured by quantitative RT-PCR. (M) The thoracic aortas from
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wild-type male ICR mice were harvested and cultured in different conditions. mRNA levels of Klf2
and Klf4 in thoracic aortas were measured by quantitative RT-PCR. At 0 h, total RNA was extracted
immediately after aortas were isolated. At 24 h, total RNA was extracted after aortas were cultured
in the culture medium in vitro without shear stress exposure for 24 h. At 24 h + Yoda1, aortas were
cultured with Yoda1 (5 µM) treatment in culture medium for 24 h in vitro. n = 3 mice/group. Data
are representative of three independent experiments and are presented as mean ± SEM of three
technical replicates by an unpaired Student’s t-test (A,C,I,K,L). The immunoblot was measured using
ImageJ to determine the relative intensities of the indicated bands, which were normalized using the
internal loading control proteins. The relative intensities are shown as numbers. ST: static culture;
DF: disturbed flow; UF: unidirectional laminar flow.

To sort out which mechanically activated ion channels regulate the shear stress-
induced Klf2/4 expression, we used several mechanosensitive ion channel agonists, includ-
ing Yoda1 (PIEZO1 agonist), 2-APB (TRPV1/2/3 agonist), GSK1016790A (TRPV4 agonist)
and ICILIN (TRPM8 agonist), to activate these channels in MBMECs. Of note, only Yoda1
treatment activated the expression of KLF4 in both a time- and dose-dependent manner
(Figure 1E–L). Consistently, Yoda1-induced KLF4 was also observed in primary human um-
bilical vein endothelial cells (HUVECs) (Figure S1E,F). To further verify PIEZO1-mediated
regulation of endothelial Klf2/4 in response to shear stress, we cultured the freshly isolated
thoracic aortas in vitro for 24 h to eliminate the effects of shear stress on the endothelial
cells of the aortas. We found that the mRNA levels of Klf2 were markedly reduced after
static culture of the thoracic aortas (Figure 1M). Although Klf4 mRNA levels remained
unchanged during the culture, both Klf2 and Klf4 mRNA levels were increased when the
thoracic aortas were treated with Yoda1 in the culture medium (Figure 1M). Together, these
data indicate that the activation of PIEZO1 induces KLF2/4 expression in endothelial cells.

3.2. Deletion of Piezo1 in Endothelial Cells Suppresses Shear Stress-Mediated KLF2/4 Expression

To further investigate whether Piezo1 is required for shear stress-induced endothe-
lial Klf2/4 expression in vivo, we generated endothelial cell-specific Piezo1 knockout
Tie2Cre;Piezo1fl/fl (EC-KO) mice. Tie2Cre activity is reported to be pan-endothelial cell
by E9.5 and remains such throughout development [36]. Tie2Cre mouse models show
some degree of Cre recombinase activity in non-endothelial cell expression, such as the
hematopoietic lineage and heart valves [37]. EC-KO mice were born at a Mendelian ra-
tio and appeared normal. Because Piezo1 is highly expressed in the endothelium, we
collected thoracic aortas from EC-KO mice at P10 to examine the expression of Piezo1
mRNA. Quantitative RT-PCR showed that the Piezo1 gene was effectively removed in
the endothelial cells of thoracic aortas (Figure 2A). Importantly, the mRNA levels of Klf2
and Klf4 were significantly decreased in the thoracic aortas of EC-KO mice (Figure 2A).
Consistently, a decreased KFL4 protein expression was also observed in the endothelial
cells of lung blood vessels from EC-KO mice by immunofluorescence staining (Figure 2B).
Of note, the expression of KLF4 in non-vascular tissue of the lungs remained unchanged
(Figure 2B). In addition, we isolated brain endothelial cells from WT and Piezo1 EC-KO
mice and examined the expression of Klf2/4. Consistently, the mRNA levels of Klf2 and Klf4
were also significantly decreased in mouse brain endothelial cells (Figure 2C). Next, we
created pooled Piezo1-depleted MBMECs by lentivirus-mediated CRISPR/Cas9 targeting
Piezo1 (Figure 2D). Consistently, UF-induced Klf2 and Klf4 expression was greatly reduced
in Piezo1-deficient MBMECs (Figure 2E,F). Moreover, Yoda1-induced KLF4 expression
was significantly inhibited by the depletion of Piezo1 in MBMECs (Figures 2G and S2A),
which confirmed the specificity of Yoda1 on targeting PIEZO1. In addition, the time- and
dose-dependent Klf2/4 induction by Yoda1 were reduced in Piezo1-deficient MBMECs
(Figures 2H and S2B, respectively). Together, these data suggest that endothelial PIEZO1
acts as a specific mechanosensitive ion channel to mediate KLF2/4 expression in response
to shear stress both in vitro and in vivo.
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Figure 2. Deletion of PIEZO1 in endothelial cells impairs KLF2/4 expression induced by shear stress.
(A) Thoracic aortas of Piezo1fl/fl and Tie2Cre;Piezo1fl/fl mice at P10 were collected, and mRNA expres-
sion levels of Piezo1, Klf2 and Klf4 were measured by quantitative RT-PCR. n = 3 mice/each group.
(B) Representative immunofluorescence staining of lungs from Piezo1fl/fl and Tie2Cre;Piezo1fl/fl mice
in the same litter for CD31 (red), KLF4 (green) and nuclei (blue). Arrows indicate the KLF4 expressing
endothelial cells. Dotted lines outline the blood vessel. Scale bars are 50 µm. n = 3 mice/each group.
(C) Primary mouse brain endothelial cells from Piezo1fl/fl and Tie2Cre;Piezo1fl/fl mice at 4 weeks
were isolated, and mRNA levels of Piezo1, Klf2 and Klf4 were measured by quantitative RT-PCR.
n = 3 mice/each group. (D) Control and Piezo1-dificient MBMECs were harvested, and cell lysates
were probed with anti-PIEZO1 antibody. (E,F) Control and Piezo1-dificient MBMECs were exposed
to shear stress for 5 days. KLF4 proteins (E) and mRNA levels of Klf2 and Klf4 (F) were monitored by
western blotting and quantitative RT-PCR, respectively. (G,H) Control and Piezo1-dificient MBMECs
were treated with Yoda1 (5 µM) for the indicated time. KLF4 proteins (G) and mRNA levels of
Klf2 and Klf4 (H) were monitored by western blotting and quantitative RT-PCR, respectively. Data
are representative of three independent experiments and are presented as mean ± SEM of three
technical replicates by an unpaired Student’s t-test (F,H). The immunoblot was measured using
ImageJ to determine the relative intensities of the indicated bands, which were normalized using the
internal loading control proteins. The relative intensities are shown as numbers. ST: static culture;
UF: unidirectional laminar flow.

3.3. Mekk3 Deletion in Endothelial Cells Restrains PIEZO1-Mediated KLF2/4 Expression

KLF2 and KLF4 have been demonstrated to be regulated by the MEKK3/MEK5/ERK5
signaling pathway in the developing mouse heart and vascular endothelium [38,39]. We
asked whether the MEKK3 (also known as MAP3K3) signaling pathway is involved in the
regulation of KLF2/4 expression in endothelial cells by shear stress. To test this, we first
performed an in vitro shear stress experiment. After exposed to shear stress, increased phos-
phorylation of MEKK3 and EKR5 was readily observed in MBMECs (Figure 3A). Notably,
UF induced more phosphorylation of MEKK3 and EKR5 than DF (Figure 3A). To examine



Cells 2022, 11, 2191 9 of 21

whether PIEZO1 could promote the activation of MEKK3/MEK5/ERK5 signaling, we
treated MBMECs with Yoda1 to activate PIEZO1. The results showed that the phosphoryla-
tion of MEKK3 and ERK5 was increased after Yoda1 treatment in a dose-dependent manner
(Figure 3B). These data suggest that the activation of PIEZO1 stimulates the activation of
the MEKK3/ERK5 signaling pathway.

Cells 2022, 11, x FOR PEER REVIEW 9 of 21 
 

 

we treated MBMECs with Yoda1 to activate PIEZO1. The results showed that the phos-

phorylation of MEKK3 and ERK5 was increased after Yoda1 treatment in a dose-depend-

ent manner (Figure 3B). These data suggest that the activation of PIEZO1 stimulates the 

activation of the MEKK3/ERK5 signaling pathway. 

 

Figure 3. MEKK3 deletion in endothelial cells restrains PIEZO1-induced KLF2/4 expression. (A) 

MBMECs were exposed to differential shear stress for 5 days, and cell lysates were probed with the 

indicated antibodies. (B) MBMECs were treated with Yoda1 with the indicated concentration for 2 

h, and cell lysates were probed with the indicated antibodies. (C,D) Control and Mekk3-dificient 

MBMECs were exposed to differential shear stress for 5 days. KLF4 and MEKK3 proteins were mon-

itored by western blotting (C), and mRNA levels of Klf2 and Klf4 were measured by quantitative 

RT-PCR (D). (E,F) Control and Mekk3-dificient MBMECs were treated with Yoda1 (5 μM) for the 

indicated time, and KLF4 proteins (E) and mRNA levels of Klf2 and Klf4 (F) were monitored by 

western blotting and quantitative RT-PCR respectively. (G,H) MBMECs were pretreated with 

MEK5 inhibitor (BIX02189, 10 μM) for 12 h and then treated with Yoda1 (5 μM) for the indicated 

time. KLF4 proteins (G) and mRNA levels of Klf2 and Klf4 (H) were monitored by western blotting 

and quantitative RT-PCR, respectively. Data are representative of three independent experiments 

and are presented as mean ± SEM of three technical replicates by an unpaired Student’s t-test 

(D,F,H). The immunoblot was measured using ImageJ to determine the relative intensities of the 

indicated bands, which were normalized using the internal loading control proteins. The relative 

intensities are shown as numbers. ST: static culture; UF: unidirectional laminar flow. 

To further investigate whether MEKK3 is required for the PIEZO1-mediated KLF2/4 

expression, we generated Mekk3-knockout (Mekk3-KO) MBMECs by CRISPR/Cas9. The 

induction of KLF4 protein under shear stress was strongly inhibited after loss of Mekk3 

expression in MBMECs (Figure 3C). A similar result was observed at the mRNA level by 

quantitative analysis of Klf2 and Klf4 mRNA expression (Figure 3D). Furthermore, Yoda1-

induced Klf2 and Klf4 expression was also inhibited in Mekk3-KO MBMECs (Figures 3E,F 

and S3A,B). To address the possible role of MEK5/ERK5 activity in the regulation of Klf2/4 

expression, we pretreated MBMECs with a specific MEK5 inhibitor (BIX02189) before 

Yoda1 administration. Consistent with the observation in Mekk3-KO MBMECs, Yoda1-

Figure 3. MEKK3 deletion in endothelial cells restrains PIEZO1-induced KLF2/4 expression. (A) MB-
MECs were exposed to differential shear stress for 5 days, and cell lysates were probed with the
indicated antibodies. (B) MBMECs were treated with Yoda1 with the indicated concentration for
2 h, and cell lysates were probed with the indicated antibodies. (C,D) Control and Mekk3-dificient
MBMECs were exposed to differential shear stress for 5 days. KLF4 and MEKK3 proteins were
monitored by western blotting (C), and mRNA levels of Klf2 and Klf4 were measured by quantitative
RT-PCR (D). (E,F) Control and Mekk3-dificient MBMECs were treated with Yoda1 (5 µM) for the
indicated time, and KLF4 proteins (E) and mRNA levels of Klf2 and Klf4 (F) were monitored by
western blotting and quantitative RT-PCR respectively. (G,H) MBMECs were pretreated with MEK5
inhibitor (BIX02189, 10 µM) for 12 h and then treated with Yoda1 (5 µM) for the indicated time.
KLF4 proteins (G) and mRNA levels of Klf2 and Klf4 (H) were monitored by western blotting and
quantitative RT-PCR, respectively. Data are representative of three independent experiments and are
presented as mean ± SEM of three technical replicates by an unpaired Student’s t-test (D,F,H). The
immunoblot was measured using ImageJ to determine the relative intensities of the indicated bands,
which were normalized using the internal loading control proteins. The relative intensities are shown
as numbers. ST: static culture; UF: unidirectional laminar flow.

To further investigate whether MEKK3 is required for the PIEZO1-mediated KLF2/4
expression, we generated Mekk3-knockout (Mekk3-KO) MBMECs by CRISPR/Cas9. The in-
duction of KLF4 protein under shear stress was strongly inhibited after loss of Mekk3 expres-
sion in MBMECs (Figure 3C). A similar result was observed at the mRNA level by quantita-
tive analysis of Klf2 and Klf4 mRNA expression (Figure 3D). Furthermore, Yoda1-induced
Klf2 and Klf4 expression was also inhibited in Mekk3-KO MBMECs (Figures 3E,F and S3A,B).
To address the possible role of MEK5/ERK5 activity in the regulation of Klf2/4 expression,
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we pretreated MBMECs with a specific MEK5 inhibitor (BIX02189) before Yoda1 administra-
tion. Consistent with the observation in Mekk3-KO MBMECs, Yoda1-induced Klf2 and Klf4 ex-
pression was strongly reduced when MEK5 activity was inhibited (Figures 3G,H and S3C,D).
Of note, the basal levels of Klf2 and Klf4 were decreased in Mekk3-KO and MEK5 inhibitor-
treated MBMECs (Figure 3F,H), which highlights a central role of MEKK3/MEK5/ERK5
signaling in regulating Klf2/4 expression in endothelial cells. Thus, these results sug-
gest that PIEZO1-induced KLF2/4 expression is dependent on the MEKK3/MEK5/ERK5
signaling pathway.

3.4. Inhibition of CaMKII Suppresses PIEZO1-Mediated KLF2/4 Expression

As a mechanosensitive Ca2+ permeable ion channel in endothelial cells, PIEZO1 partic-
ipates in the sensing of shear stress and responds to mechanical stimuli through regulating
the Ca2+ influx [18,40]. To unravel the molecular mechanism, which regulates shear stress-
induced Klf2/4 expression, we explored whether Ca2+ influx is involved in this process.
To test this, we first examined the Ca2+ influx caused by PIEZO1 activation after Yoda1
treatment using the Ca2+ sensitive dye Fluo-4 AM. Activation of PIEZO1 by Yoda1 resulted
in a rapid Ca2+ influx in control MBMECs, but not in Piezo1-deficient MBMECs (Figure 4A).
To test whether the Ca2+ influx is necessary for the induction of Klf2/4 expression during
Yoda1 treatment, we pretreated MBMECs with a selective calcium chelator, BAPTA-AM
(10 µM), for 2 h before Yoda1 administration. As expected, the induction of KLF4 was dras-
tically inhibited by the BAPTA-AM pretreatment (Figures 4B and S4A). A similar result
was observed with the pretreatment of an L-type Ca2+ current blocker, Ruthenium Red (RR).
Yoda1-induced KLF4 was absent in MBMECs pretreated with RR (Figures 4C and S4B). To
further confirm the effect of Ca2+ influx in endothelial cells under shear stress exposure,
we cultured MBMECs in an orbital shaker with or without RR treatment. Consistently, the
shear stress-induced Klf2 and Klf4 expression was significantly reduced after RR treatment
(Figure 4D). These data suggest that calcium is a critical secondary messenger to mediate
PIEZO1-induced KLF2/4 expression in endothelial cells.

Calcium activates calcium/calmodulin-dependent protein kinases (CaMKs), protein
kinases C (PKCs) and focal adhesion kinases (FAKs), which have been shown to play
an important role in shear stress-mediated endothelial stability [41–43]. Next, we tested
whether these kinases act as downstream of PIEZO1-induced Ca2+ influx to regulate
Klf2/4 expression. MBMECs were pretreated with various calcium-dependent protein
kinase inhibitors to block the corresponding kinases. Both KN-93 (a CaMKII inhibitor)
and TAE226 (a FAK inhibitor) pretreatment diminished the expression of KLF4 induced by
Yoda1, but not the PKC inhibitor (Figure 4E). Since CaMKII has been shown to be regulated
by PIEZO1 in macrophages [44], we then focused on the role of CaMKII in PIEZO1-
induced Klf2/4 expression. MBMECs were exposed to different types of shear stress. We
found that only UF induced the phosphorylation of CaMKII, indicating the activation of
CaMKII (Figure 4F). Consistently, the pretreatment with KN-93, a CaMKII-specific inhibitor,
reduced the Yoda1-mediated induction of KLF2 and KLF4 in both MBMECs and primary
HUVECs (Figures 4G and S4C–E). Interestingly, actin depolymerization was also observed
in MBMECs after KN-93 treatment (Figure S4F). To further examine the role of CaMKII
in the regulation of endothelial Klf2 and Klf4 expression in vivo, wild-type ICR mice were
injected with KN-93 through the tail vein, and thoracic aortas were collected for Klf2 and
Klf4 mRNA quantification. We found that KN-93 treatment significantly reduced the mRNA
levels of Klf2/4 in mouse thoracic aorta endothelial cells (Figure 4H). Together, these data
indicate that CaMKII is indispensable to transduce PIEZO1-induced Ca2+ influx to activate
KLF2/4 expression.
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Figure 4. Inhibition of CaMKII suppresses PIEZO1/MEKK3-mediated KLF2/4 expression. (A) Con-
trol and Piezo1-dificient MBMECs were pretreated with Fluo-4 AM (2 µM) for 1 h and then treated
with Yoda1 (5 µM) for 10 min. Calcium imaging was analyzed under a fluorescence microscope.
Scale bars, 50 µm. (B) MBMECs were pretreated with calcium chelator (BAPTA-AM, 10 µM) for
2 h and then treated with Yoda1 (5 µM) for the indicated time. KLF4 proteins were monitored by
western blotting. (C) MBMECs were pretreated with L-type calcium current blocker, Ruthenium
Red (RR, 10 µM), for 2 h and then treated with Yoda1 with the indicated concentration for 8 h.
KLF4 proteins were monitored by western blotting. (D) MBMECs were treated with RR (10 µM) in
presence of shear stress exposure for 5 days, and mRNA levels of Klf2 and Klf4 were measured by
quantitative RT-PCR. (E) MBMECs were pretreated with CaMKII inhibitor (KN-93, 10 µM), PKC
inhibitor (Bisindolylmaleimide I, 10 µM) and FAK inhibitor (TAE226, 10 µM) for 2 h and then treated
with Yoda1 (5 µM) for 8 h. KLF4 proteins were monitored by western blotting. (F) MBMECs were
exposed to differential shear stress for 5 days, and cell lysates were probed with indicated antibodies.
(G) MBMECs were pretreated with KN-93 (10 µM) for 2 h and then treated with Yoda1 (5 µM) for
8 h. KLF4 proteins were monitored by western blotting. (H) Wild-type male ICR mice were injected
with KN-93 (2 mg/kg) via tail vein every 12 h for 4 times, and thoracic aortas were collected for
quantitative RT-PCR of Klf2 and Klf4 mRNA expression. n = 3 mice/group. Data are representative of
three independent experiments and are presented as mean ± SEM of three technical replicates by an
unpaired Student’s t-test (D). The immunoblot was measured using ImageJ to determine the relative
intensities of the indicated bands, which were normalized using the internal loading control proteins.
The relative intensities are shown as numbers. ST: static culture; UF: unidirectional laminar flow.

3.5. CaMKII Interacts with and Activates MEKK3

Our results revealed that both the PIEZO1/Ca2+/CaMKII and PIEZO1/MEKK3/MEK5/
ERK5 axes transcriptionally regulated the expression of Klf2/4, which prompted us to ask
whether there is a link between CaMKII and MEKK3. Interestingly, KN-93 administration
diminished the ERK5 activation induced by Yoda1 treatment in MBMECs (Figure 5A,B),
which suggests that CaMKII might be a key component upstream of MEKK3 to trans-
duce PIEZO1-mediated signals. To further investigate whether CaMKII directly regulates
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MEKK3, we performed a co-immunoprecipitation assay in HEK293T cells using tagged
MEKK3 combined with various CaMKII isoforms. The results reveal that MEKK3 inter-
acted with all isoforms of CaMKII, among which CaMKIIγ had the most potent interaction
(Figure 5C). An immunofluorescence assay revealed the co-localization of tagged MEKK3
and CaMKIIγ in the cytoplasm of MBMECs (Figure 5D). Furthermore, Proximity Ligation
Assay (PLA) was performed to investigate the interaction between MEKK3 and CaMKIIγ in
MBMECs. Strong PLA fluorescence signals were only observed throughout the cytoplasm
of MBMECs transfected with both FLAG-MEKK3 and HA-CaMKIIγ plasmids, but not in
control cells (Figure 5E). To examine whether PIEZO1 activation regulates the interaction
between CaMKII and MEKK3, we treated these MBMECs with Yoda1 for 1 and 2 h. We
found that Yoda1 treatment promoted the interaction of CaMKIIγ with MEKK3 as indicated
by the increased PLA signal over time (Figure 5F). Importantly, the activation of MEKK3
indicated by the increased phosphorylation of MEKK3 was only observed in HEK293T cells
expressing kinase-active mutant CaMKIIγ-T287E, but not in cells expressing kinase-dead
mutant CaMKIIγ-T287A (Figure 5G). Taken together, these results suggest that CaMKII
interacts with MEKK3 and activates MEKK3 kinase activity.
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MECs were treated with KN−93 (10 µM, 2 h) and Yoda1 as indicated. Cell lysates were probed with
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the indicated antibodies. (C) HEK293T cells were transfected with the indicated plasmids and lysed
for co-immunoprecipitation assay using an anti−HA antibody, followed by western blotting using
the indicated antibodies. (D) Representative immunofluorescence staining with anti−HA antibody
(red) and anti−FLAG (green) antibody in MBMECs transfected with the indicated plasmids. Scale
bars, 50 µm. (E,F) MBMECs were transfected with the indicated plasmids. Cells were treated with
Yoda1 (5 µM) or DMSO (F) for the indicated times 48 h after transfection. PLA was used to detect the
interaction between FLAG−MEKK3 and HA−CaMKIIγ in MBMECs. Relative PLA signal intensity
of cells in each group was calculated by ImageJ and shown in right panel of F. PLA signal: red, DAPI:
blue. Scale bars, 50 µm. (G) HEK293T cells were transfected with the indicated plasmids, and cell
lysates were probed with the indicated antibodies. The immunoblot was measured using ImageJ to
determine the relative intensities of the indicated bands, which were normalized using the internal
loading control proteins. The relative intensities are shown as numbers.

3.6. PIEZO1 Restrains the TNF-Induced NF-κB Activation in Endothelial Cells through KLF2/4

To comprehensively assess the transcriptional regulation mediated by PIEZO1 ac-
tivation in endothelial cells, we performed an RNA-sequencing analysis using Yoda1-
stimulated MBMECs. Consistently, a volcano plot analysis showed that the mRNA levels
of Klf2 and Klf4 significantly increased after 2 h of Yoda1 treatment (Figure 6A). A Venn
diagram analysis revealed that Klf2 and Klf4 were the common genes that were increased
at each time point during Yoda1 treatment (Figure 6B). Interestingly, a Maximal Clique
Centrality (MCC) analysis revealed that KLF2 and KLF4 are the hubs of the complex in-
teractome from the commonly induced genes during the time-course Yoda1 treatment
(Figure 6B), highlighting the central role of KLF2 and KLF4 in PIEZO1-mediated biological
processes in endothelial cells. Notably, a KEGG pathway analysis revealed that the TNF
and NF-κB signaling pathways were activated in the initial period, but downregulated
after prolonged Yoda1 treatment (Figures 6C and S5A–C). As mechanosensitive transcrip-
tion factors, KLF2 and KLF4 also exert an anti-inflammatory role in endothelial cells by
inhibiting NF-κB transcriptional activity [45]. Thus, these observations prompted us to
investigate whether UF-mediated PIEZO1 activation provides an anti-inflammatory effect
by promoting the expression of KLF2 and KLF4. To test this, we treated MBMECs with TNF
to activate NF-κB signaling, in the presence of Yoda1, which mimics PIEZO1 activation
by laminar flow. TNF-induced p65 phosphorylation was compromised of Yoda1 pretreat-
ment (Figure 6D). Immunoblot confirmed that KLF4 was effectively activated by Yoda1
during TNF treatment (Figure 6D). Consistently, the induction of A20 mRNA, a classic
downstream of the NF-κB signaling pathway, by TNF treatment was strongly reduced
by Yoda1 pretreatment (Figure 6E). Importantly, the knockdown of Klf2 and Klf4 in MB-
MECs using siRNA prevented the inhibitory effect on NF-κB activation caused by Yoda1
pretreatment in MBMECs, indicated by the rebounded phosphorylation of p65 and the
expression of A20 (Figure 6F,G). These results suggest that PIEZO1 activated by Yoda1 plays
an anti-inflammatory role in endothelial inflammation by stimulating KLF2/4 expression.
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Figure 6. PIEZO1 restrains the TNF-induced NF−κb activation in endothelial cells. (A) The volcano
plot for transcriptome changes of MBMECs after 2 h Yoda1 treatment (5 µM) was built by defining
x-axis as the fold change values and y-axis as P-adjust. Red dots indicate upregulated genes; blue dots
indicate downregulated genes; grey dots indicate not significant change. (B) Venn diagram shows
the overlap genes significantly changed after Yoda1 (5 µM) treatment for 2, 4 or 8 h, respectively,
in MBMECs. Maximal Clique Centrality (MCC) analysis was at the lower panel of Venn diagram.
The lines indicate the interactions. The color shows the rank calculated by MCC. More essential
genes have deeper red color. (C) Circle enrichment shows that the genes are linked via ribbons to
their assigned signaling pathways or biological functions after 2 h Yoda1 treatment in MBMECs.
White-to-red coding on right hand side indicates the p value of selected terms. Color next to the
selected genes indicates number of pathways to which the genes contribute. (D,E) MBMECs were
pretreated with Yoda1 (5 µM) for 8 h and then treated with TNF (2 ng/mL) for the indicated time.
Cell lysates were probed with the indicated antibodies (D), and mRNA levels of A20 were measured
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by quantitative RT−PCR (E). (F,G) Control and siRNA-mediated Klf2/4 knockdown MBMECs were
pretreated with Yoda1 (5 µM) for 4 h and then treated with TNF (2 ng/mL) for 3 h. Cell lysates were
probed with the indicated antibodies (F), and mRNA levels of Klf2, Klf4 and A20 were measured
by quantitative RT−PCR (G). Data are representative of three independent experiments and are
presented as mean ± SEM of three technical replicates by an unpaired Student’s t-test (E,G). The
immunoblot was measured using ImageJ to determine the relative intensities of the indicated bands,
which were normalized using the internal loading control proteins. The relative intensities are shown
as numbers.

4. Discussion

It was well recognized that mechanical signals dynamically control gene transcription
programs to determine cell fate and organogenesis during development [46,47]. However,
it is still less understood how the signaling cascade links the membrane mechanosensi-
tive channel to the nuclear transcription machinery. Endothelial cells respond to shear
stress to exert biological functions and pathological process through various signaling
pathways and MSTFs [8,48]. KLF2/4, upregulated by UF but suppressed by DF, have
been demonstrated to be the most vital MSTFs in endothelial cells, which preserve en-
dothelial homeostasis by regulating the expression of multiple anti-inflammatory and
anti-oxidant genes [15,16,49]. In this study, we investigated the mechanism of how KLF2/4
are regulated by the shear force. We found that PIEZO1 activates the expression of
Klf2/4 in endothelial cells in response to laminar shear stress. Our results show that the
PIEZO1/Ca2+/CaMKII/MEKK3/MEK5/ERK5 signaling cascade promotes the expression
of endothelial Klf2/4 responding to laminar flow by the pharmaceutical approach and
animal model (Figure 7). Our results described here demonstrate how mechanical cues
modulate the activities of nuclear factors that dictate transcription programs to control cell
behaviors and the fate in the endothelium.
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Figure 7. Schematic diagram shows the shear stress-induced KLF2/4 expression via
PIEZO1/CaMKII/MEKK3/ERK5 cascade. Laminar flow stimulates the activation of PIEZO1
and thus causes Ca2+ influx, which further activates CaMKII. Cascade phosphorylation of
MEKK3/MEK5/ERK5 is induced by the activation of CaMKII and ultimately leads to Klf2 and
Klf4 transcription. Elevated KLF2/4 inhibits NK-κB to exert anti-inflammatory effect in the endothe-
lium response to laminar flow.
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Aberrant mechanical signaling has been associated with the pathogenesis of multi-
ple diseases. The development and homeostasis of the vascular system are intimately
connected to mechanical forces associated with blood flow and blood pressure. Shear
stress in aortas exerts diametrically opposed effects in a flow pattern-dependent manner.
UF in straight thoracic and abdominal aortas maintains endothelial homeostasis by pre-
serving endothelial cell structure, alignment and quiescence, which therefore provides
anti-inflammatory effects. However, DF in the aortic arch and atherosclerotic plaque re-
gions leads to endothelial dysfunction and impairs vascular permeability, which thus exerts
pro-inflammatory effects [6,8,50,51]. In our study, high laminar shear stress and a higher
concentration of Yoda1 promoted the expression of Klf2/4. To this end, the molecular
mechanism of how different patterns of blood flow promote distinct PIEZO1 functions
remains unclear. Perhaps this is related to the conformational changes of PIEZO1 when it
senses different forms of blood flow. An alternative mechanism might be that PIEZO1 can
be enhanced by other factors or post-transcriptional modification, such as phosphorylation.

One study reported Piezo1 deficiency relieved atherosclerosis in LDL receptor-deficient
(LDLR−/−) mice [21], which is contrary to its anti-inflammatory effect under UF from
our cell-based study. Previous studies have revealed that KLF2 and KLF4 have an anti-
inflammation function, which thereby protects aortic vessels from atherosclerosis [15,52].
However, besides KLF2/4, hemodynamic forces activate several signaling pathways to reg-
ulate endothelial phenotypes associated with atherosclerosis, via other transcription factors,
such as YAP/TAZ, NRF2, HIF-1a, NF-κB and AP-1 [48]. Perhaps the pro-inflammatory
effect of PIEZO1 under DF in the atherosclerosis animal model is caused by the dysfunction
of those transcription factors. Indeed, we found that the activation of PIEZO1 by Yoda1
suppressed YAP activity by promoting its phosphorylation. In addition, Yoda1 treatment
initially enhanced NF-κB activity, but long-time treatment resulted in the recession of NF-
κB by inducing KLF2/4 expression. It is very likely that these transcription factors crosstalk
with one another to regulate endothelial inflammation upon exposure to hemodynamic
forces. Understanding how KLF2/4 work in concert with these MSTFs in endothelial
homeostasis will be beneficial for us to gain a panoramic view of the mechanical sensing
signaling network in endothelial cells.

Endothelial calcium influx is induced by PIEZO1 under shear stress, which maintains
endothelial focal adhesion and alignment [18,53]. Consistent with a role of Ca2+ influx
in preservation of endothelial homeostasis, CaMKII is the key regulator in endothelial
functions, including NO induction, vascular permeability, endothelial migration and prolif-
eration [54–57]. A recent study also showed that CaMKII was upregulated by PIEZO1 to
adjust endothelial permeability [58]. Here, we found that endothelial CaMKII, activated by
shear stress and PIEZO1, promoted MEKK3 activation and KLF2/4 expression. Therefore,
we established a novel crosstalk between the CaMKII and MAPK signaling pathways.
We have recently shown that MEKK3 activity is restricted by the STRIPAK complex [59].
The STRIPAK complex is a multicomponent supramolecule, which is composed of phos-
phatases, kinases and other components, among which the striatin family is the scaffold
of the complex. The striatin family has been shown to bind Ca2+-calmodulin (CaM) in
the presence of Ca2+ through its CaM-binding domain [60,61]. In addition, the STRIPAK
complex also associates with MEKK3 through CCM2 and CCM3 [59]. Endothelial loss
of CCM2/3 results in the gain of MEKK3-KLF2/4 signaling and causes the cerebral cav-
ernous malformation disease. Whether the STRIPAK complex is regulated by Ca2+ and is
involved in the activation of CaMKII/MEKK3 axis and the expression of Klf2/4 is worth
further investigation.

Endothelial PIEZO1 is involved in multiple physiologies and various pathologies.
PIEZO1 acts as the molecular pressure sensors to regulate blood pressure, and deletion
of both PIEZO1 and PIEZO2 in mice leads to the complete absence of barosensation
and baroreceptor reflex function [62]. Another key role of PIEZO1 in the endothelium
is the regulation of nitric oxide (NO) release, which is an important molecular to adjust
vasodilation and endothelial homeostasis [20].
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One of the cardiovascular diseases involved in endothelial PIEZO1 is pulmonary
arterial hypertension (PAH), which is characterized by an increase in pressure and mechan-
ical forces inside the intrapulmonary arteries [63]. Piezo1 mediates arterial relaxation by
promoting the production of NO in PAH and use of GsMTx-4-ameliorated experimental
pulmonary hypertension in vivo [64]. However, little is known about the fully pathogenic
role of PIEZO1 in pulmonary arterial hypertension. Further experiments are required
to demonstrate the potential role of Yoda1 in the chronic hypoxia-induced pulmonary
hypertension mouse model.

Considering the pro-inflammatory effect of PIEZO1 under DF, two studies have
shown that Piezo1 deficiency relieved atherosclerosis in LDL receptor-deficient (LDLR−/−)
mice [21], and pharmacological inhibition of Piezo1 by GsMTx-4 administration attenuated
plaque formation in ApoE−/− mice [65]. However, there is currently less reported about the
located application with appropriate concentration of Yoda1 in the atherosclerosis model,
given its anti-inflammatory effect in UF. Our research revealed the specific relationship
between PIEZO1 and KLF2/4 in the UF-mediated anti-inflammatory process. Activa-
tion of PIEZO1 by Yoda1 that mimics laminar shear stress inhibited the phosphorylation
of P65 and the expression of downstream inflammatory factors induced by TNF. This
anti-inflammatory effect of Yoda1 suggests its potential pre-clinical and clinical use in
atherosclerosis. However, further studies are still needed to prove the clinical implications
and translational potential of the mechanism that PIEZO1 regulates KLF2/4 expression in
endothelial functions and cardiovascular diseases by the LDLR−/− and ApoE−/−-induced
atherosclerosis mice model.

Although our study identifies the mechanism that mechanical cues modulate KLF2/4
expression through PIEZO1, we did not test the function of this mechanism in disease
models, such as atherosclerosis, hypertension and thoracic aortic aneurysm, or in specimens
from patients with cardiovascular disease, which is a critical step for clinical translation.
Moreover, the CRISPR/Cas9 system in primary endothelial cells is not yet possible due to
poor efficiency and cytotoxicity, which led us to perform experiments using immortalized
endothelial cell lines or treating primary HUVECs with various inhibitors to validate
the results.

5. Conclusions

Emerging evidence connects MSTF dysregulation by mechanical cues to various hu-
man vascular diseases. We have discovered a novel endothelial mechanical signaling
pathway consisting of PIEZO1 and a kinase cascade CaMKII/MEKK3/MEK5 that links
fluid shear stress to the nuclear transcription factors KLF2 and KLF4. Although the under-
lying mechanisms remain to be further defined in many cases, understanding the MSTF
dysregulation by mechanical cues in human diseases potentially can provide insights into
new therapeutic strategies for these diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11142191/s1, Supplementary Table S1: siRNA and guide
RNA target sequence; Supplementary Table S2: Antibody information; Supplementary Table S3:
qPCR primers; Supplementary Figure S1: KLF2/4 expression is increased under laminar shear stress
using a flow model in vitro. (A) Diagram of differential patterns of shear stress exposure. Cells
were harvested throughout the entirety of the well without shear stress application (static, ST),
or, respectively, in the center or periphery of the well after shear stress exposure. DF: disturbed
flow. UF: unidirectional laminar flow. (B) MBMECs were exposed to differential shear stress for
5 days, and morphology was analyzed under a microscope. Scale bars, 50 µm. (C) MBMECs were
exposed to differential shear stress for 5 days, and cell lysates were probed with the indicated
antibodies. (D) MBMECs were exposed to UF with indicated rotating speed of orbital shaker, and
KLF4 proteins were monitored by Western blotting. (E) HUVECs were treated with Yoda1 with the
indicated concentration for 8 h, and KLF4 proteins were monitored by Western blotting. (F) HUVECs
were treated with Yoda1 (5 µM) for the indicated time, and KLF4 proteins were monitored by
Western blotting; Supplementary Figure S2: Piezo1 deficiency restrains Yoda1-induced KLF2/4
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expression. (A) Control and Piezo1-dificient MBMECs were treated with Yoda1 with the indicated
concentration for 8 h, and KLF4 proteins were monitored by Western blotting. (B) Control and
Piezo1-dificient MBMECs were treated with Yoda1 with the indicated concentration for 2 h, and
mRNA levels of Klf2 and Klf4 were measured by quantitative RT-PCR. Data are representative of
three independent experiments and are presented as mean ± SEM of three technical replicates;
Supplementary Figure S3: MEKK3/MEK5/ERK5 signaling pathway is involved in PIEZO1-induced
KLF2/4 expression. (A) Control and Mekk3-dificient MBMECs were treated with Yoda1 with the
indicated concentration for 8 h, and KLF4 proteins were monitored by Western blotting. (B) Control
and Mekk3-dificient MBMECs were treated with Yoda1 with the indicated concentration for 2 h, and
mRNA levels of Klf2 and Klf4 were measured by quantitative RT-PCR. (C) MBMECs were pretreated
with MEK5 inhibitor (BIX02189, 10 µM) for 12 h and then treated with Yoda1 with the indicated
concentration for 8 h, and KLF4 proteins were monitored by Western blotting. (D) MBMECs were
pretreated with MEK5 inhibitor (BIX02189, 10 µM) for 12 h and then treated with Yoda1 with the
indicated concentration for 2 h, and mRNA levels of Klf2 and Klf4 were measured by quantitative
RT-PCR. Data are representative of three independent experiments and are presented as mean ±
SEM of three technical replicates by an unpaired Student’s t-test (B,D); Supplementary Figure S4:
CaMKII is required for Yoda1-induced KLF4 expression and maintains the endothelial cytoskeleton.
(A) MBMECs were pretreated with BAPTA-AM (10 µM) for 2 h and then treated with Yoda1 with the
indicated concentration for 8 h. KLF4 proteins were monitored by Western blotting. (B) MBMECs
were pretreated with RR (10 µM) for 2 h and then treated with Yoda1 (5 µM) for the indicated time.
KLF4 proteins were monitored by Western blotting. (D) HUVECs were pretreated with KN-93 (10 µM)
for 2 h and then treated with Yoda1 (5 µM) for the indicated time. KLF4 proteins were monitored
by Western blotting. (E) HUVECs were pretreated with KN-93 (10 µM) for 2 h and then treated
with Yoda1 with the indicated concentration for 8 h. KLF4 proteins were monitored by Western
blotting. (F) Representative phalloidin staining for F-actin (green) and nuclei (blue) of MBMECs
treated with KN-93 (10 µM) for the indicated time. Scale bars, 50 µm; Supplementary Figure S5:
The analysis of enriched Gene Ontology and KEGG signaling pathways in MBMECs treated with
Yoda1 in a time-course manner. (A–C) The enriched Gene Ontology and KEGG signaling pathways
were selected to demonstrate biological functions and related signaling pathways among DEGs. The
horizontal axis indicates gene ratio. Colors represent the significance of differential enrichment; the
size of the circles represents the number of genes.
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