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A computational model 
of language functions in flexible 
goal‑directed behaviour
Giovanni Granato1, Anna M. Borghi2 & Gianluca Baldassarre1*

The function of language in high-order goal-directed human cognition is an important topic at the 
centre of current debates. Experimental evidence shows that inner speech, representing a self-
directed form of language, empowers cognitive processes such as working memory, perception, 
categorization, and executive functions. Here we study the relations between inner speech and 
processes like feedback processing and cognitive flexibility. To this aim we propose a computational 
model that controls an artificial agent who uses inner speech to internally manipulate its 
representations. The agent is able to reproduce human behavioural data collected during the solution 
of the Wisconsin Card Sorting test, a neuropsychological test measuring cognitive flexibility, both 
in the basic condition and when a verbal shadowing protocol is used. The components of the model 
were systematically lesioned to clarify the specific impact of inner speech on the agent’s behaviour. 
The results indicate that inner speech improves the efficiency of internal representation manipulation. 
Specifically, it makes the representations linked to specific visual features more disentangled, thus 
improving the agent’s capacity to engage/disengage attention on stimulus features after positive/
negative action outcomes. Overall, the model shows how inner speech could improve goal-directed 
internal manipulation of representations and enhance behavioural flexibility.

The relationship between language and cognition is a long-standing issue at the centre of theoretical debate and 
scientific research. Recent years have seen the proposal of embodied and grounded views of cognition, according 
to which language is grounded in perception, action, and emotional systems (e.g.1–5). A wealth of evidence shows 
that processing manipulable nouns and action verbs activates sensorimotor representations. Compelling results 
demonstrate that concepts and words are grounded in sensorimotor and affective systems. However, sometimes 
the focus on embodiment has led to neglect important effects of language on cognition. Within embodied cog-
nition approaches, words have indeed been mainly intended as pointers to their referents—objects and entities 
in the world (e.g., see6 and7 for a computational model, and8 for critiques). Although this is undoubtedly an 
important role of words, language also plays other relevant functions for high-order cognition.

In recent years, new trends of research are ascribing to language a richer set of functionalities. First, embodied 
perspectives have been recently flanked by multiple representation views9,10, that recognise the importance not 
only of sensorimotor processes but also of emotional/affective and linguistic experiences in grounding cogni-
tion. The embodied/grounded approach, that ascribes a major role to the sensorimotor grounding of concepts 
and words, was traditionally in contrast with statistical/distributional views according to which meaning can be 
captured through linguistic associations. In recent years, hybrid models are emerging that ascribe importance to 
both sensorimotor and linguistic experience, combining the embodied/grounded perspective with the insights 
deriving from statistical distributional approaches11,12. For example, the consensus is growing on the idea that 
abstract concepts such as “freedom” and “truth” are grounded not only in sensorimotor and emotional experi-
ence but also in social and linguistic elements13,14.

Second, an increasing number of studies are showing that language impacts cognition in multiple ways. These 
studies highlight how language influences not only high-level cognition (e.g., reasoning and problem solving) 
but also perception, for example helping humans to better recognise and categorise objects and entities15,16.

Third, neo-whorfian approaches have reopened the debate about the idea that not only language in general 
but also the specific language we speak shapes the way we think17,18. Thus a growing amount of evidence is 
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showing that different spoken languages influence the way we perceive time (e.g.19,20), colour (e.g.21,22, odour 
(e.g.23), and pitch (e.g.24).

Language has also been proposed to be conceived as a sort of tool. First, in social interactions words can be 
used similarly to physical tools to extend the bodily space in relation to object reaching25. Second, words can 
also work as cognitive tools to affect our internal representations of the physical and social environment. The 
notion of language as a tool is not new, and it was introduced by distinguished authors as Wittgenstein26 and 
Vygotsky27. More recently, different authors have expanded this idea in different but similar directions (e.g.28–31). 
In particular, it has been highlighted that language can act as a cognitive tool. Language, both in its overt form 
of spoken utterances and in its covert form as inner speech, can ameliorate our thought processes, extend our 
memory, and support our prediction capabilities9,32,33.

The notion of inner speech has a long history and is hotly debated in the recent literature (for reviews, see34,35). 
Inner speech was first introduced by Vygotsky who proposed that it results from a developmental process lead-
ing to the progressive internalization of overt speech. Importantly for this work, the notion of inner speech has 
been later used in the context of working memory, in particular by stressing its role as a rehearsal mechanism 
that actively maintains information to support planning processes36. Current research focuses on different func-
tions that inner speech might have, in particular in relation to cognitive control34 representing a relevant issue 
also investigated here. Moreover, recent literature has attested the existence of different kinds of inner speech, 
such as wilful/deliberative37 vs. spontaneous inner speech, condensed vs. expanded inner speech, monologic 
vs. dialogic inner speech, and evaluative/motivational inner speech35. Importantly for this work, some authors 
have highlighted the relationship of inner speech with second order cognition and metacognition38 and recent 
studies have investigated the relation between metacognition and the strategy changes adopted following error 
detection39. Despite these recent advancements on the impact of overt and covert language on cognition, the 
internal mechanisms supporting these processes are not fully clear and computational models as the one pro-
posed here could support their identification.

In this work we focus in particular on the interaction between language and cognition within the framework 
of embodied goal-directed behaviour. This refers to a set of behaviours and underlying cognitive processes where 
action is guided by a goal to accomplish rather than by stimuli directly triggering thoughts and behaviours40,41. 
To this purpose, we present here a neuro-inspired computational model able to accomplish a desired overall goal 
by scheduling sub-goals and actions. Importantly, the model is able to pursue them on the basis of the internal 
manipulation of representations supported by language (“Methods” section). The model extends a previous 
model42 formed by multiple neuro-inspired components with the addition of a critical inner-speech component, 
allowing the model to account for the results of experiments where humans might use inner speech to manipu-
late internal representations. The kind of inner speech we model is monologic (as the model does not interact 
with other agents) and deliberative/wilful (as supporting decision making). The model inner-speech component 
can be considered a form of metacognition—the system represents the chosen decision and evaluates it either 
positively or negatively, and this influences the strategy it will follow. In particular, the component strengthens 
working memory contents, as the phono-articulatory loop in Baddeley’s theory43, and plays a motivational role, 
as proposed by different authors who stress the motivational and self-reinforcing role of inner speech44,45. In our 
study we compared the model behaviour with the performance of human participants solving the Wisconsin 
Cards Sorting test (WCST), an important neuropsychological test directed to measure cognitive flexibility46 
(“Methods” section). In particular, we used here a version of the WCST involving verbal shadowing, an experi-
mental protocol causing the interference with inner speech; to this purpose we considered the dataset previously 
published in47. Moreover, we studied the internal functioning of the model and the effects of focused lesions of 
some of its cognitive and linguistic components. The results show the specific effects that inner speech might 
have on the internal manipulation of representations (section "Results"). As discussed in sections "Discussion" 
and "Conclusions", the model thus represents an operational hypothesis on how language might enhance flex-
ible goal-directed behaviour.

Methods
This section first illustrates the neuropsychological task used to test the model. This task is based on an experi-
mental protocol integrating the WCST and motor and verbal shadowing protocols47. Then the section illustrates 
the functional and computational details of the model.

Task and experimental conditions.  The Wisconsin Cards Sorting Test (WCST)46 is a neuropsychologi-
cal test allowing the measure of executive functions, in particular of cognitive flexibility, that is, the capacity of 
rapidly changing behaviour on the basis of an external feedback to achieve a target goal48. The WCST is very 
sensitive to frontal lesions that cause perseverative behaviours46,49. The task (Fig. 1, top) involves a deck of 64 
cards and four ‘target cards’ set on a table. Each deck card contains a specific combination of geometrical shapes 
varying with respect to three categories (colour, shape, number), each characterised by four attributes (respec-
tively: red, green, blue, yellow; stars, triangles, circles, crosses; one, two, three, four). Each target card presents a 
unique combination of attributes not shared with the other three target cards. Participants draw the deck cards 
one after the other, and are required to sort each of them choosing one of the three categories. In order to choose 
a category participants have to put the drawn deck card under one target-card matching it for the attribute of the 
chosen category (e.g., if the chosen category is ‘colour’, a card with a yellow item has to be put under the target 
card with a yellow item). The correct category (sorting rule) is unknown by the participant. After each sorting 
attempt the experimenter provides a feedback (‘correct’ or ‘not correct’) depending on the current sorting rule 
and the participant has to infer this rule on the basis of the feedback. After a fixed number of succeeding correct 
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matches the experimenter changes the correct sorting rule without telling the participant who has thus to adapt 
to the new rule by inferring it on the basis of the feedback.

The model performance was compared with human performance during the solution of WCST coupled 
to the shadowing protocols, in particular the model was compared with the dataset previously published in47. 
Human participants were psychology college students (average age: 20 years). The protocol used included three 
experimental conditions (Fig. 1, bottom): control condition—participants solved the basic WCST; motor tap-
ping—participants solved the WCST while executing a finger tapping task following a rhythmic sound; verbal 
shadowing—participants solved the WCST while vocally repeating the sound ‘Na, Na, ...’ following a rhythmic 
sound. The authors report that the participants who solved the WCST during the verbal shadowing protocol 
exhibit a behavioural impairment (i.e., an increase of behavioural errors, see below) compared with those that 
solved the WCST with no interfering protocol (control condition). The authors also reported an impairment in 
the participants that solved the WCST during the motor-tapping protocol, but this was lighter than in the verbal 
shadowing condition. The authors interpreted this outcome by suggesting that inner-speech, together with other 
processes such as attention or working memory, is a cognitive support for problem solving processes. Further-
more, also based on cross-cultural data, they hypothesised that there are individual differences with respect to 
inner-speech use during problem solving processes.

The model scoring followed the official documentation46 and was based on five principal behavioural indices 
giving a full behavioural and cognitive profile of the test performance: CC—Completed Categories, indicating the 
number, out of six, of the performed non-interrupted ten-card sequences of correct sorting; TE—Total Errors, 
indicating the global performance/deficit; PE—Perseverative Errors, indicating a perseverative behaviour; NPE—
Non Perseverative Errors, indicating an attentional failure or an incorrect inferential reasoning; FMS—Failure to 
Maintain Set, indicating a distracted behaviour.

Model.  The model, which builds on a previous model42, is formed by neuro-inspired components that sup-
port a number of functions needed to support goal-directed behaviour (Fig. 2). The components are these: (a) 
Visual sensor: this component gathers visual information from deck cards and target cards, analogously to the 
eye retina; (b) Hierarchical perceptual component: this component extracts input visual features at increas-
ing levels of abstraction, analogously to the visual brain system50; if activated by top-down mechanisms, this 
component can also re-generate relevant aspects of percepts, for example based on imagination mechanisms51; 
(c) Abstract working memory: this component stores the task sub-goals (sorting rules) chosen by the model, a 
function that in the brain is mostly supported by frontal cortices48,52; (d) Motivational system: this component 
uses the external feedback to update the information in working memory, a function that in the brain is mostly 
supported by ventral basal ganglia53,54; (e) Selector: this component chooses a sorting rule and biases the percep-
tual system (manipulation of internal representations), a function analogous to the top-down control that the 
fronto-parietal cortex, aided by basal ganglia, exerts on lower-level internal perceptual representations55,56; (f) 
Comparator: this component executes visual matching of the deck and target cards, based on the comparison of 
low-level perceptual representations of the cards by simulating the attentional/imagination processes of brain42; 
in the brain these processes might rely on a distributed network involving the frontal and temporal-occipital 
cortices51,57; (g) Motor system: this component controls saccades and actions displacing the deck cards close to 
the chosen target card.

A key further part of the model is the inner-speech component inspired by the brain networks that integrate 
linguistic and emotional information58,59. First, the component transmits information on the relevance of rules to 
the working memory, in particular information on the sub-goals (identity of the rule) whose priority should be 
changed, and the positive/negative valence, and intensity, of such change. Moreover, the component implements 
a phonological-loop storing the current rule independently of its possible pragmatic use.

Figure 1.   Left: WCST setting; the black arrows indicate the target cards that correspond to a certain category 
that matches the category of the shown deck card. Right: Experimental protocols used to test the model, 
involving the basic WCST (control), and a WCST where the participant has to perform a rhythmic tapping 
following a rhythmic audio, and a critical analogous verbal-shadowing condition affecting inner speech.
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Computational details of the model.  The key components of the model are implemented with neural 
networks whereas the ancillary components (e.g., the motor components) are implemented by reproducing their 
functions in an abstract fashion (Fig. 2). This section explains the functioning of the model to a level sufficient 
to interpret the results while the computational details of the model are reported in the Supplementary Materi-
als. The code of the model is publicly available for online download from the GitHub  repository: https​://githu​
b.com/Giova​nniGr​anato​/Flexi​ble-goal-direc​ted-behav​iour-and-Inner​-Speec​h.

The working memory is formed by three units with recurrent self-synapses. The self-activation decays to a 
baseline value (0.5) based on a decaying rate parameter φ . These units, ranging in [0, 1], encode the biases for 
selection of the three matching rules.

The motivational component is supported by a reinforcement mechanism that increases or decreases the 
activation of the working-memory recurrent units. In particular, the component increases or decreases the 
activation of the unit that encodes the chosen sorting rule by an amount related to a parameter µ.

The hierarchical perceptual component is formed by a modified version of a deep generative neural network, 
in particular a Deep Belief Network (DBN;60) composed by two stacked Restricted Boltzmann Machines (RBM;61). 
The component can encode the input (images of either the deck or target card) at different levels of abstraction. 
The component can also reconstruct (generate) the relevant aspects of the input, on the basis of the activation 
of its high-level units, through a top-down information flow supported by the DBN bidirectional connections. 
To this purpose, the last inner layer of the DBN encodes 12 possible attributes, divided into three groups cor-
responding to the three card categories (colour, shape, size).

The working memory stores information that is processed by the selector and the manipulator. In particular, 
the selector receives as input the information from the working memory and uses a soft-max function to compute 
the probabilities of selecting the different matching rules (a temperature parameter τ regulates how much the 
differences between the bias values of the working memory are enhanced/reduced); these probabilities are then 
used to extract a ‘winner unit’ that receives maximum activation and encodes the chosen matching rule (this 
process abstracts a neural competition based on lateral inhibition).

The manipulator (see Fig. 2) is formed by three units that permanently inhibit three corresponding category 
units. The winner unit of the selector inhibits one unit of the manipulator, which in turn temporarily removes 
its inhibition from the corresponding category attribute units at the highest level of the DBN. The manipulator 
also implements a hard-max function (that abstracts inhibitory lateral connections) leading to strongly activate 
only one attribute unit within the three groups of 4 units representing the categories (see Fig. 2).

The language component is supported by a neural network (multi-layer perceptron) formed by an input layer, 
a hidden layer, and an output layer. This component receives a composite input from the selector (three units 
representing the chosen rule) and from the external environment (one unit representing the external feedback 
on the incorrect/correct matching). The output encodes the identity and valence of the last chosen rule, project-
ing, with one-to-one connections, to the working memory component. For example, if the model chooses the 
colour rule and receives a positive feedback, the language component causes an increase of the activation of the 
first unit of the working memory encoding the colour rule. Conversely, if the model chooses the colour rule and 
receives a negative feedback, the component causes a decrease of the activation of the first unit of the working 
memory. Analogous processes involve the working-memory form and size units in the case the system selects 
respectively the form and size rules. The language component is activated two times: a first time to implement a 
phonological loop storing linguistic information on the chosen rule; a second time to contribute to the feedback-
dependent updating of the working memory content. In the first activation, the component is activated by the 
one-hot code from the selector, based on the current working memory content, and by a value of 1 at the level of 
the feedback unit (meaning ‘maintenance of the current rule’): this activation has the function of storing infor-
mation on the decision rule within the phonological loop. In the second activation, taking place after the search 

Figure 2.   Architecture of the model. Left: components of the model. Right: zoom on the neural-network 
components of the model performing the internal manipulation of representations aided by the language 
component. The red symbols near the components identify model parameters important for specific cognitive 
functions (see text for details).

https://github.com/GiovanniGranato/Flexible-goal-directed-behaviour-and-Inner-Speech
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and comparison of the deck/target cards and the action performance, the component is activated by the selector 
activation and by the external feedback: this activation contributes to update the working memory content in 
view of the next trial. The contribution of language to the working memory is regulated by a coefficient � ranging 
in [0, 1] and representing the connection weights from the language component to the working-memory units.

The remaining components, computationally simplified, are relevant to support the interaction of the agent 
with the simulated card environment (see62 for the simple simulator used to this purpose). The visual sensor is 
formed by an RGBY matrix that encodes a small portion of the environment, approximately covering one card 
per time, and represents the input following an attention-focused saccade onto one specific card. The motor 
component generates these saccades, in particular couples of saccades directing to the deck card and a target 
card, with the saccade couples involving the different target cards in sequence. Moreover, when the model detects 
a matching between the deck and target card it moves the deck card under the target card. Overall, the processes 
and behaviour of the model are as follows: (a) the working memory-selector-manipulator exert a top-down dis-
inhibition of the attributes of the selected category; (b) the consequent card image causes the activation of one 
of such attributes through the bottom-up activation of the hierarchical perceptual component; (c) such attribute 
causes a top-down re-generation of the image pivoting on the selected attribute (e.g., if the system sees a card with 
a large red circle, and the selected matching rule is ‘colour’, then the model will imagine a prototypical ‘red image’, 
e.g. a shapeless colour blob); (d) the visual comparator gets as input the two reconstructed (selected-attribute 
dependent) images corresponding to the deck card and target cards, and compares them to check if they match (a 
matching is detected if the Euclidean distance between the pixel vectors of the two images is below a threshold); 
(e) in case of matching, the model displaces the deck card under the target card, otherwise it performs another 
couple of saccades until it finds a matching deck and target card; (f) following the card displacement, a simulated 
‘external operator’ returns to the model a positive or negative feedback.

Results
In this section, we first present the results of the comparison of the model behaviour with the human behaviour 
aimed to investigate the underlying cognitive processes. We then study the model functioning when different 
aspects of its components are lesioned. Finally, we investigate the internal dynamics of the model with a focus 
on the role of the language component.

Model configurations, humans cognitive profiles and behavioural indices.  We used a statistical 
search method based on the minimisation of the mean square error (MSE) to find the model parameters that 
best fit the human data in the three conditions of the WCST, namely the control, motor tapping, and verbal shad-
owing conditions. The parameters can be interpreted as the relative weights of the simulated cognitive traits of 
the model (negative feedback sensitivity, memory forgetting, distractability, language contribution), and hence 
of the modelled human participants. Table 1 shows the values of the parameters found with the statistical pro-
cedure, now examined in detail.

We first focus on the parameter � representing the level of involvement of language processes in the solution 
of the task. The table shows that the contribution of language is higher in the control condition ( � = 0.81 ) than 
in the motor tapping condition ( � = 0.23 ) and verbal shadowing condition ( � = 0.14 ). The lower value in the 
shadowing condition corroborates the model as it indicates that in such condition the model relies on resources 
other than language to solve the task. The lower value in the tapping condition was instead partially unexpected 
because this condition should not cause a decrease of the inner-speech contribution. However, since the motor 
tapping condition involves an auditory process needed to follow the external rhythmic sound, we propose that 
this interferes with the linguistic contribution to the memory processes as involving the same integrated phono-
logical processes. Thus the participants rely less on language and more on visual working memory and imagery 
relying on the non-linguistic processes of the model. However, these alternative solutions represent sub-optimal 
solutions for humans, used to rely on inner speech, and thus lead to a lower performance with respect to controls. 
This result can be be considered as a prediction of the model, possibly testable in future empirical experiments.

The control group has a very high φ value ( φ = 0.97 ). This suggests a compensating interaction between 
inner speech, error sensitivity and working-memory information decay. In particular, in case of a repeated 
strong bias toward a specific rule caused by a high error sensitivity ( µ = 0.49), a low distractibility ( τ = 0.10), 
and a high language contribution ( � = 0.81), a large decay of working memory contents does not prevent effec-
tive decision making.

The control and experimental groups show a higher distractibility value ( τ ) and a lower error sensitivity 
( µ ). These results can be explained by an increased cognitive load in these conditions that can cause inefficient 
decision-making and error detection processes.

Table 1.   Values of the parameters of the models that produce the best fit of the data on the WCST indices, for 
the control and experimental groups, reported in47).

Error sensitivity ( µ) Forgetting speed ( φ) Distractibility ( τ) Language contribution ( �)

Control 0.49 0.97 0.10 0.81

Motor tap. 0.17 0.09 0.12 0.23

Verbal shad. 0.14 0.14 0.13 0.14



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21623  | https://doi.org/10.1038/s41598-020-78252-y

www.nature.com/scientificreports/

Finally, the experimental groups appear less different from each other compared to the control group (Fig. S1, 
Supplementary Materials), corroborating the idea that both experimental conditions cause a performance 
decrease because both interfere with inner speech.

Statistical analysis of the relation between parameters and behavioural indices.  We now present the correlation 
results (Pearson’s coefficients) between the model parameters, representing the strength of its cognitive pro-
cesses, and the behavioural indices scored in the WCST (Table 2).

The µ parameter (error sensitivity) did not show a strong correlation with anyone of behavioural indexes. 
However, it showed statistically significant ( p < 0.05 ) negative correlations with PE ( r = −0.08 ) and TE 
( r = −0.05 ). These correlations confirm the role of this parameter (error sensitivity) for cognitive flexibility 
and consequently the occurrence of perseverative errors. The φ parameter (forgetting speed) negatively cor-
related with CC ( r = −0.34 ) and showed a moderate positive correlation ( r = +0.40 ) with all types of errors 
with the exception of FMS with which it showed a low but significant correlation. These results suggest that 
memory decay influences the global cognitive performance of the model with no specificity for errors. The τ 
parameter (distractibility) had a similar correlation profile, but showed stronger correlations (mostly above a 0.7 
value), in particular a strong positive correlation with FMS ( r = +0.86 ). This confirms the important effect that 
distractibility has on FMS errors. The � parameter (language contribution) showed a positive correlation with 
CC ( r = +0.32 ), and a moderate negative correlation with all errors with the exception of FMS (non-significant 
correlation). This suggests that inner speech contributes to global performance similarly to the other processes of 
attention and working-memory. A further analysis of the effects of the parameters on the shape of the landscape 
of behavioural indices confirms these correlations (Supplementary Materials, Figs. S2–S5).

We carried out an analysis of the simulations where the role of language was negligible ( � < 0.05 ; sample 
size: n = 175 ; here all correlations between � and the behavioural indices became non statistically significant). 
Table 3 shows the resulting correlations. This analysis highlights the contribution of inner speech to different 
processes. Indeed, if the contribution of language is strongly reduced and the correlation of the different param-
eters increases, this means that language can assume a vicarious role with respect to the processes corresponding 
to those parameters.

The correlation coefficients between µ (error sensitivity) and most behavioural indices became stronger, 
in particular with PE (from r = −0.09 to r = −0.22 ). This indicates that with a weaker language contribution 
a lower sensitivity to errors increases the model rigidity (perserverance errors); this highlights the important 
role of language in strengthening the effect of feedback. The positive correlation with FMS ( r = 0.17 ) reached 
significance. This means that µ can polarise the relevance of the different rules and sharpen their selection, and 
thus reduce the possibility of mistakenly changing the correct rule: this result indicates that language can play an 
analogous function. The parameter φ (forgetting speed) showed a higher correlation with all behavioural indices 
and in particular the correlation with NPE became stronger (from r = +0.40 to r = +0.72 ). The stronger effect 
of forgetting on NPE means that language can play a compensatory role by biasing the activation of specific 
rules in working memory. The correlation between φ and FMS, which originally had a negligible statistical 
significance ( r = +0.04 , p < 0.05 ), became stronger and statistically more significant ( r = −0.30 , p < 0.001 ). 

Table 2.   Pearson’s correlations between the model key parameters ( µ , φ , τ , � ) and WCST indices. The table 
highlights in bold the correlation indexes with an absolute value above 0.3, and in Italics those that are 
statistically significant.

Indices

Parameters

µ φ τ �

CC + 0.00 − 0.34 − 0.72  +0.32

TE − 0.05 + 0.40 + 0.70 − 0.37

PE − 0.08 + 0.40 + 0.65 − 0.40

NPE − 0.03 + 0.40 + 0.72 − 0.35

FMS + 0.01 + 0.04 +0.86 − 0.04

Table 3.   Pearson’s correlations between key parameters ( µ , φ , τ , � ) and WCST indices in the case of a low 
language contribution ( � < 0.05). Bold indicates correlations above |0.3| and Italics the statistically significant 
ones ( p < 0.05).

Indices

Parameters

µ φ τ �

CC 0.07 − 0.63 − 0.68 0.05

TE − 0.10 0.70 0.60 − 0.09

PE − 0.22 0.63 0.52 − 0.12

NPE − 0.03 0.72 0.63 − 0.08

FMS 0.17 0.30 0.34 − 0.04
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The implication of this is again that language can strengthen the bias of selecting the correct rule. Conversely, 
the correlations between τ (distractibility) and behavioural indices passed from strong to moderate values, in 
particular the correlation with FMS decreased (from r = +0.86 to r = +0.34 ). The cause of this, less clear, is 
possibly that with a reduced role of language the processes associated with µ and φ can more strongly contribute 
to generate the different errors and so distractability becomes less important. A further analysis of the effects of 
the parameters on the landscape of behavioural indices when language plays a negligible role (Supplementary 
Materials, Figs. S6–S8), confirms the strengthening and vicarious role of language with respect to other cogni-
tive processes and highlights the presence of relevant linear relations between the µ , φ , τ parameters and the 
behavioural indices.

Comparison between the behaviour of the model and of human groups.  Figure 3 allows a comparison of the 
behavioural indexes of the different versions of the model with the indexes of the target human groups (con-
trol, motor tapping, and verbal shadowing conditions; see Table S1, Supplementary Materials). The comparison 
shows that there is no statistical difference between them (p-values of t-tests, double tail, p > 0.05 ), thus indicat-
ing that the model is very effective in reproducing the behaviour of all the human groups.

Since the model had such a good fit, the role played by the different cognitive processes within the model, 
quantified by the size of the respective parameters, should reflect an analogous role played in the real partici-
pants. Analogously, the differences between the different model versions, fitting the behavioural indexes of the 
real participants in the different conditions, should reveal the different weight of the cognitive processes in their 
solution of the WCST.

Figure 3 and Table S2, Supplementary Material, show a comparison of the behavioural indexes between the 
different versions of the model (control model, motor-tapping model, and verbal-shadowing model). While all 
models did not substantially differ in terms of CC and FMS, the error indexes were higher in the motor tapping 
model, and even higher in the verbal shadowing model, with respect to the control model. In particular, the 
motor tapping model exhibited a higher number of total errors with respect to the control group ( 18.29± 5.96 vs. 
12.35± 4.14 ; p < 0.01 ), with a balanced profile of PE/NPE errors. The verbal shadowing group showed an even 
higher number of total errors ( 22.88± 7.34 vs. 12.35± 4.14 ; P < 0.001 ), with an analogous balance of PE/NPE. 
These results indicate that both motor tapping and verbal shadowing cause a general decrease in performance 
(stronger for verbal shadowing) due to both an increased perseverative behaviour (higher PE) and attentional 
failure (higher NPE).

Figure 3.   Comparison between human groups (left graphs) and models (right graphs) in the three conditions 
(rows of graphs) for each behavioural index. The significance asterisks in the model graphs are related to the 
comparison between each of the motor tapping and verbal shadowing models with the control model: ns = non 
statistically significant, p > 0.05 ; * = p < 0.05 ; ** = p < 0.01 ; *** = p < 0.001.
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Lesions.  This section presents the study of the effects of seven possible alterations (‘lesions’) of the param-
eters of the control model. Table 4 shows the specific parameters used to produce each lesioned model. Figure S9 
in Supplementary Materials shows a graphical overview of the parts of the model architecture that were affected 
by the lesions. Each of the first three lesions involved a critical parameter regulating a main process of the model, 
namely error sensitivity, forgetting speed, and distractability. These lesions were supposed to lead to respectively 
an ‘extreme perseverative model’ (EPM), a ‘distracted model’ (DM), and an ‘irrational model’ (IM). We did 
these lesions to study the compensatory role of language with respect to the functions involved by the param-
eters. The last four lesions involved the verbal component (inner speech). In particular, the first verbal-lesion 
model (VLM1) involved a reduced contribution of language in case of external negative feedback. The second 
verbal-lesion model (VLM2) involved a reduced contribution of language in case of external positive feedback. 
The third verbal-lesion model (VLM3) involved a low language contribution during the storing of working 
memory. The fourth verbal-lesion model (VLMG) involved a global lesion including all previous verbal lesions. 
Table S3, in Supplementary Materials, shows a statistical comparison of the behavioural indices between the 
control model and the lesioned models.

Both the EPM and IM do not show any statistical difference in the behavioural indices compared to the 
control model. This result suggests that high functioning language component ( � = 0.81 in both cases) compen-
sates low error sensitivity (EPM has µ = 0.001 ) and high forgetting (IM has φ = 1.0 ), highlighting the vicari-
ous role that language can play. Conversely, the DM shows a statistically significant difference for each index 
( p < 0.001 for each index). In particular, it shows a lower CC ( 0.88± 0.9 vs 6.0± 0 ), a higher TE ( 47.65± 6.39 
vs 12.35± 4.14 ), formed by 40% of PE and 60% of NPE, and a higher FMS ( 2.71± 1.7 vs 0.59± 0.69 ). This is 
coherent with the theoretical interpretation of the τ parameter representing distractibility since high distractabil-
ity cannot be compensated for by language.

The VLM1 (impairment of the language contribution in case of negative feedback) showed a statistical signifi-
cant difference with each index of the control model, with the exception of CC and FMS. In particular, the model 
showed a higher TE ( 20.41± 8.35 vs 12.35± 4.14 , p < 0.01 ), composed by 48% of PE and 52% of NPE. Overall, 
this lesioned model did not show a great global impairment, as shown by the high CC and a slightly higher 
number of total errors. The reason is that in this model the impairment only corrupts the language contribution 
in case of negative feedback and this is compensated by an intact high error-sensitivity coefficient ( µ = 0.49).

The VLM2 (impairment of the language contribution in case of positive feedback) showed worse perfor-
mances compared to both the INVM and control models. In particular, it showed a very low CC ( 0.06± 0.24 
vs 6.0± 0 , p < 0.001 ) and a very high TE ( 54.71± 4.08 vs 12.35± 4.14 , p < 0.001 ) formed by 35% of PE and 
65% of NPE. With the exception of FMS, that is not statistically different from the one of the control model, the 
error profiles of this model are similar to those of the DS model ( τ = 0.4), showing a high number of errors and 
in particular an imbalance toward NPE, thus suggesting an attention impairment. This suggests that language 
plays an ‘attentional focus’ function that in case of positive feedback increases the probability of focusing on the 
specific correct rule discovered and stored in memory.

The model VLM3 (impairment of the language contribution to the storing function based on the phonolog-
ical-loop) did not show any statistical difference in any behavioural index compared to the control model. This 
suggests that the simple storing function of inner speech has not a relevant role in this task.

The VLMG (global impairment of the language contribution) exhibits the worst indexes with respect to 
all models. In particular, the model has a very low CC ( 0.12± 0.32 vs 6.0± 0 , p < 0.001 ) and the highest TE 
( 60.82± 4.66 vs 12.35± 4.14 , p < 0.001 ), formed by 35 % of PE and 65% of NPE, and a higher FMS ( 1.24± 0.94 
vs 0.59± 0.69 , p < 0.05 ). The error profile of this model is similar to the one of the DM but shows worse indices 
(with the exception of FMS). This result suggests that a global impairment of the language system causes a severe 
deterioration of the model flexible goal-directed behaviour.

Internal functioning of the model.  Here we show the internal functioning of  the model mimicking 
the control group  (Fig. 4, left) and the three models each with a specific lesion of the inner-speech compo-
nent (VLM1, VLM2, VLMG; see Fig. S10 in Supplementary Materials). We do not consider the model with an 

Table 4.   Parameters of the lesioned models obtained by altering the parameters of the control model that 
fits the human control group (data reported in47). The first three models involve lesions of the main cognitive 
processes of the model, while the last four models involve four different lesions of the language component. 
Values in bold Italics represent the parameters that were altered to produce the lesioned models.

µ φ τ �

Control model 0.49 0.97 0.10 0.81

Extreme perseverative model (EPM) 0.001 0.97 0.10 0.81

Distracted model (DM) 0.49 0.97 0.4 0.81

Irrational model (IM) 0.49 1.0 0.10 0.81

First verbal-lesion model (VLM1) 0.49 0.97 0.10 0.001 (only if r = 0)

Second verbal-lesion model (VLM2) 0.49 0.97 0.10 0.001 (only if r = 1)

Third verbal-lesion model (VLM3) 0.49 0.97 0.10 0.001(r not considered)

Global verbal-lesion model (VLMG) 0.49 0.97 0.10 0.001
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impaired phonological loop function (VLM3) because it did not show any statistically relevant difference with 
the control model. We also show a plot related to a model without the language system and fitting the data of the 
human control group (Fig. 4, right). This model shows what happens if one assumes that during development the 
absence of the inner-speech component would be substituted by vicarious cognitive processes still supporting 
flexible behaviour. Note that the different models might also capture individual differences in the use of inner-
speech as a support for high-level cognitive processes, as highlighted in47. The two control models have a similar 
good performance (they both solve the task in 80 rounds) but they exhibit a partially different internal function-
ing that highlights the role that language can play in the solution of the task (Fig. 4).

Notwithstanding the similar behaviour of the two models, the qualitative comparison of the activation of the 
working-memory units encoding the different decision rules shows that they are more ‘disentangled’ in the model 
with the language component. In particular, in the model with language the units have a more polarised activation 
and sharper activation changes. This supports a higher cognitive flexibility, in particular rapid decreases of activa-
tion after an error, and a high focused capacity, in particular rapid increases of activation after a positive feedback.

Figure S10, in Supplementary Materials, shows the internal functioning of the three verbal-lesion models. 
The VLM1 (language impairment in case of negative feedback) has an internal functioning similar to the one 
of the control model, but also some differences. In particular, the high information forgetting speed ( φ = 0.97 , 
shared with the control model) causes a fast decay of the activation to 0.5 (baseline activation of units) while the 
absence of a linguistic contribution in case of negative feedback prevents strong decrements of the activation 
of units. The effect of these two specific processes causes a minor difference between the activation of the units 
(in particular an higher inferior boundary) thus producing more PE (e.g., see choice interval 28–31) and NPE 
(e.g., see choice interval 70–75).

The VLM2 (language impairment in case of positive feedback) shows an erratic and inefficient internal func-
tioning. In particular, it shows a lower superior bound of activation and sudden extreme activation changes that 
do not allow the completion of the test and produce several PE and NPE. Paradoxically, the erratic behaviour 
causes also random completions of categories (e.g., see choice interval 35–44). This result shows that the language 
contribution after a positive feedback supports the focus on a specific rule for prolonged times.

The VLMG (all language impairments) showed an internal behaviour similar to an average behaviour of the 
previous two models. In particular, it exhibits a minor range of activation (inferior and superior bounds) and 
erratic changes of activities that prevent the completion of any category. Interestingly, this plot is qualitatively 
more similar to the one of VLM2 (positive feedback and focusing impairment) than to the one of VLM1 (negative 
feedback impairment), thus corroborating the previously discussed quantitative data indicating that the language 
contribution to focusing is more important than its contribution to processing feedback errors.

Discussion
The model proposed here highlights the specific mechanisms through which inner speech might enhance the 
internal manipulation of representations involved in goal-directed cognitive processes and executive functions. 
In particular, it accounts for the cognitive flexibility as measured in the Wisconsin Card Sorting Test (WCST).

Theory-driven statistical analyses, focusing on versions of the model having parameters involving a negligible 
role of language, highlighted the similarity of the functions played by feedback-based working-memory update 
processes, and those played by language processes, both capable of supporting the attentional focusing on success-
ful goals (behavioural rules). In addition, the comparison between the control model and versions of the model 
whose language storing function was lesioned did not show significant statistical differences, thus suggesting 
that the support of language for this function has a negligible role in the target experimental test. These results 
corroborate the importance of working-memory in flexible cognition as measured in the WCST, highlighting 
its role of ‘executive function’ rather than as mere information storage63. The results presented here thus suggest 

Figure 4.   Internal functioning of two control models. Left: model with language. Right: model without 
language. Each line in the graphs shows the activation of a working-memory unit representing a tendency to 
choose a specific sorting rule between the three possible rules. The dots at the top of graphs indicate single 
instances of correct responses (CR) or errors (PE, NPE, FMS).
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that inner speech can play a key role in enhancing the capacity of manipulating the states of working memory 
and thus to improve the effectiveness of goal-directed behaviour.

We also analysed the internal functioning and interaction of the system components. This analysis involves 
the control model with and without language and the language-lesioned versions of the model. Results indicate 
that the role of inner speech to enhance the executive-function role of working memory is based on its capac-
ity to strengthen the activation differences between neural units which represent alternative possible goals (the 
behavioural rules to follow in the solution of the WCST). Once so differentiated, the internal representation 
carrying relevant information are more robust to lesions, distractions, and internal/external sources of noise. 
This ‘disentanglement’ function of language also manifested in a previous abstract non-embodied computa-
tional model64 further discussed in section "Comparison with other models of language–cognition interaction". 
Interestingly, artificial intelligence has recently started to highlight and study the importance for neural-network 
architectures to be able to ‘disentangle’ internal representations to enhance the signal/noise ratio for downstream 
processing components65,66.

Overall, these results point to a possible super-ordinate role of inner speech that involves both executive 
functions and perceptual embodied processes. In this perspective, inner speech represents a boosting internal 
cognitive ‘tool’, as highlighted by the psychological literature discussed in section “Introduction”. This view leads 
us to suggest the existence of two goal-directed embodied-manipulation loops supported by inner speech (Fig. 5). 
The first loop involves the classic embodied interaction of the agent with external objects, e.g. the visual search 
and the card manipulation processes performed to solve the WCST. The second loop involves inner speech in 
its role as cognitive tool, in particular to enhance the manipulation of internal representations stored in working 
memory and so improve the effectiveness of the first loop.

Comparison with other models of  the language–cognition interaction.  Few scientific studies 
focus on the interaction between language and cognitive processes adopting a theoretical and computational 
approach. Here we review computational models that contribute to investigate this important topic.

A first biologically grounded model simulates the brain networks supporting the interaction between attention 
and language67. This model has high biological fidelity, simulating the neurophysiologically and anatomically 
grounded networks supporting the perception and production of speech. The model uses winner-take-all neural 
mechanisms to reproduce bottom-up attentional selection of words and non-words at different brain levels. 
However, the model does not investigate how goal-based top-down processes might affect internal representa-
tions. Another computionally more sophisticated model68, expanding the previous model, simulates the brain 
neural networks supporting decision-making processes for action and speech. The model is used to explain the 
spontaneous emergence of intentional speech acts in the brain. The model has the same limitations of the previ-
ous model and in addition investigates the influence of high-order processes on language but not the influence 
of language on cognition as done here.

More abstract models investigate the interaction between language and cognition in particular focusing on the 
supporting role played by language for categorisation processes. A first model69 links symbolic processing (words) 
to neural distributed representations and implements deep neural-network architectures involving sensory-
motor learning and symbolic learning. The model investigates the top-down effect of symbolic computations 
on neural-network representations, suggesting that language can represent a ‘symbolic theft’ tool to improve 
categorisation. This model is not validated with empirical data as here and addresses a different investigation 
problem with respect to the role of language for the internal manipulation of representations.

Three further models show mechanisms that use ‘linguistic labels’ to influence the computations of neural 
networks. The first model70 is based on an auto-encoder neural-network. The model is used to show how the 
injection of linguistic labels into the intermediate layers of the model can enhance its classification capabili-
ties. The model has an abstract architecture that cannot be mapped onto specific cognitive processes and is not 
validated with empirical data, but it nevertheless proposes an interesting mechanism for which language can 
manipulate the internal representations of auto-encoder neural networks. Another computational model64 high-
lights a possible role of inner speech for cognition. The model in particular includes two simple neural networks 
that model a sensory-motor loop, learning to categorise objects, and a phonological loop, learning to repeat 

Figure 5.   Abstract schema that represents the model double loop of manipulation of internal and external 
states. The internal manipulation of states allows the agent to better manipulate the external environment.
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words. The two networks interact at the level of their intermediate layers. Although the simple architecture does 
not capture specific cognitive processes and the model is not validated with empirical data, the results show that 
self-directed language can enhance the disentanglement of internal representations for different categories of 
objects, a phenomenon also emerged here. A last model7 solves a sensory-motor classification tasks and shows 
how language can be used with vicarious functions with respect to visual inputs and to activate goals allowing 
to flexibly respond to stimuli. The model is qualitatively validated with empirical data but it does not investigate 
how language might influence the manipulation of internal representations.

Overall, compared to all aforementioned models the model presented here has an architecture directly captur-
ing key high-level cognition processes. Moreover, it allows the study of how language can act as a cognitive tool 
supporting the manipulation of internal representations enhancing the interaction with the external environment. 
In so doing, it focuses on a superordinate role of language that can potentially explain its influence on many 
different domain-specific tasks (e.g., object categorisation or cognitive flexibility). Due to these differences, the 
architecture represents a more accurate model of self-directed language for executive functions.

Conclusions
This work investigates the interaction between self-directed language (inner speech) and goal-directed cognition 
through a computational model. To our knowledge, the model represents the first integration of inner-speech 
mechanisms within a cognitive architecture capable of manipulating internal representations that support goal-
directed behaviour. The model reproduces human behavioural data during the performance of the Wisconsin 
Card Sorting Test, designed to study cognitive flexibility, both in a standard condition and in a condition involv-
ing verbal shadowing.

The model allowed us to show how language can play key functions to support the cognitive processes, 
nemely the processing of external feedback and working memory. In particular, the model suggests that inner 
speech ameliorates attention engagement and disengagement with respect to specific goal representations after 
a feedback is received, and in general augments the disentanglement of goal representations. This ‘sharpens’ 
cognitive processes, making them more robust to lesions, distractors, and noise. Overall, the model reveals how 
self-directed language can strengthen the effectiveness of various cognitive process involving the manipulation 
of internal representations and thus improve cognitive flexibility and the interaction with the environment.
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