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In order to ensure that primary endpoints of clinical studies are attained, the patients’
stratification is an important aspect. Selection criteria include age, gender, and also
specific biomarkers, such as inflammation scores. These criteria are not sufficient to
achieve a straightforward selection, however, in case of multifactorial diseases, with
unknown or partially identified mechanisms, occasionally including host factors, and the
microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a
result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly
heterogeneous disease, with variable clinical features, outcomes, and response to
therapy; the CRC onset and progress involves multiple sequential steps with
accumulation of genetic alterations, namely, mutations, gene amplification, and
epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the
CRC evolution through a complex and versatile crosstalk with the intestinal and immune
cells, permanently changing the tumor microenvironment. There have been significant
advances in the development of personalized approaches for CRC screening, treatment,
and potential prevention. Advances in molecular techniques bring new criteria for patients’
stratification—mutational analysis at the time of diagnosis to guide treatment, for example.
Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may
impact cancer susceptibility through maintenance of the epithelial/mucus barrier and
production of protective metabolites, such as short-chain fatty acids (SCFAs) via
interactions with the hosts’ diet and metabolism. Microbiome dysbiosis leads to the
enrichment of cancer-promoting bacterial populations, loss of protective populations or
maintaining an inflammatory chronic state, all of which contribute to the development and
progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno-
and chemotherapies were also linked to inter-individual differences in intestine
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microbiomes. The authors aim to highlight the contribution of epithelial and gut
microbiome inflammatory biomarkers in the improvement of CRC patients’ stratification
towards a personalized approach of early diagnosis and treatment.
Keywords: colorectal cancer, inflammation, gut microbiota, biomarkers, patients’ stratification
1 INTRODUCTION

Noncommunicable diseases (NCDs) are now responsible formost of
the global deaths, amongwhich cancer is a serious health problem in
all countries, regardless of socio-economic status. According to data
provided by the World Health Organization (WHO) in 2020, at a
global level one in five people faces a cancer diagnosis during their
lifetime. The most important actions to increase life expectancy
should be increasing prevention, diagnosis, treatment and
management, palliative care, and surveillance. According to the
Agency for Research on Cancer, the disease is the first or second
leading cause of death in 2019 in the USA, while ranking third or
fourth inanadditional 22 countries.Anestimated18.1millionpeople
around the world (excluding nonmelanoma skin cancer) developed
cancer, out ofwhich 9.9milliondied from thedisease before age 70 in
112 of 183 countries (1, 2). Lung cancer (11.6% of all cases), followed
by female breast (11.6%) and colorectal (CRC) cancers (10.2%) are
the most frequently diagnosed cancers (3).

Although developed countries have the highest CRC incidence
and mortality rates worldwide, CRC incidence has recently started
increasing in low-income and middle-income nations (2, 4). This
reflects changes in lifestyle factors and diet, an increased intake of
animal-source foods, a more sedentary lifestyle, leading to decreased
physical activity and increased prevalence of excess body weight (1).
However, complex causes reflect both aging and global population
growth, and also changes in the prevalence and distribution of the
main risk factors for cancer. In some cases, these factors were
associated with socioeconomic development (5). It has been
observed that in countries undergoing major transitions, such as
countries from Eastern Europe, South Europe, South Central Asia,
and South America, the incidence rate tends to increase uniformly
with the Human Development Index (HDI) (1). Therefore, primary
prevention remains the most important strategy to reduce the global
prevalence of colorectal cancer.

In 2020, CRC ranks third in terms of incidence and second in
terms of mortality (1, 5). Even in countries where national CRC
screening programs exist the mortality is around 30%, and only a
small proportion of CRCs are diagnosed through population-
based screening programs (1, 5).

Before the year 2000, the changes in pattern behavioral risk
factors (smoking reduction, change in dietary pattern) and also
increasing number of CRC screening programs around the world
(SUA, UK, Switzerland, Austria) was associated with a decreased
rate of CRC incidence. However, there is still a gap in diagnosing
individuals at a localized stage, probably because screening
programs include only patients older than 50 years and only
track behavioral changes. The screening is based on colonoscopy,
a method that predominantly prevents tumor metastasis by
removing premalignant polyps (6).
2

After 2000, due to rapid technological improvement and
affordable costs of molecular techniques, scientists were able to
define criteria for CRC patients’ stratification based on sex, age,
family history, genetic susceptibility, and endoscopy and
colonoscopy examinations. Consequently, the individualized
treatment has been achieved more rapidly. In 2015, in a joint
effort to understand the heterogeneous clinical and drug outcomes
observed in CRC patients, a consortium of researchers defined a
new criterion for CRC patients’ stratification based on Consensus
Molecular Subtyping (CMS). This highlighted the interconnection
between six classification systems that were finally grouped into four
molecular subtypes. The first subtype (CMS1) is based on
microsatellite instability (MSI), significance of immune activation
and hypermethylation, specific processes for the early-stage
sporadic colorectal cancer. For early diagnosis and treatment of
CRC patients, the MSI model (CMS1) has become a key biomarker
due to advances in the understanding of the immune
microenvironment of colorectal cancer. CRC patients with
different microsatellite statuses exhibited different compositions
and distributions of immune cells and cytokines within their
tumor microenvironments (TMEs). A complex crosstalk between
different regulatory pathways was observed in the TME, with a key
role in the occurrence, progression, and treatment of tumours,
representing an important source of potential therapeutic targets.
Intestinal microbiome (IM) has emerged as themain environmental
trigger of intestinal mucosal homeostasis that may also influence
cancer susceptibility through maintenance of the epithelial/mucus
barrier and production of protective metabolites via interactions
with host diet and metabolism. Dysbiosis leads to the enrichment of
cancer-promoting bacterial populations, loss of protective
populations, development, and progression of CRC by
maintaining an inflammatory chronic state, etc., while variations
in patient responses to cancer immuno- and chemotherapies have
been linked to inter-individual differences in intestine microbiomes
(7–9). Accumulating evidence suggests that chronic inflammation
and the metabolites accumulated ensuing inflammation contribute
to tumor initiation and tumor progression (10–12).

In this article, we aim to focus on the complex network signaling
pathway crosstalk between colonocytes, microbiome, and tumor
cells at the earlier-stage sporadic colorectal cancer, and to reveal the
role of inflammatory biomarkers in CRC screening programs.
2 ADVANCES IN THE MOLECULAR
STRATIFICATION OF COLORECTAL
CANCER

CRC is a highly heterogeneous disease, with varying clinical
outcomes, morphological features, and genetic and gene
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regulatory levels which contribute to differences in individual
response to therapy. The histopathological parameters typically
used for diagnosis are not enough to recognize high risk patients,
while molecular features are still sparsely used in current
clinical practice.

Explosion in knowledge regarding genetic, epigenetic, and
biochemical alterations, associated with the evolution of CRC,
correlated with advances in molecular biology, sequencing,
computer science and modern bioinformatics have facilitated
the development of different patients’ stratification strategies. A
systematic review of literature on developed stratification models
on CRC indicates that current screening guidelines for CRC
stratify patients based on different criteria as presented
in Table 1.

As shown in Table 1, selection criteria for the enrolment of
prospective subjects include age, gender, molecular signature,
inflammation scores, or Dietary Inflammatory Index (DII®). The
DII, a literature-derived population-based dietary index, was
analyzed by Shivappa in nine studies that examined the
association between the diets’ inflammatory potential and
CRC. In their meta-analysis they demonstrate that limiting the
consumption of pro-inflammatory foods, such as red meat, and
increasing consumption of anti-inflammatory nutrients may
play an important role in reducing the risk of CRC. Anti-
inflammatory foods include fiber, monounsaturated fatty acids,
polyunsaturated fatty acids, omega 3, omega 6, vitamins and
minerals, all associated with a lower DII score. While pro-
inflammatory foods include carbohydrates, proteins, trans fat,
total fat, cholesterol, saturated fatty acids, iron, etc., associated
with a higher DII score (32, 33). Evidence suggests that
modifiable lifestyle factors, namely, excess adiposity, poor diet,
and physical inactivity play an important role in the occurrence
and progression of this disease (34). While for diseases with
known underlying mechanism or targeted therapy, the selection
of subjects can be straightforward to obtain high efficacy of a
given intervention, this cannot be achieved, unfortunately, in the
case of CRC. It is a multifactorial disease, with unknown or
partially elucidated mechanisms, sometimes including host
factors, local environmental factors, lifestyle factors (35),
Frontiers in Oncology | www.frontiersin.org 3
microbiome, and host diets that have been extensively studied.
All of these play a causal and protective role in the development
of CRC (36). Based on 19 factors, Jeon and col. created a risk
score that summarizes an individuals’ overall lifestyle and
environment CRC risk profile by using data from 14
population-based studies. They demonstrate that both lifestyle,
environmental factors, and common genome-wide association
study (GWAS) variants are independent risk predictors for
CRC (16).

Advances in molecular techniques bring new criteria for
patients’ stratification, e.g., mutational analysis at the time of
diagnosis to guide treatment. By reviewing the literature,
Coleman and co. found that the caloric content and
composition of diets are linked to the development of obesity
and were associated with persistent and transmissible alterations
in the IM. It was suggested that differences in diet and in the IM
may be responsible for variations in CRC prevalence between
two similar human populations (37).

The CRC onset and progress involves multiple sequential
steps with accumulation of genetic alterations including
mutations, gene amplification, and epigenetic changes.
Although inherited genetic susceptibility has a key role in a
subset of CRC cases, in general, CRC cases are sporadic and non-
inherited. Traditionally, CRC can be divided into familial CRC
(hereditary CRC, HCRC) and sporadic CRC (non-hereditary
CRC, NHCRC) (38).

Other than HCRC which accounts for approximately 20–25%
of all types of CRC, as determined by non-modifiable risk factors
such as familial history of CRC, adenomatous polyps, specific
mutations occurring in genes involved in the tumorigenic
pathway, an approximate of 75% of CRC tumors have some
genetic defects that occur throughout life, stemming from a
multitude of factors.

Even if new molecular pathways, critical for tumor
development, are continuously discovered and their molecular
targeting is a success in the experimental models, the number of
effective therapies for CRC patients is still very limited.

While in the early 1990s, researchers were able to link the
mutations of some genes to the susceptibility of CRC and
TABLE 1 | CRC patients’ stratification criteria.

Criteria References

Human Development Index (13)
Common genetic susceptibility loci (14, 15)
Lifestyle and environmental factors (16)
Integration of personalized patient-derived organoids drug screening and patient-derived xenografts generation (17–19)
DNA sequencing of archival or fresh tumor biopsy (19–21)
Consensus molecular subtypes (CMS) (22–25)
Personalized patient—derived tumor organoids drug screening and patient-derived xenografts (17)
Current screening guidelines based on age and family history (1, 26)
Screening based on lifestyle, environmental and genetic factors (16)
Immunoscore (27)
Molecular matching with predetermined monotherapy (PREDICT trial) (28)
Fresh biopsy-derived DNA sequencing (WINTHER trial) (29)
Genomic and transcriptomic analysis (WIN trial) (29)
Individual molecular alteration (NCI-MATCH trial) (30)
Genomic instability (31)
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postulated the idea that CRC progression is correlated with the
accumulation of genetic changes, more recently there has been
an increased emphasis on the heterogeneity of colon cancer, and
the involvement of the intratumoral environment (39–43).

The two main pathways used to classify CRC and guide the
personalized therapeutic strategy are the chromosomal
instability pathway (CIN) that accounts for 85% of cases, and
the microsatellite instability pathway (MSI) that represents 15%
of total CRC cases (44).

Initially, this classification was used for dichotomization into
good and poor prognosis patients, whereas current research
reveals that separation into strictly two groups does not reflect
the biological diversity specific to colon cancer (45).

Most of the sporadic CRC cases are explained using CIN
model, which suggests a predictable progression with sequential
accumulation of mutations in specific genes like adenomatous
polyposis coli (APC), WNT, etc. The model provides signs that
can be used for risk assessment, early detection, prognosis, and
treatment of the disease. According to this model, the sequential
accumulation of mutations that eventually leads to CRC provides
a level of opportunity to prevent CRC before these mutations
reach a threshold level.

The MSI model represents a class of colon cancer characterised
by high mutational load caused by defective DNA mismatch repair
(MMR). The microsatellites, representing repetitive DNA
sequences, are especially sensitive to mutation due to
dysfunctional MMR and a high abundance of microsatellite
length alteration. The detection of MSI is identified via a PCR-
based assay categorizing tumours as eitherMSI-high (MSI-H), MSI-
low (MSI-L) or microsatellite stable (MSS), based on the number of
microsatellite markers demonstrating instability. In sporadic MSI
tumors, defective DNA MMR usually result from CpG (5’-CG-3’)
island promoter methylation and therefore the inactivation of the
MLH1 gene which encodes a key gene in MMR pathway. This
promoter methylation is accompanied by other methylation
processes of promoters throughout the genome. This
phenomenon is known as CpG island methylator phenotype
(CIMP). Testing for CIMP is performed via PCR for
hypermethylation in CACNA1G, MLH1, NEUROG1, RUNX3,
and SOCS1 (46). Based on MSI status, an international
consortium consolidated separate findings into one overarching
stratification system, the Consensus Molecular Subtypes (CMS) of
colorectal cancer (22).

As mentioned, a consortium of researchers highlighted the
interconnection between six classification systems that were finally
grouped into four molecular subtypes (CMS): CMS1 (MSI
Immune) (14% of classified molecular clusters), microsatellite
instabi l i ty , s ignificance of immune act ivat ion and
hypermethylation; CMS2 (Canonical) (37%), shows changes in
the WNT and MYC signalling pathways in epithelial cells; CMS3
(Metabolic) (13%), presents disorders in the signalling pathways in
epithelial cells and metabolic changes; and the CMS4 subtype
(Mesenchymal) (23%) shows changes in mesenchymal–epithelial
cells, prominent stromal invasion and angiogenesis, changes that
are accompanied by activation of growth factor b (TGF-b) (22,
47). The remaining 13% of the analyzed molecular clusters could
Frontiers in Oncology | www.frontiersin.org 4
not be included in any subtype because the characteristics are
specific to several subtypes; it is considered to have a phenotype
of transition from one cluster to another. This classification is
the most comprehensive, preserving the relation between
specific molecular changes, biological classification, and
clinical classification.
3 TUMOR MICROENVIRONMENT
HETEROGENEITY AS A POTENTIAL
SOURCE OF CRC BIOMARKERS AND
THERAPEUTIC TARGETS

Over the last 10–15 years, the CRC research field has moved from
mainly assessing mutations to measuring gene expression patterns,
in order to describe a broader spectrum of CRC heterogeneity (48).
The molecular heterogeneity involves several molecular pathways
and molecular changes unique to a tumor of an individual and,
although the existence of heterogeneity in CRC has been recognized
for a longer period, it is sparingly incorporated as a determining
factor in current clinical practice.

Development of TME is driven by genetic instability of cancer
cells and by epigenetic factors in response to endogenous stress
stimuli or exogenous factors like pH changes, aberrant angiogenesis,
hypoxia, glucose deprivation, acidosis, and oxidative stress.
Endogenous stressors are associated with imbalanced cell growth,
increased mutation rate, errors in lipid and glycoprotein
biosynthesis and decreased amino acid supplies (49, 50).

The tumor stromal-inflammatory interface represents a dynamic
space which includes growth factors (hepatocyte growth factor
(HGF), insulin-like growth factors (IGF), nerve growth factor
(NGF), wingless-type MMTV integration site family member 1
(WNT1), epidermal growth factor (EGF), fibroblast growth factor 2
(FGF2), vascular endothelial growth factor (VEGF), platelet derived
growth factor (PDGF).), cytokines (IL-1, IL-6, IL-8), chemokines
(CXC chemokines CXCL1 to CXCL12, CC chemokines CCL2 and
CCL20), enzymes (LOX family oxidases and LOX-like proteins 1–4,
COX2), matrix metalloproteinases (MMP-1, MMP-2, MMP-7,
MMP-9, MMP-13, and MMP-14), ECM proteins (fibronectin,
collagen I and III, EDA-fibronectin, tenascin C, and SPARC), and
metabolic intermediates that are secreted during the exchanges
(between various molecular information) associated with stromal
and cancer cells transitions. Recruitment, activation,
reprogramming and persistence of inflammatory and stromal cells
in the extracellular space are the consequences of a reciprocal
relationship between TME and cancer cells (51). Studies have
shown that infiltration of immune cells into TME is an important
factor affecting tumor heterogeneity and prognosis, and infiltrated
immune cells and cytokines secreted by the inflammatory process
may play dual roles by inhibiting or promoting tumors.

In light of all these, the above mentioned MSI model (CMS1)
is of paramount importance for the early diagnosis and
treatment of CRC patients due to advances in the
understanding of the immune microenvironment of colorectal
cancer. CRC patients with different microsatellite statuses
February 2022 | Volume 11 | Article 811486
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present different compositions and distributions of immune cells
and cytokines within their TMEs (52).

A complex crosstalk between different regulatory pathways
was observed in the TME, which played a key role in the
occurrence, progression, and treatment of tumours, representing
an important potential therapeutic target (53). As so, the TME is
permanently remodeling and reprogramming according to the
modification of numerous physical, biochemical, and stromal cells
functions like pH, oxidative stress, ECM stiffness, metabolism,
inflammation, and immunity. Therefore, inhibition of one specific
target leads to different answers, at different levels in different
regulatory pathways. In addition, the cell is able to avoid the path
that is blocked so that the entire signaling network functions;
cancer cells develop new adaptative strategies to adjust their
phenotype to the variation of TME conditions (50). New
developed heterogenous cancer cells subpopulations appear
and show different characteristics in terms of plasticity,
stem-like phenotype, metabolic reprograming, invasion,
immunosuppression, and therapeutic resistance (51). According
to Alsibai, the most widely known plasticity processes are the
epithelial–mesenchymal transition (EMT) and the reversible
mesenchymal–epithelial transition (MET). Cancer cells follow
similar EMT processes to establish metastases. EMT facilitates
epithelial cancer cells to enter a mesenchymal-like state by
endowing the migratory and invasive properties, which enables
a primary tumor to move and colonize distant organs and form
metastases. This is a critical step in early phase of cancer
metastasis and is closely linked to carcinogenesis, invasion,
recurrence, and therapy resistance (50). One of the goals of the
researchers for stratifying patients according to the specific
crosstalk patterns is to analyze how they communicate with the
main signaling pathways involved in carcinogenesis, as well as to
show the nature of the relationship between different subtypes of
tumor cells and protein expression.
4 CONTRIBUTION OF GUT MICROBIOTA
DERIVED MARKERS TO CRC PATIENTS’
STRATIFICATION

Nearly all the digestion and absorption of nutrients is carried out in
the gastrointestinal tract (GI). Abundant gut microbes in the GI,
estimated to total about 1013–1014 CFU (colony forming units)/ml,
are involved in the process. Bacterial products together with food
residue make up most of the contents in the intestine and are
directly or indirectly in contact with the mucus layer separating
them from the epithelial cells. The gut microbiome, the largest
micro-ecosystem in the human body, is symbiotic with the host and
maintains normal physiological processes in a dynamic equilibrium
state (54). It establishes a complex interaction with host cells and
even a small disturbance may lead to the breakdown of intestinal
homeostasis just like the ‘butterfly effect’ (55). The maintenance of
this precise balance requires the control of epithelial cells via
different immune mechanisms and significantly contributes to the
constitution of the intestinal immune barrier (56). It is widely
Frontiers in Oncology | www.frontiersin.org 5
acknowledged that the gut microbiome has an important role in the
development of a properly functioning mucosal and systemic
immune system. The intestinal microbes, either eubiotic or
dysbiotic, could influence the CRC evolution, through a complex
and versatile crosstalk with the intestinal and immune cells,
permanently changing the tumor microenvironment.

With the rapid development of molecular biology, genomics,
bioinformatic analysis technology, researchers linked CRC to
intestinal dysbiosis (57, 58), and to specific microbial
composition, structure, and function signatures (59).

Intestinal dysbiosis leads to the enrichment of cancer-
promoting bacterial populations, loss of protective populations,
development, and progression of CRC by maintaining an
inflammatory chronic state etc., while variations in patient
responses to cancer immuno- and chemotherapies were linked
to inter-individual differences in gut microbiome.

However, despite long-standing associations between diet, the
microbiome, and CRC (60, 61), the specific mechanisms by
which the gut microbiome may influence not only the starting
events of carcinogenesis, but also its progression, have only been
highlighted recently (8, 9, 54). Several studies investigating the
CRC microbiota have shown that the dysbiosis associated with
CRC is characterized by a relatively decreased abundance of
obligate anaerobes, an increase in potential pathogenic bacteria
(pathobionts), and a reduction of butyrate-producing bacteria
(62), such as Bifidobacteria, Lactobacillus, and Bacteroides.
Molecular fingerprinting and clone sequencing methods
revealed that the microbiota of subjects with adenomas
harboured a higher proportion of Proteobacteria and lower
abundance of Bacteroidetes when compared to that of control
subjects (63). These initial findings were later confirmed in a
study that used 16S rRNA gene amplicon 454 pyrosequencing
methods to characterize the microbiome. Sanapareddy et al. (13)
found an enrichment of potential pathogens like Helicobacter,
Bacteroides fragilis, Fusobacterium nucleatum, Acinetobacter,
Pseudomonas, Escherichia coli, and other Proteobacteria in
mucosal biopsies of adenoma patients compared to non-
adenoma controls (64).

Brim et al. (14) analyzed the faecal microbiota of African
American patients with colorectal adenomas and reported altered
microbial changes between adenoma patients and healthy controls
(65). Using experimental models of CRC, Wei et al. (15) showed
that precancerous lesions had dysbiosis associated with an increased
abundance of Allobaculum spp. and Ruminococcus obeum (66).
These data suggest that changes in the adherent microbial
community composition may have a role in the development of
adenomas. Recently, Yachida et al. (67) conducted the largest
metagenomics (n = 616) and metabolomics (n = 406) analysis on
human CRC. Specific shifts in microbiome composition,
metabolome and bacterial gene abundance were correlated with
different stages of CRC progression. Members of the Firmicutes,
Fusobacteria, and Bacteroidetes phyla were increased in carcinoma
patients compared to healthy controls and adenomas. Moreover,
early stages of disease were characterised by an enrichment of taxa
such as Actinomyces odontolyticus, Atopobium parvulum,
Phascolarctobacterium succinatutens, and Desulfovibrio
February 2022 | Volume 11 | Article 811486
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longreachensis. Lactic acid-producing bacteria such as
Bifidobacterium animalis, Streptococcus thermophiles, and
Streptococcus mutans were prevalent only in the healthy control
group. Progression from healthy to advanced adenoma was
characterized by a significant increase of Bacteroides species such
as B. dorei and B. massiliensis whereas an increase in B. massiliensis,
B. ovatus, B. vulgatus, and E. coli was reported for the progression
from advanced adenoma to carcinoma (68).

The pathogenic bacteria prevalent in the CRC patients’
microbiome can secrete toxic metabolites that affect intestinal
epithelial cells and cause a chronic inflammatory response, which
contributes to the development of CRC (69, 70).

Recent mounting evidence suggests that gut microbes can
sense certain features of cancer cells which they use for their
own advantage. Fusobacterium nucleatum interacts with tumor
cells via its adhesion molecule FadA which binds eukaryotic
Annexin A1 in a process mediated by E-cadherin, forming a
complex with b-catenin, a central effector of the Wnt pathway
(Figure 1) (71). Peptostreptococcus anaerobius, a microbe
enriched in colon tumors can selectively adhere to the CRC
mucosa in vivo. Due to its surface protein PCWBR2 (putative
cell wall binding repeat 2), P. anaerobius promotes tumor
growth due to activation of the PI3K–AKT pathway and NF-
kB-driven inflammation (72).

Importantly, the general conclusion of various studies is that
there is not a unique specific microbe that is responsible for CRC,
but a group of bacteria whose detrimental actions surpass those
of the beneficial microorganisms.

Therefore, to restore the gut eubiosis and achieve a beneficial
modulation of the gut microbiome composition and metabolic
activities, probiotics might be used to reduce the risk of CRC
development. However, although probiotics and prebiotics have
shown success in attenuating CRC and its concomitant effects (73),
Frontiers in Oncology | www.frontiersin.org 6
the intimate mechanisms of action in this type of interventional
treatments are unknown (74).
5 INFLAMMATION AS AN EARLIER
DRIVER OF COLORECTAL
TUMORIGENESIS

Chronic inflammation is one of the hallmarks of CRC and was
found to be present from the earliest stages of tumor onset.

5.1 Protection Mechanisms Against Gut
Inflammation—The Role of Molecular
Signaling Crosstalk
Generally, the GI tract has a very good signaling pathway for the
rapid activation of anti-inflammatory mechanisms, and the
intestinal epithelium is dynamically renewed within a week.
This is due to the crypt-progenitor stem cells which can
proliferate, differentiate, and are shed at the luminal surface.
The intestinal epithelial stem cells generate multiple cell lineages,
namely, absorptive enterocytes (80% of the cells), mucus-
producing goblet cells (single-cell glands that produce and
secrete mucin), enteroendocrine cells, and antimicrobial
peptide-producing Paneth cells (75).

The intestinal epithelium provides a dynamic physical barrier
that separates the mucosal tissue from pathogens, dietary
antigens, and commensal bacteria, and facilitates selective
absorption of nutrients, water, and electrolytes. The intestinal
epithelial cells (IECs) have specific properties that allow them to
manage the complex interaction between the host and the
microenvironment, and to maintain the tissue homeostasis.
Beside IECs, other types of cells, including immune cells, and
FIGURE 1 | The microbiome in colorectal carcinogenesis. Several bacterial taxa including Fusobacterium sp., Enterococcus sp., and P.anaerobius are commonly
associated with colorectal cancer. Dysbiosis hinders the gut barrier function of epithelial tight junctions and the mucus layer favouring exposure of the intestinal
epithelium to bacteria and their metabolites (some of which may harbour carcinogenic potential). Bacterial translocation causes enhanced inflammation associated
with the production of toxic chemicals or procarcinogen molecules such as reactive oxygen species (ROS) by inflammatory cells (i.e., macrophages). All these
changes lead to oxidative and subsequent DNA damage. Figure created in Biorender.com.
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the overlaying mucus layer contribute to the protection of the
intestinal layer. Damage to the GI barrier leads to homeostasis
d i srupt ions , patholog ica l inflammatory responses ,
and tumorigenesis.

The organization of the mucus layer varies along the length of
the colon. Multiple studies examining mucus properties carried
out in both mice and humans describe two mucus layers in the
colon that include a firm mucus layer adjacent to the epithelium
that is devoid of bacteria, which serves as the primary innate
defense barrier, with some bacteria colonizing the thin outer
layer, and an inner layer which is largely sterile (76, 77).
Membrane mucins (hydrophilic branched glycoproteins)
provide a safe epithelial cell barrier while playing an important
role in signal transduction (78). The distribution of types of
mucin differs from one part of gastrointestinal tract to another,
and even if MUC5AC is a component of stomach mucus layer
(79), it was observed in the distal colon along with MUC2, the
major intestinal mucus layer component, during inflammation
associated with ulcerative colitis and adenocarcinomas (80, 81).

The mucous layer serves as the outer-most colonic barrier
exposed to pathogens and contains mainly mucin2 (MUC2)
secreted largely by the goblet cells. Recent research has shown
that in some goblet cells (localized at the colonic crypt entrance)
there is an endocytosis of LPS and P3CSK4 TRL-ligands that
target TRL-MyD88 signaling, which induce ROS, causing the
activation of caspase 1 and 11. Subsequently, this process leads to
the Ca2+-dependent exocytosis of MUC2 and intercellular
signaling connections, prompting the secretion of MUC2 by
the adjacent responsive goblet cells (82). It has been shown that
MUC2 imprint anti-inflammatory gene markers required for
oral tolerance on antigen-presenting cells (APCs). Interfering
with the APC and epithelial cell interaction reduces the transfer
of goblet cell products to APCs, reducing the induction of
mucosal reactions. The terminal differentiation of goblet cells is
directly controlled by the transcription factor SAM pointed
domain-containing ETS transcription factor (Spdef) (83) and
also via a network of transcriptional factors regulated by the
Notch, Wnt/b-catenin, PI3-kinase/Akt and bone morphogenetic
protein (BMP) signaling pathways known to influence
developmental and inflammation pathways (84). Studies have
demonstrated that the IL-6 mediated Jak/STAT3 pathway may
drive goblet cells differentiation via its downstream PI3-kinase/
Akt signal peptide corroborating the previous finding of visible
damage of mucosa in IL-6−/− mice (85, 86).

According to Miller, consensus molecular subtype 3 (CMS3)
CRC tumors and cell lines are enriched for the expression of goblet
cell marker genes. Furthermore, these CMS subtype tumors are
mutually exclusive from mucinous adenocarcinoma
pathologies (87).

Paneth cells are fully differentiated cells that maintain asepsis
of intestinal crypts (88) by secreting the several anti-microbial
molecules like defensin-5 (DEFA5) and defensin-6 (DEFA6) and
different enzymes, namely, lysozymes and phospholipase A2.
Paneth cells are present in chronic non-neoplastic conditions
such as inflammatory bowel diseases, and also in neoplastic
conditions such as adenoma or carcinoma. The prevalence of
Frontiers in Oncology | www.frontiersin.org 7
Paneth cell differentiation in adenomas varies from 0.2 to 70%
(89). In the case of an inflammatory process, Paneth cells occur
and tend to linger on after the inflammation was resolved and the
crypt structure improved. In the GT, expression of sPLA2-IIA
has been localized in Paneth cells of the small intestine,
metaplastic Paneth cells of gastric and colonic mucosa, and
also columnar epithelial cells of inflammated colonic
mucosa (90).

Another defensive barrier is represented by the junctions
between epithelial cells, namely, tight junction (TJ), adhesion
junction (AJ), desmosomes connection, and gap junction from
top to basement, (86, 91–93). The TJ present in the cardinal
position is composed of occludin, claudins, junctional adhesion
molecule (JAM), and zonula occludens (ZO) and limits the
passage of macromolecules and microorganisms (91). Early
mutagenic events, including loss of adenomatous polyposis coli
(APC) and/or activation of b-catenin signaling, may also alter
MUC2 and tight junctional proteins and allow for infiltration of
pro-tumorigenic microbial products (76). The AJ is an ancient
junctional complex that initiates and maintains epithelial cell–
cell contacts and has E-cadherin (CDH1) as key transmembrane
protein, which mediates calcium-dependent homotypic
intercellular adhesions. On the cytoplasmic face of the AJ, E-
cadherin associates with p120 (CTNND1), b-catenin
(CTNNB1), and a-catenin (CTNNA1), forming a complex
that is anchored to cortical actin filaments (75, 94) (Figure 2).
The assembly and stability of TJ and AJ are maintained by a
common regulatory mechanism that involves interactions with
the cortical actin cytoskeleton. The cytosolic plaque of TJ and AJ
contain actin-binding proteins like a-actin, vinculin, ZO family,
afadin, and cingulin that anchor the junctional complexes to F-
actin bundles. b-Catenin is a member of the cadherin-based cell
adhesive complex, which also acts as a transcription factor if the
protein is translocated to the nucleus. When it is not bound to E-
cadherin and participating in cell-to-cell adhesion, a cytoplasmic
degradation complex (consisting of APC, Axin, GSK-3b, and b-
catenin) leads to b-catenin phosphorylation and degradation
(75). The extracellular region of E-cadherin from the cell surface
binds to cadherins present on adjacent cells, whereas its
intracellular region contains binding sites which interact with
catenin’s and other regulatory proteins. Regulation of the
cytoplasmic level of b-catenin is achieved by the opposite
action of Wnt and adenomatous polyposis coli (APC)/E-
cadherin (Figure 2). The APC protein binds b-catenin to the
“Arm” repetitive sequences serving as a negative regulator, while
Wnt is a positive regulator of the cytoplasmic level of b-catenin
(94, 95).

In target cells, the Wnt cellular signaling pathway has the
effect of increasing the cytoplasmic level of b-catenin. The Wnt
signaling pathway, known as canonical, is one of the major
pathways involved in embryogenesis and homeostasis of
colorectal tissue, and therefore in carcinogenesis in cases of
abnormal activation (96). The role of canonical Wnt signaling
in CRC development has been well documented and is presented
in Figure 3. In the absence of Wnt signals, a multiprotein
destruction complex including Axin and the APC facilitates
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phosphorylation of serine residues in the N terminus of cytosolic
b-catenin, which leads to its ubiquitination and proteosomal
destruction (95).

The APC signaling pathway has the opposite effect to theWnt
signaling pathway, leading to decreased cytoplasmic b-catenin
levels (Figure 2).

The deregulation of Wnt signaling is the most frequent
molecular aberration in CRC, with inactivating mutations in
the APC gene occurring in ∼75% of all tumors (22). The two
important partners of Wnt family involved in colorectal
carcinogenesis are Wnt5a and Wnt11. On the canonical
pathway, after binding to its receptor, extracellular Ca2+

initiates the transcription and translation of the canonical
Wnt5a in intestinal epithelial cells (97), which upregulates the
expression of tumor suppressor 15-PGDH, and further promotes
the differentiation of colorectal cancer cells (98). On the
noncanonical pathway, Wnt11 enhances the activation of
protein kinase C and Ca2+/calmodulin-dependent protein-
kinase II (CaMKII), which reduces the E-cadherin-mediated
cell–cell interaction contact, and further stimulates
proliferation and promotes morphological transformation in
the intestinal epithelial cells (99). APC encodes a large
scaffolding protein that is part of the AXIN destruction
complex, which is necessary for the phosphorylation and
degradation of b-catenin (100).
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Activating mutations in CTNNB1 (b- catenin), or in other
Wnt signaling activators (101) can also hyperactivate Wnt
signalling in CRC, as can inactivating mutations in Wnt
repressors (102). Alternatively, miRNAs can also modulate
Wnt signaling through the repression of pathway components.
For example, miRNAs correlate with microsatellite instability
(MSI) status (103, 104), tumor location (63, 105), BRAF and
KRAS mutation (106), (107) and tumor stage (108).

5.1.1 The Antitumorigenic Activity of Phospholipase
A2 Type IIA in CRC
Phospholipase A2 type IIA (sPLA2-IIA) is a 14-kDa enzyme
found in several tissues and secretory products and is
often referred to as an “inflammatory sPLA”. Its expression
i s i ndu c e d b y p r o - i nfl amma t o r y c y t o k i n e s and
lipopolysaccharides (LPS), and its activity is associated with
inflammation, host defence against bacteria, blood coagulation,
and atherosclerosis. Many human cells can secrete PLA2G2A,
namely, smooth muscle cells, endothelial cells, macrophages,
and Paneth cells. Among others, PLA2G2A is involved in
arachidonic acid metabolism, antimicrobial activity,
exocytosis of endocrine cells, the release of pro-inflammatory
mediators, cell proliferation, and cancer. These functions are
mediated by both enzyme catalytic and non-catalytic activities
of PLA2-IIA. Functional defects in sPLA2-IIA in tumor cells
FIGURE 2 | Functional activities of b-catenin. (1) activation of the APC; (2) involvement of the APC in the E-catenin unit (ECCU); (3) activation of the b-catenin
degradation site at the C-terminal end of the APC; (4) binding of the APC to the filaments of tubulin; (5) binding of APC to DLG/EB1 proteins. When b-catenin
accumulates in the cytosol, the Wnt signalling pathway is inhibited and GSK3b signalling pathway is activated. Active GSK3b simultaneously phosphorylates b-
catenin and APC, which it also activates. The APC phosphorylation is possible only if Axin protein is included in the b-catenin-GSK3b-APC assembly also. Once
activated, the APC protein is capable to bind free cytoplasmatic b-catenin. APC, “adenomatous polyposis coli”; GSH3b, glycogen synthase kinase 3b; DLG and
EB1, tumor suppressor proteins; CRD, cysteine-rich domain; Frzb, Frizzby protein; Frizzled, Wnt protein receptor; Dsh, Dishevelled protein; DLG, protein “human
large disc”; EB1, protein EB1. Figure created in Biorender.com.
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may interfere with the regulatory mechanisms of tumor growth
(94). The plasma concentration of sPLA2-IIA increases
dramatically in the plasma of CRC patients’ severe infections
and other diseases involving generalized inflammation (109),
and approximately 55% of CRC patients exhibit high
expression of sPLA2-IIA in their epithelial cytoplasm (110).
By our studies we indicate that sPLA2-IIA is over-expressed in
Paneth cells in adenomas comparative to malignant colorectal
tumours, and its PLA2G2A gene is upregulated in human colon
adenomas and is frequently subject of loss-of-heterozygosity
(LOH) (111, 112). Recently, our results were confirmed by
Schewe et al. (17) who provided a potential mechanism by
which sPLA2-IIA, expressed by Paneth cells in the small
intestine, supresses colon cancer (113). In their studies,
Avoranta et al. observed an overexpression of sPLA2-IIA in
most colorectal adenomas, where the expression is disturbed,
and sPLA2-IIA protein level is dramatically reduced in
malignant colorectal tumours as compared to adenomas. In
addition, peritumoral mucosa shows increased expression and
content of sPLA2-IIA (114). Elevated expression of sPLA2-IIA
inhibited colorectal cancer invasion and metastasis through the
Wnt/b-catenin signaling pathway (115) and was found to be
associated with improved patient survival (116).

The sPLA2-IIA is quickly released (seconds or minutes) from
secretory granules following the stimulation of the cell with Ca2+

ions or with stimulating agents such as thrombin or ionophores.
In contrast to this rapid stage, sPLA2-IIA can also be released
after a long period of time (from a few hours to a few days)
following the action of some cytokines. The role of these
cytokines is to modulate gene expression for sPLA2-IIA, which
is why the secretion is delayed.
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The most important cytokines that induce the expression of
sPLA2-IIA are IL-1a, IL-1b, and TNF-a. As presented in
Figure 4, these cytokines induce transcription and secretion of
sPLA2-IIA through a mechanism involving the MAP-kinase
pathway (MAPK).

Interleukin-6 (IL-6) is a cytokine that recognizes two
response elements located in the promoter region of the
PLA2G2A gene and induces the expression of the enzyme. The
study on hepatomas from the HepG2 cell line revealed that IL-6
induces the expression of both sPLA2-IIA and other acute phase
proteins. These observations led the researchers to suggest that
sPLA2-IIA is one of the acute phase proteins whose plasma levels
increase during the inflammatory response. Il-6 may also induce
the expression of sPLA2 type II in human cell lines with invasive
gastric cancer.

The most important role of sPLA2-IIA is the release of
arahidonic acid (AA) from the structure of membrane
phospholipids. The AA concentration inside the cell depends
both on the released amount because of the PLA2 action, and on
the re-incorporated amount into the structure of the
phospholipid following the action of acyltransferase.

5.1.2 The Pro-Inflammatory Activity of
Cyclooxygenase-2 in CRC
Cyclooxygenase (COX) enzymes catalyze the conversion of AA,
derived from membrane phospholipids by PLA2, into
prostanoids which modulate the immune response, blood
clotting, and have a role in different pathological conditions,
including inflammation.

COX regulates colon carcinoma-induced angiogenesis by two
mechanisms: COX-1 regulates angiogenesis in endothelial cells,
FIGURE 3 | Crosstalk between Notch, Wnt, MAPK and AA signalling pathways. A small increase in cytoplasmic b-catenin levels leads to activation of Wnt gene
transcription. The Wnt glycoprotein is synthesized and will be activated by binding to one of the members of the Frizzled family (Frzb)–the Wnt receptor. From the
receptor, the signal is transmitted inside the cell to casein kinase II (CKII); it activates and phosphorylates the Disheveled protein (Dsh). The active Disheveled protein
is translocated from the cytosol to the cell membrane where, through a signalling process, protein kinase C is phosphorylated, and in turn phosphorylate GSK3b to a
N-terminal Ser residue. The effect is the inhibition of GSK3b and finally the b-catenin accumulation in the cytosol. From the cytosol b-catenin is translocated into the
nucleus, independent from Lef/Tcf transcription factors translocation. At this level the protein binds Lef/Tcf architectural transcription factors and Wnt gene
transcription is induced. Following the interaction with b-catenin, the transcription factors Lef and Tcf can no longer bind to the corresponding sites in the promoter
region of some genes and thus the transcriptional process of those genes can take place. In this way Wnt promotes post-transcriptional stabilization and
accumulation of b-catenin in the cytosol. Figure created in Biorender.com.
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while COX-2 can modulate production of angiogenic factors by
colon cancer cells. While COX-1 is constitutively expressed in
many tissues and cell types but in some cases is increased during
differentiation, the expression of COX-2 is not usually detectable
in normal tissue but is induced by numerous growth factors,
hormones, cytokines, and tumor promoters.

COX inhibitors exhibit dramatic antineoplastic activity in
several tumor model systems. More than 80% of CRC patients
have increased COX-2 levels when compared to adjacent normal
tissue. Researchers suggested that COX-2 is expressed in the first
steps of colorectal tumorigenesis suggesting an important role of
this enzyme in tumor progression. The COX activity is coupled
to several terminal synthases that produce five different
prostanoids: prostaglandin D2 (PGD2), prostaglandin E2
(PGE2), prostaglandin F2a (PGF2a), prostaglandin I2/
prostacyclin (PGI2), and thromboxane A2 (TXA2), some of
them also being involved in colon cancer. They have a pro-
inflammatory effect, which stimulates cell proliferation,
angiogenesis, and resistance to apoptosis. Among the
prostanoids, PGE2 has been proposed as the principal
prostanoid promoting tumor growth and survival in CRC.
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PGE2 is present in the healthy colon but its levels are elevated
in CRC and correlate with tumour size and progression. More
than that, production of PGE2 is induced by COX-2 which in
turn increase further expression of COX-2 in colon cancer cells
(117, 118). It was observed that COX-2 is stimulated by pro-
inflammatory cytokines (TNF, IL1, IL6) produced by the
inflammatory cells (119).

5.1.3 NOTCH1 Signaling—A Key in CRC Progression
The Notch signaling pathway significantly regulates the
intestinal enterocyte lineage, activating the hairy and enhancer
of split 1 (Hes1) transcription factor, and repressing the basic
helix-loop-helix (bHLH) transcription factor mouse atonal
homolog 1 (Math1), also known as Atonal homologue 1
(Atoh1). Notch signaling pathway activation disrupts the
differentiation of secretory cells with the villi coated primarily
with absorptive enterocytes associated with Hes1 activation
(120). The NOTCH1 cell signaling mechanism is conserved in
most multicellular organisms and functions as a receptor for
membrane-bound ligands Jagged1, Jagged2, and Delta1 in the
regulation of cell-fate determination. According to Schmalhofer
et al. (18), the Jagged1-induced Notch1 signalling activation
leads to the inhibition of E-cadherin expression, affecting cell–
cell adhesion and the simultaneous increase of N-cadherin and
vimentin expressions, and nuclear localization of b-catenin
(Figure 2), which in the end induces an invasive and
mesenchymal phenotype (121). Notch signaling has been
considered as an oncogene involved in the pathogenesis of
CRC (122). In a research published in 2019, Lloyd-Lewis
postulates the idea that Notch acts as a biological kapellmeister
(orchestra conductor), coordinating spatial cues generated by cell
flows during morphogenesis, to dictate cell fate decisions at
specific developmental times (123). Earlier studies revealed
deregulated Notch signaling in several solid human tumors
including CRC. The Notch pathway, is a short-range
communication system in which contact between a cell
expressing a membrane-bound ligand and a cell expressing a
transmembrane receptor initiate a regulatory signal which is sent
through a cascade of transcriptional regulatory events that affects
the expression of a wide number of genes, resulting in
remarkable cell-context dependent pleiotropic effects. Notch
proteolysis is required for downstream signaling (124).

Notch also acts as a molecular bridge between stem cells and
their non-cellular microenvironment. There is a lot of evidence
indicating a bidirectional intercellular communication involving
Notch signals between tumor cells and stromal cells in some
malignancies (125). Alterations of several signaling pathways,
which are correlated with Notch canonical pathway, were
described in solid tumors associated with growth activation,
resistance to apoptosis, angiogenesis, and invasion/metastatic
behavior, but nothing was described related to Notch non-
canonical pathway.

In macrophages, the Notch pathway can be activated by
Notch ligands that are expressed by macrophages and by
Notch ligands expressed on epithelial cells, stromal cells at
inflammatory sites or intestinal stem cells. Inflammatory
FIGURE 4 | Cellular signalling pathway crosstalk induced by IL-1 for sPLA2-
IIA expression. IL-1 induce transcription and secretion of sPLA2-IIA through a
mechanism involving the MAPK. A few hours after the enzyme secretion, the
signalling pathway is followed by the generation of prostanoids. The induction
process is time-dependent and generally occurs after an initial lag period of
about 8 h. Both IL-1 and TNF-a stimulate gene transcription and stabilize its
RNA. In certain cells, such as for example macrophages, the expression
sPLA2-IIA is strongly induced by the two cytokines stimulation under
lipopolysaccharides (LPS) action. The MAPK cascade is activated in response
to several cytokines, in particular TNF-a and IL-1, and is associated with the
activation of nuclear transcriptional factor kB (NF-kB) and several serine/
treonin kinases. TNF-a and IL-1 initiates the hydrolysis of sphingomyelin from
the plasma membrane. The formed ceramide activates a specific protein
kinase (CAPK) on which the MAPK cascade initiation relies on. While the
MAPK pathway occurs in the cytosol, the processes that initiate it take place
inside the plasma membrane.
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cytokines like TNF and IL1b serve as Notch activators: TNF
induces expression of Notch1, Notch4, and Jagged2 and also, the
NICD nuclear translocation (126), while IL1b, another
important proinflammatory cytokine, induce Notch target
genes Hes 1 and Hey1 (127) expression.

At the same time, it was shown that NF-kB signaling interacts
with the Notch pathway in many pathologies, including cancer
(128). Another group of signaling molecules involved in
mediating Notch activation are mitogen-activated protein
kinases (MAPKs), a family of serin/threonine protein kinases
that are key regulators in inflammation (129).
6 CONCLUSIONS

An improved approach to cancer biology is expected to explain
the reasons for therapeutic failures in the group of patients with
early-stage colorectal carcinomas. Colorectal cancer develops
because of multiple sequential steps due to the accumulation of
genetic alterations including mutations, gene amplification, and
epigenetic changes.

To allow survival, evolution has created a robust system of cell-
fate regulation that is highly resistant to the loss of one or even a few
components. Unfortunately, uncontrolled endogenous and
exogenous factors may disturb the regulation system and
abnormal cells with abnormal growth mechanisms can develop
and modify the normal homeostasis of the body. In CRC
specifically, the cellular regulation from the epithelial layer is even
more complex due to the presence of microbiota and metabolites
resulting from the degradation of nutrients in the daily diet.
Therefore, a deeper understanding of the functional roles of the
gut microbiome and its interactions with the human host is needed
to enable the application of microbiome knowledge to the clinics. As
suggested by several authors, imbalances in the normal content of
the gut microbiome led to colonization of driver bacteria that induce
a chronic inflammation of the colonocytes. This inflammation
changes the microenvironment and allows the colonization by
passenger bacteria, which may contribute to carcinogenesis
process from adenomatosis to tumor formation. So far, there is
no universal specific microbiome signature associated with CRC,
but the present findings suggest that microbiome could add
important information for improving patients’ stratification,
providing future leads for preventing CRC tumorigenesis and
optimizing CRC therapies through personalized treatment
decisions. Analyzing how they communicate with the main
signalling pathways involved in carcinogenesis and which is the
relationship between different subtypes of tumor cells, microbial
signatures and hot response is one of the researchers’ goals for
stratifying patients according to the specific crosstalk patterns.

Generally, the GI tract has a very good signalling pathway for a
rapid activation of anti-inflammatory mechanisms, and the
intestinal epithelium is dynamically renewed within a week. In
inflammation processes, the tumor stromal-inflammatory interface
represents a dynamic space where growth factors, cytokines,
chemokines, enzymes, matrix metalloproteinases, ECM proteins,
and metabolic intermediates communicate and facilitate the
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transition of normal epithelial cells to cancer cells. Further, the
cell growth is disrupted, the mutation rate increases, more errors are
accumulating in the lipid and glycoprotein biosynthesis, while
amino acid supplies decrease. The complex crosstalk between
different regulatory pathways allows the tumoral cell to avoid the
blocked path and to reroute the signalling network. Moreover, the
cell-fate control systems are not only interconnected but also highly
redundant, such that if a gene or protein is disabled, another can
perform a similar function. Therefore, the system can reset itself to a
new status and a new population of cancer cells with new adaptative
strategies to the variation of TME conditions is developed. The MSI
model (CMS1) became a key biomarker for the early diagnosis and
treatment CRC patients, unveiling different microsatellite statuses,
compositions and distributions of immune cells and cytokines
within TMEs. Unfortunately, the TME versatility hijacked by
TABLE 2 | Biochemical markers used for colorectal cancer screening, diagnosis,
and assessment of treatment efficacy.

Market Targets Samples References

Screening markers
gFOBT
(Guaiac fecal occult
blood test)

Hemoglobin Stool (130, 131)

FIT (fecal
immunochemical
testing)

Hemoglobin Stool (132)

MT-sDNA NDRG4 and BMP3
DNA methylation,
haemoglobin

Stool (133)

DNA methylation SEPT9 DNA methylation Blood (134)

BCAT1/IKZF1 Blood (135)

VIM (vimentin) Stool (136)

microRNA (miRNA) mRNA 7-gene panel Blood (137)

miRNA 5-gene panel Blood (138)

lncRNA 1-gene Blood (138)

Diagnostic Procedures
Colonoscopy (139)

CT colonography (140, 141)

Tissue biomarker
Immunohistochemistry Cytokeratins (CKs) Tissue (142)

Caudal type homeobox 2
(CDX2)

Tissue (143)

Special AT-rich sequence
binding protein2 (SATB2)

Tissue (144)

Cadherin 17 (CDH17) Tissue (145, 146)

Telomerase Tissue (147, 148)

GPA33 (A33) Tissue (149)

Predictive and prognostic biomarkers
BRAF Mutations Blood (150, 151)

KRAS Mutations Blood (150, 152)

APC Mutations Blood (153)

PIK3CA Mutations Blood (151)

TP53 Mutations Blood (154)

NDST4 Allelic imbalance Blood (155)

IGFR-1R Super-expression Blood (156)

Microsatellite instability (MSI)
high

Blood 22, 157)
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cancer cells turns the search for a specific drug into a difficult task.
Moreover, inhibition of one of specific targets leads to different
answers, at different levels, and in different regulatory pathways.

The variability in clinical presentation, aggressiveness, and
patterns of treatment failure suggest the necessity of establishing
distinct phenotypes-genotypes correlations that can help future
treatment strategies. To predict response to therapy, the molecular
tests which are currently in use include microsatellite instability
(MSI) testing to detect inheritable disease, APC, KRAS, BRAF and
other mutational analyses (Table 2). In this respect, for the
prevention and early diagnosis of CRC, among other currently
explored CRC biomarkers, diagnosis must also focus on specific
inflammatory markers such as sPLA2-IIA, COX-2, PGE2, b-
catenin, or NOTCH1, presented in Table 3.

In the future, the complex network signaling pathway
crosstalk between colonocytes, microbiome, and tumor cells at
the earlier-stage sporadic colorectal cancer may be of interest for
Frontiers in Oncology | www.frontiersin.org 12
pharmaceutical and bio-pharmaceutical companies in
developing target plasma biomarkers, that can be used in
screening programs and for establishing phenotype/genotype
signatures. Further on, these could help define combinatory
strategies to enhance and improve therapies.
AUTHOR CONTRIBUTIONS

EI designed the paper structure, performed the literature
search, wrote the first draft of the manuscript, and prepared
one figure. EI, GG-P, MT, and C-MC wrote sections of the
manuscripts. GG analyzed the literature data and prepare
the tables. C-MC and GG-P contributed to the design of the
manuscript structure. GG-P prepared three pictures. All
authors contributed to the article and approved the
submitted version.
TABLE 3 | Specific inflammatory markers that can be used in early-stage colorectal cancer diagnosis.

Markers Function/Role Detection Method Samples References

COX-2
(Cyclooxygenases)

Significantly promote development and progression of colorectal
cancer

Western blot/enzyme immune
assay

Cells line (158)

sPLA2-IIA Enhances proliferation IHC Tissue (109)
sPLA2-III Production of pro-inflammatory/pro-tumorigenic lysophosholipids IHC Tissue (159)
Mucin 2 Tumor progression and spread. IHC Tissue (160)
PGE2 pathway Promoting colorectal tumor growth IHC/western blot Cells (161)
TNF Development and prognosis of CRC Meta-analysis Serum (162)
NFkB signaling Promoter of inflammation Meta-analysis Serum (163)
HGF
(Hepatocyte growth factor)

Progression and metastasis of colorectal cancer (CRC). Meta-analysis Serum (164)

IGF
(Insulin-like growth factors)

Development and progression of several cancers Meta-analysis Serum (165)

NGF
(Nerve growth factor)

Proliferation, differentiation and migration of tumor cells Western blot/elisa Tissue/
serum

(166)

EGF
(Epidermal growth factor)

Chemoattractants for endothelial cells Elisa/IHC Serum/
tissue

(167)

FGF2
(Fibroblast growth factor 2)

Mediates tumor growth IHC Tissue (168)

VEGF
(Vascular endothelial growth
factor)

Progression and metastases of CRC IHC Tissue (169)

PDGF
(Platelet derived growth factor)

Tumor growth and spread Meta-analysis Serum (170)

CCL2
chemokine (C-C motif) ligand 2

Recruitment of monocytes and macrophages IHC, WB Tissue (171)

CCL20
Chemokine (C-C motif) ligand
20

Tumor progression IHC/Elisa Tissue/
Serum

(172)

CXCL1-CXCL12 Neutrophil’s recruitment IHC tissue (173)
IL-1
(Interleukin-1)

Proinflammatory cytokine Multiple methods Serum (174)

IL-6
Interleukin-6)

Proinflammatory cytokine Multiple methods Serum (175)

IL-8
(Interleukin-8)

Proinflammatory cytokine Multiple methods Serum (176)

MMP-1, (Collagenase-1) Promote the proliferation, migration and invasion of cancer; ECM
degradation

Western blot/IHC Tissue (177)

MMP-2 (Gelatinase A) Epithelial-mesenchymal transformation
ECM degradation

Western blot/IHC Tissue (178)

MMP-7 (Matrilysin) Cancer progression;
Epithelial-mesenchymal transformation

Western blot/IHC Tissue (179)

MMP-9 (Gelatinase B) Degradation of extracellular matrix and regulation of neutrophil action Western blot/IHC Tissue (180)
MMP-13 (Collagenase 3) Degradation of the extracellular matrix and basement membranes, Western blot/IHC Tissue (181)
MMP-14 CRC progression

and prognosis
Western blot/IHC Tissue (182)
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