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INTRODUCTION 
 

Pancreatic cancer remains a major cause of cancer 

related death. Pancreatic tumors develop from the 

dysregulated proliferation of cells in the pancreas. 

Approximately 50% of cases of pancreatic cancer are 

diagnosed in those aged over 75. The most common 

type of pancreatic cancer is pancreatic ductal 

adenocarcinoma, the current therapies for which 

including surgery, chemotherapy and radiotherapy are 

ineffective. Due to the difficulties of treating malignant 

PAAD tumors, many patients have failed to receive 

optimal therapeutic regimens. New and more effective 

diagnosis and treatments for this and other forms of 

pancreatic cancer are therefore urgently required. 

 

SCAMPs function as post-Golgi transporters in all 

mammalian cells. The expression of the SCAMP family 

members differs in many cell types, with each SCAMP 

proposed to act during key stages of post-Golgi 

transport [1]. SCAMPs 1-3 possess a cytoplasmic N-
terminal domain with multiple NPF (R-P-F) repeats, 

conserved transmembrane regions (TMs) and a 

cytoplasmic tail that mediates surface to Golgi transport 
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ABSTRACT 
 

Due to the difficulties in early diagnosis of pancreatic adenocarcinoma (PAAD), many patients fail to receive 
optimal therapeutic regimens. The Secretory-Carrier-Membrane-Proteins (SCAMPs) are known to be 
dysregulated in a range of human diseases due to their characterized roles in mammalian cell exocytosis 
inferred from their functions as integral membrane proteins. However, the expression and prognostic value of 
SCAMPs in PAAD is poorly characterized. We compared cancer vs. healthy tissue and found that the expression 
of SCAMPs1-4 was upregulated in PAAD compared to normal tissue. In contrast, SCAMP5 expression was 
downregulated in PAAD. Moreover, the expression of SCAMPs1-4 was enhanced in PAAD cell lines according to 
Cancer Cell Line public database. Furthermore, the HPA, GEPIA databases and immunohistochemical analysis 
from 238 patients suggested that the loss of SCAMP1 led to improved overall survival (OS), whilst lower 
SCAMP5 levels led to a poorer OS. The univariate and multivariate analysis showed that SCAMP1 and SCAMP5 
expression were independent prognostic factors of PAAD. In addition, the cBioPortal for Cancer Genomics, 
LinkedOmics datasets, and the GEPIA were used to identify the co-expression genes of SCAMP1,5 and the 
correlation between SCAMPs members. We conclude that SCAMPs 1 and 5 significantly represent promising 
diagnosis and prognostic biomarkers. 
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[2]. However, SCAMPs 4-5 differ from other family 

members as they lack a highly conserved cytoplasmic 

NPF repeat [3]. SCAMPs are integral membrane 

proteins that are ubiquitously expressed, most notably in 

secretory cells [4–6]. Although SCAMP functionality is 

yet to be defined, previous studies highlight their role in 

endocytosis, exocytosis and vesicular trafficking [7–9]. 

SCAMPs co-exist in circulating transport vesicles 

originating from post-Golgi and endocytic transport and 

so do not function during endosome recycling. 

SCAMPs therefore act at similar stages of post-Golgi 

function though the precise functionality of each 

SCAMP member remains poorly defined [9]. 

 

SCAMP1 dampens down the invasive ability of MTSS1 

in triple-negative breast cancer cells through the 

trafficking mediated upregulation of RAC1-GTP, thus 

enhancing cell adhesion. The cooperative activity of 

MTSS1 and SCAMP1 prevents triple-negative breast 

cancer cell invasion whilst their silencing enhances the 

aggressiveness of these cancer cells [10]. We previously 

demonstrated that SCAMP1 silencing inhibits the 

metastatic phenotypes of human pancreatic and 

gallbladder cancer cells [11]. SCAMP1 is differentially 

expressed in normal vs. tumor tissue in patients with 

cervical cancer and pancreatic cancer lacking lymph 

node metastasis [11, 12]. 

 

The growth of melanoma tumors is inhibited following 

EFEMP1 and SCAMP3 silencing by miR-192-5p and 

miR-584-3p targeting, respectively. The AMPK 

activator Metformin also displays anti-cancer activity, 

particularly in cases of melanoma in which cancer cell 

growth is inhibited through direct effects on miR-192-

5p-EFEMP1 and miR-584-3p-SCAMP3 pathways [13]. 

SCAMP3 also mediates inflammatory responses in 

breast cancer cells [14]. SCAMP4 accumulates on the 

surface of senescent cells and promotes SASP (The 

senescence-associated secretory phenotype) factor 

secretion, in addition to IL6, IL8, and growth 

differentiation factor 15 (GDF-15). Moreover, 

SCAMP3 promotes an SASP phenotype, a major trait of 

senescent cells [4]. However, knowledge of the cellular 

roles of SCAMP5 are limited in comparison to other 

family members. Unlike other SCAMP family 

members, neuronal SCAMP5 contributes to endocytic 

recycling to promote neuronal conduction [15]. 

 

In this study, we assessed cancer vs. healthy tissue and 

found that the expression of SCAMPs1-4 is higher in 

PAAD compared to normal tissue. In contrast SCAMP5 

expression was downregulated in PAAD. Moreover, the 

expression of SCAMPs 1-4 were enhanced in in vitro 
PAAD cell lines according to online cancer databases. 

Our immunohistochemical analysis and HPA, GEPIA 

databases were used to measure the differential 

expression of SCAMPs and survival analysis based on 

HPA, GEPIA databases which suggested that the lower 

SCAMP1 led to improved overall survival (OS), whilst 

the low levels of SCAMP5 led to a poor OS. In 

addition, the cBioPortal for Cancer Genomics, 

LinkedOmics datasets and GEPIA were used to analyze 

the correlation between SCAMPs 1, 4 and 5 in PAAD 

in which a significant correlation was identified. These 

data highlight SCAMPs as important diagnostic and 

therapeutic targets for PAAD. 

 

RESULTS 
 

Differential expression and diagnosis model of 

SCAMPs mRNA between PAAD and normal 

samples 

 

According to the Gene Expression Profiling Interactive 

Analysis (GEPIA) datasets, an Online web-analysis tool 

frequently used to assess TCGA and GTEx databases, 

mRNA profiles of individual SCAMPs were compared 

between normal tissue and PAAD. The results showed 

that SCAMPs 1-4 were expressed to higher levels in 

PAAD than normal samples, whilst the opposite 

phenotype was observed for SCAMP5 (Figure 1A, 1C). 

In addition, expression violin plots showed SCAMP1 

and SCAMP5 had a significant correlation with 

patients’ pathological stage (Figure 1B). Next, ROC 

curves indicated that the AUC index in TCGA and 

GTEx datasets was 0.867(p<0.001), 0.890(p<0.001), 

0.797(p<0.001), 0.567(p<0.05) and 0.913(p<0.001) 

respectively (Figure 1D). Additionally, we also found 

the significant difference in SCAMP1 (p < 0.05) and 

SCAMP5 (p < 0.05) between early stage (Stage I + II) 

and late stages (Stage III + IV) as diagnosis markers. 

(Supplementary Figure 1A, 1B) Because the sample 

size of PAAD in Stage III + IV is small, we also 

calculated the difference in SCAMP1 (p > 0.05) and 

SCAMP5 (p < 0.05) between early stages (Stage I + II 

a) and late stages (Stage II b + III + IV) (Supplementary 

Figure 1C, 1D). 

 

Expression of SCAMPs in PAAD cells 

 

Using the Cancer Cell Line Encyclopedia (CCLE) 

database and the bubble heatmap visualizer derived 

from the GTEx-Portal, gene expression data was 

visualized from the datasets. Upon the assessment of an 

array of cancer cell lines, SCAMPs 1-4 were highly 

expressed, but SCAMP5 was expressed to lower levels 

in PAAD cells (Figure 2A–2E). The European 

Bioinformatics Institute (EMBL-EBI) database was also 

used to further assess SCAMP expression in the PAAD 

cells. The analysis confirmed that SCAMPs1-4 were 

overexpressed in the majority of PAAD lines, whilst 

SCAMP5 was expressed to low levels (Figure 2F). 
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We also validated the expression of SCAMPs in PAAD 

cell lines (PANC-1, SW1990 and AsPC-1 cell) and 

normal human pancreatic ductal cell (HPDE cell) by 

Real-time quantitative PCR and Western blot assay. The 

result showed that SCAMPs1-4 were overexpressed in 

PANC-1 cell; whilst SCAMP5 was expressed to low 

levels in AsPC-1 cell line (Figure 2G–2I). 

Prognostic analysis of the SCAMPS in PAAD 

 

We next performed survival analysis for SCAMPs  

1-5 using the Human Protein Atlas (HPA) and  

GEPIA databases in PAAD. The data showed that 

SCAMPs 1,5 were strongly associated with a poor OS 

in PAAD from both databases (Figure 3A, 3B). 

 

 
 

Figure 1. Differential expression and ROC curves of SCAMPs in PAAD. (A) Differential expression of SCAMP 1-5 (I-V) in PAAD 

(log2(TPM + 1)). (B) Expression violin plots of SCAMP 1-5 (I-V) based on patient pathological stage (log2(TPM + 1)). (C) Differential expression 
of SCAMP 1-5 in PAAD (TPM). (D) The Area Under the Curve (AUC) metrics are also provided for SCAMP1-5 (I-V) to predict diagnosis in PAAD 
by Medcalc (version 19.0); the comparison of ROC curves for SCAMP1-5 (VI). 
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SCAMP5 downregulation was associated with poor  

OS in PAAD (Figure 3A, 3B) whilst SCAMP1 

overexpression led to a poor prognosis, suggesting  

its role as an oncogene. Thus, both SCAMPs 1, 5 act 

as predictors for the diagnosis and prognosis of 

PAAD. 

SCAMP1 and SCAMP5 expression and their 

correlation with the clinicopathological characteristics 

and prognosis of PAAD 

 

We used immunohistochemistry to assess the expression 

of SCAMP 1, 5 in 238 paraffin-embedded PAAD 

 

 
 

Figure 2. Expression of SCAMPs in PAAD cell lines using CCLE and the EMBL-EBI: Expression Atlas. (A–E) Expression of SCAMPs 
in PAAD cell lines using the CCLE database. (F) Expression of SCAMPs in PAAD cell lines using the EMBL-EBI (Expression Atlas) database.  
(G–I) The verification of SCAMPs expression was evaluated by RT-qPCR (G) and western blotting (H, I) in PAAD cell lines (PANC-1,  
SW1990 and AsPC-1 cell) and normal human pancreatic ductal cell (HPDE cell). Results shown are the mean ± SD (* p < 0.05, ** p < 0.01, 
*** p < 0.001). 
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Figure 3. Prognostic value of SCAMP expression in PAAD patients (HPA and GEPIA). (A–L). Prognostic value of SCAMP expression 

in PAAD patients according to GEPIA (A–F) and HPA (G–L) databases. 
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and 117 adjacent normal specimens. Immunostaining 

for SCAMP1,5 was mostly cytoplasmic/membranous in 

PAAD cells (Figure 4A, 4B). Upon analysis of 

SCAMP1,5 expression with clinicopathologic 

parameters, SCAMP1 overexpression positively 

correlated with age, N stage, TNM stage and Neural 

invasion, whilst the down-regulation of SCAMP5 

correlated with age, T stage, N stage, TNM stage and 

pathology differentiation (Table 1). Kaplan–Meier 

survival plots showed that higher SCAMP1 or lower 

SCAMP5 expression correlated with poorer prognosis 

in PAAD patients (log-rank test, p =0.020; p=0.004, 

Figure 4C, 4D). Moreover, univariate analysis indicated 

that age, metastasis, SCAMP1 expression and SCAMP5 

expression were significantly associated with the risk of 

cancer-related death. Multivariate analysis showed that 

SCAMP1 and SCAMP5 expression were independent 

prognostic factors (Table 2). Chi-Square tests were used 

to investigate SCAMP1, 5 expression in adjacent 

normal and pancreatic adenocarcinoma (p<0.0001), 

(Figure 4E, 4F). 

 

SCAMP correlation analysis 

 

The cBioPortal for Cancer Genomics was used to 

analyze the co-expression of SCAMPs1, 5 from 179 

PAAD tumors. The most significant genes that 

correlated with SCAMPs 1 and 5 (Figure 5A) were 

TMED7 (positive Spearman’s Correlation=0.742 

p<0.001), DAZAP1 (negative Spearman’s Correlation=-

0.673 p<0.001) and BEX1 (positive Spearman’s 

Correlation= 0.786 p<0.001) and TGIF1 (negative 

Spearman’s Correlation= -0.572 p<0.001). Other 

identified genes are summarized in Supplementary 

Table 1. Using the LinkedOmics database, SCAMP1 

was found to negatively correlate with SCAMP 3 

(spearman correlation: -0.4085, p < 0.01), whilst 

SCAMP3 positively correlated with SCAMP4 

(spearman correlation: 0. 3489, p < 0.0001) (Figure 5B, 

5C). These data were verified in the GEPIA datasets in 

which SCAMP1 correlated with SCAMP2 (R: 0.31, p < 

0.05), whilst SCAMP3 correlated with SCAMP4 (R: 

0.37, p < 0.05), (Figure 5D, 5E) in PAAD samples. 

 

Functional enrichment analysis of SCAMPs 1, 4 and 5 

 

GO and KEGG pathway analysis of SCAMPs 1, 4 and 5 

were performed to shed further light on their biological 

functions. GO term analysis in GSEA showed that the 

SCAMPs associated with the ribosomes (SCAMPs 1-4) 

and condensed chromosomes (SCAMP5) were they 

participate translational initiation (SCAMPS 1 and 4) or 

chromosome segregation (SCAMP 5). Furthermore, the 
SCAMPs were shown to participate in the structural 

constituent of ribosomes (SCAMPS 1 and 4) and cell 

adhesion molecule binding (SCAMP5) (Figure 6A–6C). 

KEGG pathway analysis showed enrichment in the 

ribosomes (SCAMPS 1 and 4) and cell cycle 

components (SCAMP 5) (Figure 6A–6C). 

 

Establishment and analysis of the PPI/ functional 

network 

 

We firstly constructed PPI network of SCAMPs family 

by the predicted mode of molecular action, and 

constructed a two-layered model to reveal the 

regulatory networks of the SCAMPs in PAAD using 

GeneMania. The outer layer included genes co-

expressed and interacting with PLD1, ATP5L, PLD2, 

SYT2, EGFR, ST3GAL3, SYNRG, BCAP31, ITSN1, 

RAB2A, SNAP23, FAM189B, REEP5, UNC93B1, 

JAGN1, EPS15, BAG6, SNRPD1, ARF6, and SNRPD3 

(Figure 7). 

 

DISCUSSION 
 

The dysregulation of SCAMPs occurs frequently in an 

array of cancers [10–16]. This study explored the 

differential expression and prognostic value of 

SCAMPs in PAAD in an attempt to improve PAAD 

treatment and diagnostic accuracy. 

 

Emerging studies suggest that the dysregulation of 

SCAMP1 is related to the occurrence and progression of 

various tumors, including pancreatic cancer, gallbladder 

cancer, cervical cancer and breast cancer [10–12]. The 

downregulation of SCAMP1 suppresses the migration 

and invasion of tumor cells [11, 17]. SCAMP1 

upregulates VEGF secretion that is required for nutrient 

support for newly formed blood vessels [18]. SCAMP1 

also suppresses the malignant proliferation of glioma 

cells through the miR-499a-5p/LMX1A/NLRC5 axis, 

highlighting SCAMP1 as an oncogene [19]. SCAMP1 is 

a key cellular regulator of endocytic and secretory 

pathways through its dual role in the stimulation of 

dilation and blocking fusion pores, which 

downregulates bulk exocytosis [20]. In this study, the 

aforementioned cancer databases demonstrated that 

SCAMP1 expression is elevated in PAAD vs. healthy 

tissue. These findings were confirmed following the 

assessment of SCAMP1 levels in a range of in vitro 

PAAD culture systems, in which SCAMP1 was 

significantly elevated compared to non-cancerous 

pancreatic cell lines. Combining GEPIA and HPA 

datasets with our clinical data revealed that SCAMP1 

provides strong prognostic value in PAAD patients. 

Upregulated SCAMP1 significantly correlated with 

poor OS. 

 

We found that the expression of SCAMPs 2 and 3 in 

PAAD samples were higher than normal pancreatic 

samples. SCAMP 2 and 3 expression were also elevated 
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Figure 4. Relationship SCAMP1, 5 expression and the clinicopathological parameters of PAAD patients. (A, B) Representative 

images of SCAMP1 and SCAMP5 staining in PAAD tissue. (Expression of SCAMP1 and SCAMP5 were evaluated semi-quantitatively based on 
staining intensity and cell positivity, representative images are shown at × 200 and × 400 magnification, respectively.) (C, D) Kaplan–Meier 
analysis of the overall survival of PAAD patients stratified by the SCAMP1 and SCAMP5 immunoreactive scores by SPSS version 19.0. Log-rank 
test were performed to compare differences between groups. (E, F) Quantification of SCAMP1, 5 expression in pancreatic cancer and 
adjacent normal samples. Statistical analyses were performed using the χ2 test. Low: low expression, High: high expression. 
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Table 1. Relationship between SCAMP1, 5 expression and the clinicopathological parameters of patients with PAAD. 

Characteristics Number of cases 
SCAMP1 level SCAMP5 level 

L H P value L H P value 

Total cases 238       

Sex         

Male 128 64 64 
0.401 

74 54 
0.822 

Female  110 61 49 62 48 

Age         

<60 91 56 35 
0.028 

43 48 
0.015 

≥60 147 69 78 93 54 

Pathology differentiation        

High (Middle or High) 175 96 79 
0.229 

89 86 
0.001 

Low (No or Low) 63 29 34 47 16 

T classification        

T1-2 44 27 17 
0.193 

17 27 
0.006 

T3-4 194 98 96 119 75 

N classification        

N0 101 67 34 
0.0002 

50 51 
0.041 

N1-2 137 58 79 86 51 

Metastasis        

No 231 122 109 
0.892 

133 98 
0.698 

Yes 7 3 4 3 4 

TNM stage         

I-IIA 96 65 31 
0.0001 

47 49 
0.036 

IIB-IV 142 60 82 89 53 

Vascular invasion        

No  172 97 75 
0.053 

97 75 
0.707 

Yes  66 28 38 39 27 

Neural invasion        

No  152 88 64 
0.027 

85 67 
0.613 

Yes  86 37 49 51 35 

Patients were staged in accordance with the 8th Edition of the AJCC Cancer’s’ TNM Classification. Chi-square test, numbers in 
bold indicate significant p-values (p<0.05). H: high, L: low. 

 

Table 2. Univariate and multivariate Univariate cox regression models for overall survival in PAAD patients (n = 238).  

Characteristics 
Univariate analysis Multivariate analysis 

HR 95%CI P value HR 95%CI P value 

Age 1.670 1.101-2.534 0.016 1.398 1.033-2.420 0.131 

TNM stage 1.149 0.769-1.717 0.498 0.395 0.101-2.791 0.272 

T classification 1.128 0.698-1.823 0.622 0.990 0.646-1.905 0.971 

N classification 1.240 0.834-1.844 0.287 2.211 0.358-9.151 0.333 

Metastasis 0.956 0.348-2.621 0.029 1.556 0.320-3.324 0.468 

SCAMP1 1.565 1.068-2.294 0.022 1.654 1.005-2.266 0.017 

SCAMP5 0564 0.380-0.838 0.005 0.531 0.377-0.872 0.004 

Numbers in bold indicate significant p-values (p<0.05). 
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in human PAAD cell lines according to CCLE and 

EMBL-EBI databases. No positive correlation was 

observed between SCAMPs 2 and 3 and OS in PAAD. 

To-date the role of SCAMP2 in cancer is poorly 

defined. SCAMP2 also colocalized with fusion sites and 

enhanced granule exocytosis mediated through E 

peptide–containing domains that inhibit exocytosis [7]. 

Together, these data suggest that SCAMP2 promotes 

 

 
 

Figure 5. Co-expressed genes of SCAMP1, 5, and correction between SCAMP1- 5 in PAAD (cBioPortal for Cancer Genomics, 
LinkedOmics, and GEPIA). (A) Co-expressed genes (top-1) of SCAMP1, 5 in PAAD using the cBioPortal for Cancer Genomics. (I: TMED7, II: 

DAZAP1, III: BEX1, IV: TGIF1) (B, C) Correction between SCAMP1- 5 in PAAD using LinkedOmics. (B: I: SCAMP1 vs 2, II: SCAMP1 vs 3 III: 
SCAMP1 vs 4, IV: SCAMP1 vs 5, V: SCAMP2 vs 3; C: I: SCAMP2 vs 4, II: SCAMP2 vs 5 III: SCAMP3 vs 4, IV: SCAMP3 vs 5, V: SCAMP4 vs 5). (D, E) 
Correction between SCAMP1- 5 in PAAD using GEPIA. (R: Spearman correlation analysis; B: I: SCAMP1 vs 2, II: SCAMP1 vs 3 III: SCAMP1 vs 4, 
IV: SCAMP1 vs 5, V: SCAMP2 vs 3; C: I: SCAMP2 vs 4, II: SCAMP2 vs 5 III: SCAMP3 vs 4, IV: SCAMP3 vs 5, V: SCAMP4 vs 5) * Spearman 
correlation >0.3 or Spearman correlation< -0.3 and p< 0.05. 
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NHE5 transport through recycling endosomes and 

enhances its cell-surface targeting in an Arf6-dependent 

manner. NHE5 is a Na+/H+ exchanger enriched in brain 

tissue [21]. A correlation between the expression of a 

basic/hydrophobic peptide segment within SCAMP2: 

CWYRPIYKAFR that interacts with PI (4, 5) P2) and 

inhibits exocytosis, particularly by SC2-R204A exists. 

A common electrostatic interaction is known to occur 

between PI (4, 5) P2 and the E peptides of SCAMPs 1 

and 2 that regulates their interaction within the 

membrane interface during exocytosis. Similar 

interactions involving other SCAMPs may also exist but 

as yet remain undefined [22]. SCAMP2 also regulates 

exocytosis through other methods [23]. 

 

 
 

Figure 6. Functional enrichment analysis for SCAMP1, 4, 5. (A–C) Gene set enrichment analysis (GSEA) GO and KEGG pathway analysis 
for SCAMP1(A), 4(B), 5(C) respectively, (CC): Cellular components. (BP): Biological processes. (MF): Molecular functions. (KEGG): KEGG 
pathway analysis. (I: BP, II: CC, III: MF, IV: KEGG). 
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Figure 7. Protein-protein interaction network of SCAMPs (STRING, GeneMANIA). (A) Functional protein association networks of 

SCAMPs. Line shape indicated the predicted mode of molecular action. (B) Networks between predicted genes and SCAMP1-5. Different 
colors of the network edge indicate the bioinformatics methods applied: co-expression, website prediction, pathway, physical interactions 
and co-localization. Different colors for the network nodes indicate the biological functions of enrichment genes. 
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It was recently suggested that SCAMP3 acts as a 

prognostic biomarker and treatment target in HCC, the 

silencing of which suppresses HCC proliferation and 

cell cycle progression [16]. SCAMP3 inhibits 

endocytosis and receptor degradation through its ability 

to inhibit the ubiquitination of ESCRTs (Endosomal 

Sorting Complex Required for Transports) [24]. 

SCAMP3 positively influences the sorting and budding 

of intraluminal vesicles controlling multivesicular 

endosome biogenesis [25]. Multivesicular bodies 

(MVBs) regulate cell cycle progression and tumor 

biogenesis. Chmp1A, an ESCRT protein, inhibits 

cancer cell proliferation, invasion and signaling activity 

via MVB formation [26], highlighting the potential role 

of SCAMP3 during cancer development. In our 

analysis, SCAMP3 expression was minimally 

associated with the OS of PAAD patients. 

 

The enhanced phosphorylation of PKC by SCAMP-4 

alters vesicular transport [27]. SCAMP5 enhances the 

secretion of calcium-regulated signal peptide-containing 

cytokine (CL5) but not IL-1β in MCF-7 epithelial cells 

[28]. SCAMP5 co-operates with SNAREs to enhance 

cytokine exocytosis through a process mediated by 

enhanced Ca2+ influx [28]. The role of SCAMPs 4-5 in 

tumor cells are less well-studied. Our data suggest that 

SCAMP4 is overexpressed in PAAD vs normal tissues, 

whilst SCAMP5 shows an opposite phenotype. 

Surprisingly, elevated levels of SCAMP5 correlate with 

an improved OS in PAAD patients. This highlights the 

tumor suppressive role of SCAMP5 in PAAD cells. 

 

We next assessed the utility of SCAMPs as prognostic 

indicators of PAAD, to reveal important information on 

the molecular roles of these trafficking proteins in the 

development and progression of PAAD. We found that 

SCAMPs 1 and 5 showed dysregulated expression in 

PAAD tumors and play an important role in PAAD 

tumorigenesis, serving as molecular markers for those 

at an elevated risk of PAAD tumorigenesis. These data 

also highlighted SCAMPs 1 and 5 as potential targets 

for PAAD treatment, the regulation of which could 

improve PAAD survival and prognosis. SCAMP 1, 5 

expression were significantly associated with age, N 

classification and TNM-stage. Enrichment analysis 

suggested that the functional network of SCAMPs were 

involved in the structural constituents of ribosomes and 

cell adhesion molecule binding. We further highlighted 

key gene members in the functional activity of the 

SCAMPs including PLD1, ATP5L, PLD2, SYT2, 

EGFR, ST3GAL3, SYNRG, BCAP31, ITSN1, 

RAB2A, SNAP23, FAM189B, REEP5, UNC93B1, 

JAGN1, EPS15, BAG6, SNRPD1, ARF6, and 
SNRPD3. Amongst them, PLD1, EGFR, ST3GAL3 

and ARF6 mediate the progression of pancreatic  

cancer [29–33]. 

Overall, this study reveals that all SCAMP family 

members are differentially expressed between PAAD 

and normal tissues, and that SCAMPs 1, 5 may act as 

predictors for the diagnosis and prognosis of PAAD. 

SCAMPs therefore represent potential therapeutic 

targets for PAAD and mediate its occurrence and 

progression of PAAD, as in other cancers. This study 

still had some limitations: Firstly, our SCAMP data 

were obtained from public databases and verification 

queues only included SCAMP protein expression levels 

without confirmation in vitro or in vivo. Secondly, 

diagnosis and prognosis require extensive external 

verification of the clinical sample data and our 

diagnosis model is from tissue samples without blood or 

exosome samples. Thirdly, specific functional 

regulatory networks cannot be built without amount 

experiments by only bioinformatics analysis. Further 

studies are therefore required to verify the role played 

by SCAMPs in PAAD. 

 

MATERIALS AND METHODS 
 

Patients and tissue specimens 

 

Pancreatic adenocarcinoma tissues were obtained from 

patients admitted to the Northern Jiangsu People’s 

Hospital who had surgical abscission treatment from 

October 2015 to October 2019. Patients were 

individually diagnosed by 2 pathologists, had not 

received chemotherapy or radiation therapy prior to 

surgical procedures. A total of 238 cancerous and 117 

noncancerous paraffin-embedded specimens were used 

for immunohistochemistry analysis. 

 

Real-time quantitative PCR and western blot assay 

 

Shanghai Institute of Nutrition and Health in Shanghai, 

China provided the human PAAD cell lines PANC-1, 

SW1990, AsPC-1, and normal HPDE cell (Human 

pancreatic ductal cell). A one percent strength 

streptomycin-penicillin along with fetal bovine serum of 

ten percent strength was part of the medium in which 

the cells were cultured at a temperature of 37° C and 

five percent carbon dioxide- fed humidified incubator. 

 

The Trizol reagent (from Invitrogen, (China) was used 

to extract the total ribonucleic acid while the PT-PCR 

Kit sourced from Vazyme (China) was used to reverse 

transcribe the samples. The primers used in this study 

were: SCAMP1- forward: 5′-TTCGACAGTAACCCG 

TTTGC-3′; SCAMP1- reverse: 5′-ATTAGGCATCTT 

CACACCGC-3′; SCAMP2- forward: 5′-CAGAGATC 

CCTGCCGACTAC-3′; SCAMP2- reverse: 5′-CAGGC 

AAGCAGGTTCAGAAA-3′; SCAMP3- forward: 5′-A 

TCCACTCCTTATACCGCCG-3′; SCAMP3- reverse: 

5′-GAGAAGACACCAGCAGCAAA-3′; SCAMP4- 
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forward: 5′-TTCCGGCCTGTCTACAAGG-3′; SCA 

MP4- reverse: 5′-AACTGGGCTCCGAAGATGAA-

3′;SCAMP5- forward: 5′-ACCAAGACTTCGAGGCA 

GAT-3′;SCAMP5- reverse: 5′-CGCTGTTCAACATC 

CAGAGG-3′; C3H6O3 (Glyceraldehyde) -3-G6PD_N 

(phosphate dehydrogenase): forward: 5′-GGTGAAGG 

TCGGAGTCAACG-3′; reverse: 5′-CAAAGTTGTCA 

TGGATGACC-3′. GAPDH Ct was the value to  

which each Ct value expression was normalized to 

determine relative expressions. RT-qPCRs were 

performed as the MIQE (Minimum Information for 

Publication of Quantitative Real-Time PCR Experiments) 

guidelines [34]. 

 

RIPA (from Solarbio (China) was used to lyse the cells. 

The radioimmunoprecipitation assay contained a 

protease inhibitor maintained on ice for thirty minutes. 

A five percent mixture of bovine serum albumin from 

Invitrogen (China) was used to block the membranes 

and incubation was done overnight at 4° C. 

Subsequently, for a duration of 1 h, incubation was 

conducted using horseradish peroxidase (HRP)-

conjugated goat anti-mouse or goat anti-rabbit sourced 

from Cell Signaling Technology, China. SCAMP1, 

SCAMP2, SCAMP3, SCAMP4 and SCAMP5 

antibodies sourced from proteintech, China was used to 

perform western blot assay with anti-GAPDH antibody 

(Abcam) as a loading control. Data was analyzed by 

GraphPad Prism 8.0 (GraphPad Software Inc., San 

Diego, CA) and presented as mean ± SD. One-way 

analysis of variance (ANOVA) followed Tukey’s test 

was employed to compare differences among multiple 

groups. P < 0.05 was indicated as statistically 

significant. 

 

Immunohistochemistry 

 

The sample was blocked and incubated with the 

SCAMP1, 5 Ab (1: 50) for 2 hours at 23° C, and an 

HRP conjugated goat anti-rabbit Ab was used as the 

secondary probe. 2 pathologists, independent of each 

other and blinded by the patients’ clinical data gave the 

evaluation of immunohistochemical staining. SCAMP1, 

5 expression levels were classified by the semi-

quantitative method that combines the intensity of the 

staining as well as the percentage of cells that stained 

positive. [35, 36] 

 

GEPIA datasets 

 

GEPIA is an online analysis tool that provides a python 

package for the rapid analysis and retrieval of data 

based on TCGA and GTEx datasets. The database 
provides an interactive and customizable function 

including differential expression analysis, profiling 

plots, correlation analysis, survival analysis, gene 

analysis, and dimensionality reduction [37]. We used 

log-rank tests (Mantel–Cox tests) for hypothesis 

evaluation and selected the Cox proportional hazard 

ratio and 95% confidence interval for survival analysis. 

 

LinkedOmics datasets 

 

LinkedOmics can compare multi-omic cancer datasets 

across an array of tumor types (32 cancers and 11,158 

patients) from the TCGA project and proteomics data 

from the CPTAC. LinkedOmics contains three key 

analysis modules: namely LinkFinder, LinkCompare, 

and LinkInterpreter, and displays data in the form of 

volcano plots, heat maps, or scatter plots [36]. The 

LinkInterpreter module builds statistical plots for 

individual genes and performs pathway and functional 

network analyses of differentially expressed genes 

(DEGs). This comprehensive, flexible and interactive 

functional category database provides an online gene set 

analysis toolkit (WebGestalt) which was applied in this 

study [38, 39]. LinkedOmics was used to sign and rank 

the data from the LinkFinder, which was selected for 

GSEA to perform GO (BP, CC and MF), and KEGG 

analysis. We used non-parametric analysis and Pearson 

Correlation tests to obtain our data. Criterion were 

ranked with an FDR < 0.05. A total of 500 simulations 

were performed. 

 

CCLE datasets 

 

The CCLE is an amalgamation of copy number data, 

gene expression analysis, and parallel sequencing 

assessments from 947 human cancer cell lines formed 

by the Broad and Novartis Institutes for Biomedical 

Research and the Genomics Institute of the Novartis 

Research Foundation. The CCLE can be used for the 

assessment of cell targets, gene variants, small-

molecules and therapeutics, permitting the identification 

of novel marker-driven cancer dependencies. The 

CCLE datasets and their accompanying public data 

portals provide a resource to promote cancer research 

using model in vitro cancer cell lines [40–43]. SCAMP 

expression in cancer cell lines can be verified using the 

CCLE dataset. 

 

EMBL-EBI (expression atlas) dataset 

 

The expression Atlas was used to verify SCAMP 

expression in the PAAD cell lines. EMBL-EBI is a 

continually updated database that provides gene and 

protein expression data in an array of species and 

contexts, including tissue development, diseases and 

cell types. The expression Atlas includes 1101 studies 
on human microarrays and RNA-sequencing data from 

Blueprint, PCAWG, ENCODE, GTEx and HipSci 

databases [44, 45]. 
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HPA datasets 

 

HPA acts as a roadmap for all human protein-protein 

interactions through its integration of antibody-based 

imaging, mass spectrometry-based proteomics, 

transcriptomics and systems biology, thus providing an 

interactive web-based tool to explore gene expression 

and survival in 17 cancer types. The Tissue Atlas and 

Human Pathology Atlas characterize the expression and 

localization of human proteins in various tissues and 

organs according to RNA-seq, immunohistochemistry 

of tissue microarrays and transcriptomes using data 

from ≥ 8000 patients [46–48]. 

 

cBioPortal for cancer genomics 

 

The cBioPortal for Cancer Genomics is an open 

platform that permits the interactive exploration of 

multidimensional cancer genomic datasets. The 

cBioPortal allows researchers to convert complex 

genomic data into visual biological insights and clinical 

applications including somatic mutations, DNA copy-

number alterations (CNAs), mRNA and microRNA 

(miRNA) expression, DNA methylation, protein 

expression and phosphoprotein levels [49, 50]. 

 

STRING and GeneMANIA 

 

Search Tool for the Retrieval of Interacting Genes 

(STRING; http://string-db.org) (version 11.0) database 

can provide the analysis of functional interactions 

between proteins, and provide insights for the research 

on the mechanism of disease occurrence or progression 

[51]. Co-expressed genes that co-localize or interact 

either directly or with the targets of SCAMPs were 

identified using GeneMania. The database encompasses 

data from the GEO, physical and genetic interaction 

data from BioGRID and predicted protein interactions 

based on orthology from I2D. Pathways and molecular 

interaction data were derived from the Pathway 

Commons [52]. SCAMPs and their functional networks 

in PAAD were analyzed using this STRING and 

GeneMania. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. The difference in SCAMP1 and SCAMP5 between early stage and late stages as diagnosis markers. 
(A, B) The significant difference in SCAMP1(p < 0.05) and SCAMP5 (p < 0.05) between early stage (Stage I + II) and late stages (Stage III + IV) as 
diagnosis markers. (C, D) The difference in SCAMP1 (p > 0.05) (C) and SCAMP5 (p < 0.05) (D) between early stages (Stage I + II a) and late 
stages (Stage II b + III + IV). The Area Under the Curve (AUC) metrics are also provided for SCAMP1 and 5 to predict diagnosis in PAAD by 
Medcalc. 
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Supplementary Table 
 

Supplementary Table 1. The most significant genes-Top 10 correlated with SCAMPs 1 and 5 by cBioPortal. 

SCAMP1 SCAMP5 

 Correlated gene 
Spearman’s 

correlation 
p-Value  Correlated 

gene 

Spearman’s 

correlation 
p-Value 

P
O

S
IT

IV
E

 

TMED7 0.741659 1.62E-32 

P
O

S
IT

IV
E

 

BEX1 0.785973 8.28E-39 

COL4A3BP 0.736721 6.78E-32 OGDHL 0.775737 3.15E-37 

PJA2 0.717279 1.41E-29 RUNDC3A 0.755899 2.16E-34 

PPM1A 0.717126 1.46E-29 CHGA 0.751231 9.19E-34 

TNPO1 0.716946 1.53E-29 AMER3 0.749632 1.50E-33 

UBL3 0.710301 8.57E-29 TMEM63C 0.744419 7.18E-33 

TMEM167A 0.698749 1.52E-27 KCNJ11 0.743529 9.34E-33 

C5ORF24 0.687555 2.17E-26 ABCC8 0.741569 1.66E-32 

BDP1 0.684726 4.18E-26 SCGN 0.741037 1.94E-32 

AKAP11 0.682395 7.12E-26 DUSP26 0.740452 2.31E-32 

N
E

G
A

T
IV

E
 

DAZAP1 -0.67272 6.16E-25 

N
E

G
A

T
IV

E
 

TGIF1 -0.57208 6.01E-17 

CYBC1 -0.65368 3.43E-23 NDE1 -0.54588 2.73E-15 

PFN1 -0.64466 2.09E-22 HRH1 -0.53127 1.99E-14 

BCL2L12 -0.634 1.63E-21 MET -0.52996 2.37E-14 

GALK1 -0.6296 3.73E-21 FAM83D -0.50956 3.23E-13 

IKBKG -0.62792 5.09E-21 ECT2 -0.50923 3.36E-13 

RHOG -0.62117 1.75E-20 TEAD3 -0.50606 4.96E-13 

RPS6KB2 -0.61867 2.74E-20 CDC25C -0.50488 5.73E-13 

ALDH16A1 -0.61025 1.21E-19 TFAP2A -0.49735 1.42E-12 

RPLP1 -0.60608 2.48E-19 TRIM59 -0.49657 1.56E-12 

The most significant genes-Top 10 correlated with SCAMPs 1 and 5 by cBioPortal. 


