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ABSTRACT Neutrophils are a major player in host immunity to infection; however,
the mechanisms by which human neutrophils respond to the intracellular protozoan
parasite Toxoplasma gondii are still poorly understood. In the current study, we
found that, whereas primary human monocytes produced interleukin-1beta (IL-1�) in
response to T. gondii infection, human neutrophils from the same blood donors did
not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1� synthesis in
human peripheral blood neutrophils. IL-1� suppression required active parasite inva-
sion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1� release.
By investigating the mechanisms involved in this process, we found that T. gondii in-
fection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1�

and NLRP3 and reduced protein levels of pro-IL-1�, mature IL-1�, and the inflam-
masome sensor NLRP3. In T. gondii-infected neutrophils stimulated with LPS, the lev-
els of MyD88, TRAF6, IKK�, IKK�, and phosphorylated IKK�/� were not affected.
However, LPS-induced I�B� degradation and p65 phosphorylation were reduced in
T. gondii-infected neutrophils, and degradation of I�B� was reversed by treatment
with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited
the cleavage and activity of caspase-1 in human neutrophils. These results indicate
that T. gondii suppression of IL-1� involves a two-pronged strategy whereby T. gon-
dii inhibits both NF-�B signaling and activation of the NLRP3 inflammasome. These
findings represent a novel mechanism of T. gondii evasion of human neutrophil-
mediated host defense by targeting the production of IL-1�.

IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that infects ap-
proximately one-third of humans worldwide and can invade virtually any nucleated
cell in the human body. Although it is well documented that neutrophils infiltrate
the site of acute T. gondii infection, there is limited understanding of how human
neutrophils respond to T. gondii. Neutrophils control infectious pathogens by a vari-
ety of mechanisms, including the release of the cytokine IL-1�, a major driver of in-
flammation during infection. This study reveals that T. gondii is able to inhibit IL-1�

production in human neutrophils by impairing the activation of the NF-�B signaling
pathway and by inhibiting the inflammasome, the protein complex responsible for
IL-1� maturation. This two-pronged strategy of targeting the IL-1� pathway may fa-
cilitate the survival and spread of T. gondii during acute infection.
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Neutrophils control infectious pathogens by phagocytosing and degrading mi-
crobes, releasing granules with lytic enzymes, and producing reactive oxygen

species (ROS) (1, 2). Neutrophils can also contain and eliminate extracellular microbes
by releasing neutrophil extracellular traps (NETs) (3). More recently, it has been shown
that neutrophil functions extend beyond these roles in acute infection. It is now
appreciated that they are antimicrobial effectors that can also shape inflammatory
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responses through the release of chemokines and cytokines (1) and that they can
contribute to adaptive immunity through cross-talk with other cell types, such as
macrophages, dendritic cells, and lymphocytes (4).

Toxoplasma gondii is an obligate intracellular parasite that infects an estimated
one-third of the global human population (5). Human exposure to T. gondii typically
occurs due to ingestion of parasite cysts in contaminated food or water (6), but it can
also occur due to vertical transmission from mother to fetus (7). As an oral pathogen,
T. gondii enters the body and establishes infection in the small intestine (5). The parasite
then disseminates via the bloodstream and surmounts a variety of biological barriers to
establish chronic infection in several different organs, including the heart and brain (8).

Neutrophils are rapidly recruited to sites of T. gondii infection in mice (9, 10).
Although neutrophils possess an arsenal of antimicrobial effector mechanisms, remark-
ably, T. gondii can survive and replicate in mouse and human neutrophils, and in
T. gondii-infected mice, neutrophils in the small intestine and lymph nodes contain
replicating parasites (11–14). Neutrophils produce interleukin-12 (IL-12), tumor necrosis
factor alpha (TNF-�), interferon gamma (IFN-�), and NETs in response to T. gondii
(15–17) and contribute to dendritic cell activation (18). Despite these host-protective
functions for neutrophils, the specific depletion of neutrophils with anti-Ly6G mono-
clonal antibodies (MAb) resulted in only a slight increase in mortality compared with
high mortality in mice depleted of both monocytes and neutrophils using the anti-
Ly6C/G MAb RB6-8C5 (19), suggesting that monocytes may play a more critical role in
immune defense against T. gondii (20). One potential explanation for these data is that
despite the recruitment of neutrophils to sites of infection, T. gondii is able to evade the
neutrophil immune response. Most studies on neutrophil immunity during T. gondii
infection have focused on infection in mice. In contrast, little is known at the molecular
level about the interactions of T. gondii with human neutrophils.

Interleukin-1beta (IL-1�) is a key regulator of inflammation that activates a variety of
downstream inflammatory genes (21). T. gondii induces IL-1� in multiple human
primary cells and cell lineages, and T. gondii-induced IL-1� mediates host protection
against the parasite (22–26). The production of IL-1� is regulated by the inflammasome,
a multiprotein complex typically composed of caspase-1, an adaptor protein ASC
(apoptosis-associated speck-like protein), and a cytosolic sensor, which can be either a
nucleotide oligomerization domain (NOD)-like receptor (NLR) or an AIM2-like receptor
(ALR) (27). The best-studied inflammasome is the NLRP3 inflammasome, which can be
activated by a wide variety of stimuli, including ATP, bacterial toxins, microbial prod-
ucts, endogenous molecules, and particulate matter (28–30). A two-signal model for
NLRP3 inflammasome activation in macrophages has emerged. Stimulation of recep-
tors that induce NF-�B signaling leads to transcriptional upregulation of IL-1� and
NLRP3 (31). A second signal, such as ATP, activates the inflammasome to proteolytically
process pro-IL-1� into mature, bioactive IL-1�, which is released by the cell. Neutrophils
also produce IL-1� in infection and inflammatory diseases (32–34) and use this two-
signal model for inflammasome activation (35). In addition, a one-signal mechanism
that requires only lipopolysaccharide (LPS) to activate both NF-�B signaling and the
inflammasome in neutrophils and monocytes has been described (36–38).

We have previously demonstrated that T. gondii triggers IL-1� release from human
monocytes via a pathway dependent on NLRP3, ASC, caspase-1, and K� efflux (26, 39).
Here, we report that unlike in monocytes, T. gondii does not induce IL-1� in primary
human neutrophils and actually inhibits LPS-induced IL-1� production in these cells.
T. gondii-induced IL-1� suppression is associated with a reduction in NF-�B activation
and IL-1� and NLRP3 transcripts and a lack of activation of the NLRP3 inflammasome.
These data indicate a novel two-pronged strategy of immune evasion in which T. gondii
downregulates the inflammatory response of human neutrophils. This strategy may
facilitate the survival and spread of the parasite during acute infection, particularly in
the gut, where neutrophils encounter both T. gondii and Gram-negative bacteria that
contain LPS.
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RESULTS
T. gondii infects and survives in primary human neutrophils. Primary human

neutrophils were isolated from peripheral blood samples drawn from healthy donors
and separated through a density gradient. The isolated population was analyzed by
flow cytometry, and 92% of the cells were confirmed to be neutrophils, as they were
CD66b� CD11b� CD14low and negative for T (CD3), B (CD20), and NK (CD56) cell
markers (Fig. 1A). Analysis of the cells by microscopy confirmed that the population
consisted predominantly of neutrophils due to the characteristic multilobed nuclei and
the acidophilic cytoplasm with small granules (Fig. 1B). Isolated neutrophils were
infected with green fluorescent protein (GFP)-expressing T. gondii, and the infection
efficiency and cell viability were analyzed over time. These conditions resulted in
approximately 26% infection efficiency at 30 min postinfection (mpi), 64% at 16 h
postinfection (hpi), and 81% at 24 hpi (Fig. 1C). Moreover, the mean fluorescence
intensity (MFI) of the GFP-positive (GFP�) population increased over time, indicating
that T. gondii could survive inside human neutrophils and that the parasite burden
increased (Fig. 1D), either due to replication or to multiple invasion events. Immuno-
fluorescence assays of infected neutrophils at 30 mpi and 3 hpi confirmed the presence
of multiple intracellular parasites and also demonstrated the release of extracellular
traps in response to T. gondii (Fig. 1E), as has been previously published (17). The cell
viability was greater than 90% in unstimulated, T. gondii-infected, and LPS-treated
neutrophils cultivated in the presence of 10% fetal bovine serum (FBS) (Fig. 1C; also see
Fig. S1 in the supplemental material).

T. gondii infection inhibits LPS-induced IL-1� in primary human neutrophils.
Given the large number of neutrophils recruited to sites of acute T. gondii infection (11,
14, 40) and the importance of IL-1� in immunity and inflammation during infection (41),
we evaluated the secretion of IL-1� into the culture supernatant of infected human
neutrophils. Since two different pathways can lead to IL-1� release by neutrophils
(involving either one or two signals), for positive controls, we stimulated neutrophils
with LPS or with LPS�ATP (35, 38). We observed that primary human monocytes
produced IL-1� in response to T. gondii infection, as previously shown (39), whereas
human neutrophils from the same donors did not (Fig. 2A). Surprisingly, in the presence
of LPS or LPS�ATP, T. gondii infection actually inhibited IL-1� release by neutrophils
(Fig. 2A). To confirm a role for the protease, caspase-1, in the production of IL-1� in
human neutrophils, we used Ac-YVAD-CMK, a cell-permeable tetrapeptide inhibitor
that binds to the active site of caspase-1 and prevents substrate interaction (42). We
confirmed by flow cytometry that the caspase-1 inhibitor did not affect the infection
efficiency or cell viability compared to the vehicle control (Fig. S2). However, IL-1�

release was significantly reduced in the presence of the caspase-1 inhibitor compared
to the dimethyl sulfoxide (DMSO) control, and this reduction was observed in both
positive controls (LPS and LPS�ATP) and also in cells that were stimulated with LPS or
LPS�ATP and infected with T. gondii (Fig. 2B).

We next examined whether T. gondii inhibited only the secretion of IL-1� or also
affected IL-1� synthesis. Quantitative real-time PCR (Q-PCR) analysis revealed that
T. gondii infection strongly inhibited LPS-induced IL-1� transcript levels (Fig. 2C).
Because IL-1� is synthesized as a zymogen, pro-IL-1�, which is posttranslationally
processed into mature IL-1� (43), we investigated IL-1� processing in the lysate of
infected and/or stimulated neutrophils by Western blotting. We were able to analyze
the lysates, but not the supernatants, of neutrophils by Western blotting, since analysis
of the supernatant requires culturing the cells in serum-free medium, which neutrophils
do not tolerate. By analyzing the lysates, we found that mock-infected and T. gondii-
infected neutrophils did not harbor a pool of pro- or mature IL-1�; however, we
detected pro- and mature IL-1� in neutrophils treated with LPS or LPS�ATP (Fig. 2D).
Both forms of IL-1� were more abundant in the lysates of LPS than in the lysates of
LPS�ATP-treated neutrophils, likely because LPS�ATP consistently resulted in greater
release of IL-1� into the supernatants. In contrast, T. gondii infection reduced the levels
of pro- and mature IL-1� in LPS- or LPS�ATP-treated samples (Fig. 2D), suggesting that

T. gondii Inhibits IL-1� in Human Neutrophils ®

January/February 2018 Volume 9 Issue 1 e02027-17 mbio.asm.org 3

http://mbio.asm.org


FIG 1 Isolation and infection of human peripheral blood neutrophils with GFP-expressing T. gondii. Neutrophils were isolated from human peripheral blood
through density gradients. (A) Cells were stained with control Ig or anti-CD66b, anti-CD11b, anti-CD14, anti-CD3, anti-CD20, or anti-CD56, and flow cytometry
was performed. The results of a representative analysis are shown. FCS, forward scatter; SSC, side scatter; cIg, control immunoglobulin. (B) Cells were stained
with May-Grünwald-Giemsa solution and analyzed by light microscopy (40�). Bar, 15 �m. (C) Neutrophils were infected with type I T. gondii (RH strain) and
stained with propidium iodide (PI), and at 30 min postinfection (mpi) and 16 and 24 h postinfection (hpi), the infection efficiency and cell viability were
measured by flow cytometry. (D) The mean fluorescence intensity (MFI) of the GFP� (infected) cells was determined at 30 mpi and at 16 and 24 hpi. (E)
T. gondii-infected neutrophils were fixed, permeabilized, stained with an antibody against myeloperoxidase (MPO), counterstained with DAPI, and examined
by immunofluorescence microscopy (60�). The white arrowheads indicate neutrophil extracellular traps (NETs). Bars, 10 �m. These experiments were performed
four (A) and three (B, C, D, and E) times with different donors. The results of representative experiments are shown. DIC, differential interference contrast.
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FIG 2 IL-1� synthesis is inhibited in T. gondii-infected primary human neutrophils. Neutrophils and
monocytes isolated from the same donors were treated as follows: (i) mock infected, (ii) infected with
T. gondii, (iii) infected with T. gondii and stimulated with LPS (500 ng/ml), (iv) stimulated with LPS only
(positive control), (v) infected and stimulated with LPS�ATP (5 mM), or (vi) stimulated with LPS�ATP only
(positive control). (A) After 16 h, IL-1� released into the culture supernatant was measured by ELISA. (B)
Neutrophils were treated with either DMSO (vehicle control) or 100 �M Ac-YVAD-CMK (YVAD), a specific
caspase-1 inhibitor for 30 min before infection, and at 16 hpi, IL-1� released into the culture supernatant
was measured by ELISA. (C) Q-PCR was performed with specific primers for IL-1� or GAPDH. The transcript
levels relative to those of GAPDH from a representative experiment are shown. (D) Pro-IL-1� and mature
IL-1� in the cell lysate were visualized and quantified by Western blotting. Data are combined from 3 (A,
C, and D) and 9 (B) experiments with different donors. Values are expressed as the means plus standard
errors of the means (SEM) (error bars). Values that are significantly different are indicated by a bar and
asterisk as follows: *, P � 0.05; **, P � 0.01; ***, P � 0.001 (one-way ANOVA followed by a Bonferroni
posttest in panel A and a Tukey posttest in panels B, C, and D). n.d., not detected.

T. gondii Inhibits IL-1� in Human Neutrophils ®

January/February 2018 Volume 9 Issue 1 e02027-17 mbio.asm.org 5

http://mbio.asm.org


T. gondii inhibited LPS-induced synthesis of IL-1�, which resulted in reduced IL-1�

release from T. gondii-infected neutrophils.
Inhibition of LPS-induced IL-1� by T. gondii infection requires active parasite

invasion. To test whether IL-1� inhibition required active parasite invasion, we cul-
tured neutrophils with T. gondii parasites that were heat killed, pretreated with a vehicle
control (DMSO), or pretreated with mycalolide B, an irreversible inhibitor of actin
polymerization (44). Parasites treated with mycalolide B attach to host cells and secrete
the contents of the rhoptries, a specialized secretory organelle of the parasite, but
cannot invade, since invasion is powered by the parasite’s actin-myosin machinery.
Importantly, T. gondii parasites were washed before addition to the neutrophils, so the
mycalolide B did not affect the neutrophil actin cytoskeleton. When neutrophils were
infected with DMSO-treated parasites for 16 h, approximately 70% of the cells were
infected (GFP�). As expected, heat-killed parasites did not infect the neutrophils, and
when parasites were pretreated with mycalolide B, �3% of the cells were infected
(GFP�), indicating that both treatments effectively impaired invasion (Fig. 3A). Inter-
estingly, when neutrophils were infected with heat-killed or mycalolide B-treated
parasites, LPS-induced IL-1� synthesis and release into the culture supernatant were
not inhibited compared to the control DMSO-treated parasites (Fig. 3B and C). These
data indicate that T. gondii-mediated IL-1� inhibition required active parasite invasion
and that host sensing of the parasite, parasite attachment, and rhoptry protein secre-
tion alone were not sufficient for inhibiting IL-1� release.

T. gondii inhibits activation of the NLRP3 inflammasome. The NLRP3 inflam-
masome mediates IL-1� cleavage and release in neutrophils stimulated with LPS and
ATP (35). Human and mouse peripheral blood neutrophils constitutively express NLRP3
protein, and its expression increases following Toll-like receptor (TLR) stimulation (35,
45). We first analyzed NLRP3 transcript levels by Q-PCR. Mock-infected and T. gondii-
infected neutrophils showed low levels of NLRP3 transcripts, which were upregulated
by LPS. In contrast, T. gondii infection reduced LPS-induced NLRP3 transcripts (Fig. 4A).
In addition, low levels of NLRP3 protein were confirmed by Western blotting of lysates
from mock- and T. gondii-infected neutrophils, and in some donors, T. gondii infection
induced NLRP3 protein expression to some extent. NLRP3 was consistently upregulated
after LPS stimulation, and this upregulation was inhibited in cells that had been
infected with T. gondii (Fig. 4B). Although the NLRP3 inflammasome can be activated
differently due to stimulation with LPS or LPS�ATP (35, 37, 38, 46), a common step is
the cleavage and activation of the protease caspase-1. To investigate the processing of
caspase-1, we examined pro- and cleaved caspase-1 by Western blotting. Pro-caspase-1
levels were relatively constant among all the experimental groups. Mature caspase-1
was observed in unstimulated neutrophils, as previously reported (47), and these levels
were not increased by LPS or LPS�ATP treatment; however, T. gondii infection alone or
in the presence of LPS or LPS�ATP strongly inhibited caspase-1 cleavage (Fig. 4C). To
directly evaluate caspase-1 enzymatic activity under each condition, we used the
FAM-FLICA (ImmunoChemistry Technologies) probe on neutrophils treated with LPS
and/or infected with tdTomato-expressing T. gondii and analyzed the cells by ImageS-
tream flow cytometry. Although unstimulated neutrophils harbored cleaved caspase-1
based on Western blots, little to no caspase-1 activity was observed in these cells
(Fig. 4D). The treatment of neutrophils with LPS induced high levels of caspase-1
activity, as shown by the numerous and intense FLICA specks (green). T. gondii infection
alone did not induce caspase-1 activity, but parasite infection reduced LPS-induced
caspase-1 activity, and greater than 95% of LPS-treated, infected cells were FLICA
negative (Fig. 4D). In all experimental conditions, the cell viability was high, based on
Zombie violet staining (3% paraformaldehyde [PFA] was used as a positive control for
cell death). Collectively, these data demonstrate that T. gondii infection reduced
LPS-induced NLRP3 transcript and protein expression and the processing and enzy-
matic activity of caspase-1.

T. gondii infection inhibits LPS-induced NF-�B activation by reducing I�B�
degradation. Since IL-1� and NLRP3 transcription are activated downstream of NF-�B
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FIG 3 Effect of blocking parasite invasion on IL-1� inhibition. GFP-expressing T. gondii were heat killed,
treated with DMSO (vehicle control), or pretreated with 5 �M mycalolide B (MycB) and added to
unstimulated or stimulated neutrophils (stimulated with LPS or LPS�ATP) for 16 h. Mock-infected cells
were cultured in parallel. (A) Infection efficiency was measured by flow cytometry. (B) The amount of
IL-1� released into the culture supernatant was measured by ELISA. (C) Pro-IL-1� and mature IL-1� in the
cell lysate were visualized by Western blotting. Data reflect combined results of eight (A and B) and three
(C) experiments with different donors. Values are expressed as the means plus SEM. Values that are
significantly different by one-way ANOVA followed by a Bonferroni posttest are indicated by a bar and
asterisk as follows: *, P � 0.05; **, P � 0.01; ***, P � 0.001. The results of representative Western blots
are shown in panels A and C.
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signaling (31, 48) and T. gondii (RH strain) can suppress NF-�B activation in macro-
phages and fibroblasts (49–51), we hypothesized that T. gondii may inhibit IL-1� in
human neutrophils via suppression of NF-�B signaling. Stimulation of cells with LPS
leads to canonical NF-�B activation, which involves the phosphorylation and nuclear

FIG 4 Effect of T. gondii infection on the NLRP3 inflammasome and its activation. Neutrophils were treated as follows: (i) mock infected, (ii)
infected with T. gondii, (iii) infected with T. gondii and stimulated with LPS (500 ng/ml), (iv) stimulated with LPS only (positive control), (v) infected
and stimulated with LPS�ATP (5 mM), or (vi) stimulated with LPS�ATP only (positive control). (A) After 16 h, Q-PCR was performed with specific
primers for NLRP3 or GAPDH. The transcript levels relative to those of GAPDH are shown. (B and C) NLRP3 (B), pro-caspase-1 and cleaved caspase-1
(C) in the cell lysate were visualized and quantified by Western blotting. (D) Caspase-1 activity was detected by the FAM-FLICA probe and
visualized and quantified by ImageStream flow cytometry. Zombie violet was used to assay for cell death, and the treatment of cells with 3% PFA
for 30 min was used as a positive control for cell death. The histograms depict the levels of FLICA (caspase-1 enzymatic activity) in each population
of cells. Each experiment was performed three times with different donors. Values are expressed as the means plus SEM. Values that are
significantly different (P � 0.05 by one-way ANOVA followed by Tukey posttest) are indicated by a bar and asterisk. Representative blots are
shown in panels B and C, and representative images are shown in panel D.
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translocation of the NF-�B subunit p65 (52). We evaluated the levels of total and
phospho-p65 in neutrophils 30 min after LPS treatment and/or T. gondii infection. Total
p65 was comparable across all experimental groups; however, the stimulation of
neutrophils with LPS or LPS�ATP strongly induced p65 phosphorylation (Fig. 5A),
indicating activation of NF-�B signaling. In contrast, T. gondii infection reduced LPS-
induced p65 phosphorylation, suggesting that T. gondii inhibited NF-�B signaling in
human neutrophils. As expected, low levels of phospho-p65 were observed in mock-
infected and T. gondii-infected cells (Fig. 5A).

On the basis of these findings, we investigated the specific step of the NF-�B
pathway that was inhibited by T. gondii infection. To do this, we analyzed MyD88,
TRAF6, IKK�, IKK�, and phospho-IKK�/� (p-IKK�/�), which we found were not affected
by infection (Fig. S3), and LPS-induced I�B� degradation (Fig. 5C). I�B proteins are
cytoplasmic inhibitors of NF-�B that are phosphorylated, ubiquitinated, and degraded

FIG 5 Effect of T. gondii infection on NF-�B activation in human neutrophils. Neutrophils were pretreated with either DMSO (vehicle control) or 50 �M MG-132,
an inhibitor of the proteasome, for 1 h. Neutrophils were then treated as follows: (i) mock infected, (ii) infected with GFP-expressing type I T. gondii, (iii) infected
and stimulated with LPS (500 ng/ml), (iv) stimulated with LPS only (positive control), (v) infected and stimulated with LPS�ATP (5 mM), or (vi) stimulated with
LPS�ATP only (positive control) for 30 min. (A) Total p65 and phospho-p65 (Ser536) in the cell lysate were visualized and quantified by Western blotting. (B)
Infection efficiency and cell viability were measured by flow cytometry. (C) I�B� in the cell lysate was visualized and quantified by Western blotting. Each
experiment was performed three (A and B) or four (C) times with different donors. Values are expressed as the means plus SEM. Values that are significantly
different (P � 0.05 by one-way ANOVA followed by Tukey posttest in panel A and a Bonferroni posttest in panel C) are indicated by a bar and asterisk. The
results of representative experiments are shown in panels A, B, and C.

T. gondii Inhibits IL-1� in Human Neutrophils ®

January/February 2018 Volume 9 Issue 1 e02027-17 mbio.asm.org 9

http://mbio.asm.org


to allow nuclear translocation of NF-�B dimers and activation of transcription (53).
Reduced levels of I�B� were observed in neutrophils stimulated with LPS or LPS�ATP
compared to mock-infected or T. gondii-infected neutrophils (Fig. 5C). In contrast, in
cells that were both infected and stimulated with LPS or LPS�ATP, I�B� was not
degraded to the same degree as in uninfected cells stimulated with LPS or LPS�ATP,
indicating that T. gondii infection inhibited LPS-induced I�B� degradation. Moreover,
T. gondii infection alone inhibited the basal turnover of I�B� in neutrophils (Fig. 5C). To
confirm degradation of I�B� by the proteasome, we used the proteasome inhibitor
MG-132 (54), which reversed I�B� degradation in all samples, demonstrating that
LPS-induced I�B� degradation was dependent on the proteasome (Fig. 5C). We con-
firmed by flow cytometry that the proteasome inhibitor did not affect the infection
efficiency or cell viability compared to the vehicle control (Fig. 5B). Taken together,
these findings demonstrate that T. gondii infection inhibited LPS-induced NF-�B acti-
vation in human neutrophils by reducing I�B� degradation and p65 nuclear translo-
cation.

Although NF-�B is the main transcriptional activator of IL-1�, it has been demon-
strated in human neutrophils that CREB1 and C/EBP� activation are also involved in the
induction of inflammatory cytokine genes (55, 56). Therefore, to determine whether
T. gondii-mediated IL-1� inhibition was specifically associated with suppression of
NF-�B signaling, we evaluated a possible effect of T. gondii infection in CREB-1 and
C/EBP� activation. We investigated the levels of total and phospho-CREB1 and total and
phospho-C/EBP� (both activator, LAP, and inhibitor, LIP isoforms) in neutrophils 30 min
after LPS treatments and/or T. gondii infection. The levels of CREB-1 and C/EBP� were
comparable across all experimental groups (Fig. S4), indicating that T. gondii-mediated
IL-1� inhibition in human neutrophils was not associated with regulation of these
transcriptional factors but specifically with inhibition of the NF-�B pathway.

DISCUSSION

Neutrophils play a key role in acute inflammation and are rapidly recruited to sites
of infection (1, 2). Neutrophils were identified by Ehrlich in 1880 (57), and their function
as immune cells that migrate to sites of injury to digest microbes was observed in
starfish embryos 13 years later by Metchnikoff (58). Remarkably, Metchnikoff’s findings,
over 120 years later, still describe the basic role of neutrophils in innate immunity.

Although IL-1� is considered to be a product predominantly of monocytes and
macrophages, neutrophils are also capable of producing this cytokine, and the large
number of neutrophils found at sites of inflammation may compensate for the low
levels of IL-1� synthesized per cell, resulting in a significant overall contribution (32, 59).
Unlike in macrophages, IL-1� processing is not well understood in neutrophils. Mouse
and human neutrophils can produce IL-1� through the canonical pathway involving
two signals. In addition, neutrophils can secrete IL-1� in response to LPS alone, via a
pathway that requires caspase-1 (60), Syk, ROS production, and lysosomal destabiliza-
tion (38). Our data show a novel strategy of immune evasion in which T. gondii inhibits
IL-1� production induced by LPS or LPS�ATP in primary human neutrophils. This
mechanism may be particularly relevant during T. gondii infection in the small intestine.
Since the human gut harbors a large number of commensal bacteria, LPS from gut
microbes may shape the immune responses in this environment (61). Moreover,
T. gondii infection is associated with cell damage and the release of danger-associated
molecular patterns, such as ATP (62). Extracellular ATP leads to paracrine or autocrine
activation of downstream purinergic signaling and exacerbation of the inflammatory
response (63, 64).

Studies using rodents identified NLRP1 and NLRP3 as sensors for T. gondii (65–67)
and show that mice deficient in either of these sensors display increased parasite
burden and acute mortality (67). Recently, our group identified NLRP3 as a sensor for
T. gondii in primary human monocytes (39). NLRP3 is expressed in mouse (45) and
human (68) neutrophils and increases in response to stimulation with TLR ligands,
including LPS (45, 68). However, we have found that T. gondii decreases LPS-induced
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NLRP3 expression in neutrophils, thereby hampering IL-1� production. Several patho-
gens have developed mechanisms to avoid or suppress inflammasome activation (69),
but to our knowledge, the current report is the first evidence of a mechanism that
relies, at least in part, on transcriptional inhibition of an inflammasome sensor.

In neutrophils, TLR agonists induce transcription of IL-1� and components of the
inflammasome through NF-�B activation (48, 70). Interestingly, T. gondii can modulate
the NF-�B pathway in different ways depending on the parasite strain. The dense
granule protein GRA15 from type II T. gondii is an inducer of sustained NF-�B activation
(71). In contrast, type I T. gondii induces I�B degradation but fails to induce p65 nuclear
translocation in fibroblasts and macrophages (49, 51). Type I T. gondii also impairs the
ability of LPS to activate NF-�B and to induce IL-12 and TNF-� in macrophages (49, 50).
In neutrophils, our data similarly show that type I T. gondii did not activate NF-�B but
inhibited LPS-induced NF-�B signaling at the level of inhibition of I�B degradation.
Since we did not detect an effect of T. gondii on several of the proteins upstream of I�B
(see Fig. S2 in the supplemental material), the effect we observed in neutrophils likely
occurs at the level of this NF-�B cytosolic inhibitor.

Monocytes harbor mature caspase-1, and therefore, a second signal is not required
to induce caspase-1 cleavage and activation to convert pro-IL-1� into mature IL-1� (72).
Similarly, human neutrophils also harbor cleaved caspase-1 in their cytosol, plasma
membrane, and secretory vesicles (47). Indeed, we observed cleaved caspase-1 in
unstimulated neutrophils and LPS-treated neutrophils, both of which were reduced by
T. gondii infection. Interestingly, however, the FLICA assay indicated that the cleaved
caspase-1 in unstimulated neutrophils was not enzymatically active. In contrast, treat-
ment with LPS induced high levels of caspase-1 activity, which was impaired by
T. gondii infection. Thus, our data indicate that there are likely two mechanisms by
which T. gondii infection modulates IL-1� production in primary human neutrophils: the
first is the reduction of LPS-induced NF-�B activation, resulting in reduced IL-1� and
NLRP3 transcripts, and the second is the inhibition of caspase-1 cleavage and activation.
In addition, in contrast to macrophages and dendritic cells (73), the activation of
caspase-1 in neutrophils does not lead to pyroptosis (33–35). Consistent with this, we
found that LPS-induced IL-1� release from neutrophils did not induce cell death, and
neither did T. gondii infection. In neutrophils, this may be due to perturbed expression
or function of gasdermin D (74), which is the direct and final executor of pyroptosis in
macrophages (75). A disabled pathway of neutrophil pyroptosis may be beneficial to
the host, since early pyroptosis may prevent other antipathogenic effector functions.

The differential IL-1� response of monocytes and neutrophils to T. gondii infection
is intriguing. Although the precise mechanism by which T. gondii activates the inflam-
masome in human monocytes remains unknown, we have found that it depends on
NLRP3, ASC, caspase-1, and K� efflux and appears to be “classical” inflammasome
activation (26, 39). We have also demonstrated a role for the type II parasite-secreted
GRA15 protein in NF-�B activation and IL-1� transcription in monocytes (26, 39).
Interestingly, both type I and II T. gondii inhibit LPS-induced IL-1� release from human
neutrophils (data not shown). Although IL-1� regulation is not fully understood in
neutrophils, it is curious that T. gondii infection and GRA15 secretion in neutrophils do
not lead to the same outcome as in monocytes. In addition, there are differences in the
mechanisms of inflammasome assembly and activation between monocytes and neu-
trophils. Neutrophils, like macrophages, express significantly lower levels of NLRP3 than
monocytes (45). As a result, monocytes may be more readily stimulated to produce
IL-1� during T. gondii infection compared to neutrophils and macrophages.

Collectively, the current work provides evidence of a novel pathway by which
T. gondii manipulates neutrophils, disarming innate immunity by limiting the produc-
tion of IL-1� during infection, and potentially promoting survival of the parasite.

MATERIALS AND METHODS
Isolation of primary human neutrophils. Human peripheral blood samples from healthy donors

were provided by the Institute for Clinical and Translational Science (ICTS) at the University of California,
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Irvine, in accordance with guidelines and approval of the Institutional Review Board. Blood was mixed
with 3% dextran (Sigma-Aldrich) in phosphate-buffered saline (PBS) for 20 min. The top layer containing
leukocytes was transferred to a fresh tube, and the cells were underlaid with 15 ml of Ficoll-Paque Plus
(GE Healthcare) and centrifuged at 300 � g for 20 min. The underlying pellet containing neutrophils and
red blood cells (RBC) was suspended in 1� RBC lysis buffer (eBioscience) and incubated for 10 min (35).
Neutrophils were washed in PBS and suspended in RPMI 1640 (HyClone) supplemented with 10%
heat-inactivated fetal bovine serum (FBS) (Omega Scientific), 2 mM L-glutamine (Corning), 100 U ml�1

penicillin, and 100 �g ml�1 streptomycin (HyClone) (R-10%). The purity of the isolated population was
assessed by flow cytometry and May-Grünwald-Giemsa stain. Isolated human neutrophils were used
immediately for experimentation.

Parasite culture and neutrophil infections. Type I T. gondii (RH) tachyzoites constitutively express-
ing green fluorescent protein (GFP) or tdTomato were maintained as previously described (76). Syringe-
lysed parasites were passed through a 5.0 �m filter unit to remove host cell debris, and neutrophils were
infected at a multiplicity of infection (MOI) of 2. Mock-infected controls were samples in which an equal
volume of medium without parasites was added to the cells.

Stimulators and inhibitors. Ultrapure lipopolysaccharide (LPS) (List Biological) was used at 500 ng
ml�1 for 30 min or 16 h, and ATP (Sigma-Aldrich) was used at 5 mM to stimulate IL-1� (35, 38). ATP was
added with LPS for 30 min or added 3 h after LPS when the cells were stimulated for 16 h.

The caspase-1 inhibitor N-acetyl-L-tyrosyl-L-valyl-N-[(1S)-1-(carboxymethyl)-3-chloro-2-oxo-propyl]-L-
alaninamide (Ac-YVAD-CMK) (Cayman Chemical) (42) and the proteasome inhibitor MG-132 (Tocris) (54)
were dissolved in dimethyl sulfoxide (DMSO) (Thermo Fisher Scientific). Neutrophils were pretreated with
YVAD at 100 �M for 30 min, with MG-132 at 50 �M for 1 h, or with the equivalent volume of DMSO for
a vehicle control, and infected and/or stimulated as described above.

T. gondii tachyzoites were heat killed by boiling at 100°C for 15 min or pretreated with 5 �M of
mycalolide B (Enzo Life Sciences) (44) for 10 min at room temperature and washed twice. For the vehicle
control, parasites were treated with an equivalent volume of DMSO.

Flow cytometry. Cells were stained as previously described (39) with anti-CD66b antibody conju-
gated to PerCP-Cy5.5 (anti-CD66b-PerCP-Cy5.5) (G10F5), anti-CD11b antibody conjugated to phycoeryth-
rin (PE) (anti-CD11b-PE) (ICRF44), anti-CD14-PE (HCD14), anti-CD3-PE (SK7), anti-CD20-PE-Cy7 (2H7),
anti-CD56 conjugated to allophycocyanin (APC) (anti-CD56-APC) (HCD56) or fluorophore-conjugated
isotype controls (all from BioLegend). Cell viability and infection efficiency were also determined in every
experiment, as previously described (39). Events were acquired on a FACSCalibur flow cytometer with
CellQuest software (BD Bioscience) and analyzed using FlowJo software (TreeStar).

Enzyme-linked immunosorbent assay (ELISA). IL-1� released into the supernatant by 106 neutro-
phils was measured using the ELISA MAX Deluxe Set (BioLegend), according to the manufacturer’s
instructions.

Quantitative real-time PCR. Total RNA was harvested from 107 neutrophils using the RNeasy kit
(Qiagen) and treated with DNase I (Invitrogen). cDNA was generated using SuperScript III first-strand
synthesis kit (Life Technologies), according to the manufacturer’s instructions. Previously published
primers for IL-1�, NLRP3, and GAPDH (26) were used. Quantitative real-time PCR (Q-PCR) was performed
as previously described (77), and data were analyzed using the threshold cycle (ΔΔCT) method (78). The
values obtained for IL-1� and NLRP3 were normalized to those of GAPDH, and the data were expressed
as a ratio of mRNA levels.

Western blotting. A total of 106 neutrophils were lysed and analyzed by Western blotting as
previously described (26) using the following antibodies: anti-IL-1� (3ZD; National Cancer Institute
Biological Resources), anti-NLRP3 (D2P5E; Cell Signaling), anti-caspase-1 (Cell Signaling), anti-NF-�B p65
(D14E12; Cell Signaling), anti-phospho-NF-�B p65 (Ser536) (93H1; Cell Signaling), anti-I�B� (L35A5; Cell
Signaling), anti-MyD88 (D80F5; Cell Signaling), anti-TRAF6 (D21G3; Cell Signaling), anti-IKK� (Cell Signal-
ing), anti-IKK� (2C8; Cell Signaling), anti-phospho-IKK�/� (Ser176/180) (16A6; Cell Signaling), anti-CREB1
(48H2; Cell Signaling), anti-phospho-CREB (Ser133) (87G3; Cell Signaling), anti-C/EBP� (Cell Signaling),
anti-phospho-C/EBP� (Thr235) (Cell Signaling), or anti-�-actin (AC-15; Sigma-Aldrich). Peroxidase-
conjugated secondary antibodies were used (BioLegend). Membranes were developed using ECL
(Thermo Scientific) and detected using a Nikon camera as previously described (79). Quantification
analysis of blots was performed using ImageJ, and �-actin was used as a loading control. The results for
samples were expressed as a percentage of the value for the positive control (LPS or LPS�ATP group).

Caspase-1 activation assay. Active caspase-1 was quantified by using a FAM-FLICA (fluorescent
labeled inhibitor of caspase) detection kit (FAM-YVAD-FMK; ImmunoChemistry Technologies) according
to the manufacturer’s instructions. Cell viability was assessed by using Zombie violet (BioLegend). Events
were acquired on an imaging flow cytometer (Amnis ImageStream Mark II) and analyzed using IDEAS
software.

Bright field and immunofluorescence microscopy. Cytospins (Shandon CytoSpin cytocentrifuge)
were stained with May-Grünwald-Giemsa solution and analyzed using a Cytation 5 cell imaging multi-
mode reader (BioTek) with a 40� objective.

For immunofluorescence microscopy, neutrophils were settled onto coverslips coated with poly-L-
lysine for 1 h at 37°C. The cells were infected for 30 min or 3 h, and the cells were fixed with 4% PFA
(Electron Microscopy Sciences). Neutrophils were permeabilized with 0.5% Triton X-100 (Fisher Scientific),
blocked with 5% normal goat serum (Southern Biotech), and stained overnight with an anti-
myeloperoxidase (anti-MPO) (N4C7[989B]; BioLegend) primary antibody. An Alexa Fluor 594 (AF594)-
conjugated secondary antibody (Life Technologies) was used. Coverslips were mounted onto glass slides
using ProLong Diamond antifade mountant with DAPI (Life Technologies). Images were acquired using
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a Nikon Eclipse Ti inverted microscope with a 60� objective and NIS-Elements acquisition software
(Nikon Instruments).

Statistics. Statistical analyses were performed using GraphPad Instat software. Analysis of variance
(ANOVA) followed by Tukey’s or Bonferroni’s test, as indicated, were used for comparison between
means. Differences were considered significant when the P value was �0.05.

SUPPLEMENTAL MATERIAL
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