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The enzyme telomerase reverse transcriptase (TERT) is essential for telomere mainte-
nance. In replicating cells, maintenance of telomere length is important for the pres-
ervation of vital genetic information and prevention of genomic instability. A common 
genetic variant in TERT, rs2736100 C/A, is associated with both telomere length and 
multiple diseases. Carriage of the C allele is associated with longer telomere length, 
while carriage of the A allele is associated with shorter telomere length. Furthermore, 
some diseases have a positive association with the C and some with the A allele. In this 
study, meta-analyses were performed for two groups of diseases, cancerous diseases, 
e.g., lung cancer and non-cancerous diseases, e.g., pulmonary fibrosis, using data 
from genome-wide association studies and case-control studies. In the meta-analysis it 
was found that cancer positively associated with the C allele (pooled OR 1.16 [95% CI 
1.09–1.23]) and non-cancerous diseases negatively associated with the C allele (pooled 
OR 0.81 [95% CI 0.65–0.99]). This observation illustrates that the ambiguous role of 
telomere maintenance in disease hinges, at least in part, on a single locus in telomerase 
genes. The dual role of this single nucleotide polymorphism also emphasizes that thera-
peutic agents aimed at influencing telomere maintenance should be used with caution.

Keywords: telomerase, telomere, cancer, single nucleotide polymorphism, degenerative disease

inTrODUcTiOn

Telomere biology is emerging as a significant factor in an increasing number of diseases (1–4). 
Studies have found disease associations with both abnormal telomere length and with genetic vari-
ants are related to telomere biology (5–7). Telomeres are non-coding tandem repeats spatially organ-
ized by specialized proteins that maintain stability of the chromosome ends (8–10). Furthermore, 
telomeres serve as a buffer against the shortening of chromosomes, thereby preventing the loss of 
vital genetic information (11). To maintain replicative potential, telomeres can be elongated by 
the ribonucleoprotein telomerase (12, 13). Telomerase consists of a catalytic protein component, 
encoded by the gene telomerase reverse transcriptase (TERT), and a RNA template, encoded by 
telomerase RNA component.
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FigUre 1 | Flowchart of studies included in the meta-analysis.
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Over the course of the human lifespan, the average length of 
telomeres can be disproportionally influenced by a number of 
factors, leading to a broad spectrum of diseases. Genetic vari-
ation in telomere maintenance genes has been shown to either 
accelerate or prohibit telomere shortening. Genomic mutations 
in the coding regions of telomerase genes are primarily found 
in degenerative diseases like dyskeratosis congenita, aplastic 
anemia, and idiopathic pulmonary fibrosis (IPF) (14–16). These 
mutations generally lead to a decrease in telomerase activity (17) 
and shorter telomeres in mutation carriers who develop fatal 
disease due to organ failure. Mutations in the coding regions of 
telomerase genes are very rare in cancer, however, somatic muta-
tions in the promotor region of the TERT gene has been reported 
in the context of several cancer types (18–20). These mutations 
generally lead to an increase in telomerase activity, which cor-
roborates the observation of high levels of telomerase activity in 
cancer cells (21). Telomerase activation and the subsequent tel-
omere elongation lead to the immortalization of cells and prevent 
fatal instability of the chromosomes, opening up the possibility of 
unrestricted cell proliferation (21, 22).

However, Telomere biology is an ambiguous factor in cancer 
pathology (23–25). In healthy individuals it is thought that the 
restricted transcription of telomerase and the resulting limited 
number of cell divisions present a barrier to unlimited replica-
tion of somatic cells, thus preventing cancer (26, 27). However, 
other research suggests that telomere shortening can lead to 
chromosomal instability in the form of chromosome fusion, 
genomic copy addition, deletion, and mutation, which in turn 
can lead to tumor initiation (22, 28–31). This duplicity is apparent 
in humans, where both long and short telomere length of white 
blood cells has been associated with different cancers (32–36). As 
short telomeres can lead to damaged chromosomes, it is proposed 
that long telomeres postpone senescence, thereby increasing 
the risk for cells to acquire genetic abnormalities that facilitate 
tumorigenesis (35, 37, 38).

Besides rare mutations in telomerase genes, common genetic 
variation in these genes has also been associated with disease. 
A well-studied example is the single nucleotide polymorphism 
(SNP) rs2736100 in the TERT gene (5p15.33). Interestingly, the 
first report on a disease association to this SNP, was to the non-
cancerous disease IPF (39). An IPF susceptibility odds ratio (OR) 
of 1.82 [95% CI: 1.47–2.22] was found for the A allele of this SNP. 
The second report on this SNP showed an association between 
lung cancer and the C allele of this SNP (40). Later studies have 
shown an association between the A allele and shorter blood cell 
telomere length, while it follows that the C allele is associated 
with longer telomeres (41, 42). This duality in disease association 
of the rs2736100 alleles might reflect a fundamentally different 
role of telomere biology in cancerous diseases as opposed to 
non-cancerous diseases. Such a dichotomy would underline that 
therapeutic agents influencing telomere length or telomerase 
activity should be used with caution, as both (too) long and short 
telomeres could lead to disease.

The aim of this study is to conduct a systematic review and 
meta-analysis of disease association studies with TERT SNP 
rs2736100 and to gain insight in the balancing act between 
telomere maintenance and disease predisposition.

MaTerials anD MeThODs

study selection
The electronic databases PubMed1 and Embase2 were queried for 
studies on TERT SNP rs2736100 by using “rs2736100” as search 
input (Figure 1). Initially 92 studies were found. After selecting 
for papers pertaining to the subject of these review 57 studies 
remained. Of these, 49 studies described associations between 
TERT SNP rs2736100 and cancer, and 8 studies described 
associations between this SNP and non-cancer disease. Another 
28 studies were added through references found in the original 
studies. Excluded were reviews and meta-analyses, and studies 
from which no OR data was available or could be calculated. 
Furthermore, studies were excluded that did not provide definite 
data on which allele was associated with risk for the investigated 
disease. Finally, 85 studies were included of which 77 described 
association with cancer and 8 with non-cancer and the TERT 
SNP, respectively.

eligibility criteria
Included in this meta-analysis were case-control and genome-
wide association studies assessing the association between TERT 
SNP rs2736100 and disease. These studies were furthermore 
included when the associated allele and the used inheritance 
model were clearly derivable from the study. Results of meta-
analyses were excluded; however, these studies were searched 
for eligible studies to be included in the present study. This 
lead to further inclusion of studies that did not find significant 

1 http://www.ncbi.nlm.nih.gov/pubmed.
2 https://www.embase.com/#quickSearch/default.
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TaBle 1 | Studies included in the meta-analyses.

association 
rs2736100_c

study cases controls Odds 
ratio

95% ci Disease

(44) 245 489 1.12 0.90–1.39 Pediatric brain tumor
(45) 445 497 1.29 1.07–1.55 Lung cancer
(46) 1,154 1,137 1.24 1.10–1.39 Lung cancer
(47) 1,896 1,939 1.13 1.03–1.24 Pancreatic cancer
(48) 1,094 1,100 1.14 1.01–1.30 Lung cancer
(49) 4,441 5,194 1.22 1.15–1.29 Lung cancer
(50) 5,550 7,585 0.91 0.99–0.84 Pancreatic cancer
(51) 976 1,057 1.26 1.11–1.43 Glioma
(52) 196 229 1.65 1.17–2.32 Lung cancer
(53) 13,265 40,245 1.08 1.12–1.04 Endometrial cancer
(54) 243 246 1.20 0.92–1.55 Gastric cancer
(55) 386 587 0.94 0.78–1.14 Liver cancer
(41) 22,233 64,762 0.77 0.50–1.17 Coronary artery disease
(56) 663 420 0.99 0.79–1.25 Renal cell carcinoma
(57) 845 1,190 1.27 1.12–1.44 Glioma
(58) 1,514 2,470 1.01 0.92–1.10 Coronary artery disease
(59) 1,136 1,012 1.02 0.90–1.15 Gastric cancer
(60) 639 649 1.37 1.18–1.61 Glioma
(61) 3,131 3,702 1.02 0.94–1.11 Skin cancer
(62) 84 257 1.15 0.81–1.63 Arteriosclerosis
(63) 2,477 6,550 0.73 0.68–0.78 Pulmonary fibrosis
(64) 970 525 1.17 1.04–1.33 Bladder cancer
(65) 510 913 1.17 1.00–1.37 Skin cancer
(66) 3,264 1,793 0.98 0.77–1.25 Colorectal cancer
(67) 2,308 2,321 1.48 1.36–1.62 Lung cancer
(68) 8,559 9,378 1.25 1.20–1.31 Lung cancer
(69) 1,145 1,142 0.96 0.78–1.17 Breast cancer
(70) 716 716 1.17 1.00–1.38 Lung cancer
(71) 717 202 1.57 1.25–1.96 Myeloproliferative neoplasms
(72) 104 135 1.01 0.70–1.46 Colorectal cancer
(73) 855 844 1.16 1.02–1.33 Lung cancer
(74) 1,212 1,339 1.14 1.02–2.27 Lung cancer
(75) 349 914 0.81 0.68–0.97 Testicular cancer
(76) 16,039 16,430 0.93 0.91–0.96 Colorectal cancer
(77) 370 1,173 1.38 1.23–1.56 Lung cancer
(78) 584 400 1.77 1.47–2.12 Myeloproliferative neoplasms
(79) 518 1,201 1.64 1.42–1.91 Glioma
(80) 855 1,160 1.16 1.01–1.33 Glioma
(81) 4,543 5,505 1.38 1.31–1.47 Lung cancer
(82) 193 197 1.29 1.00–1.67 Lung cancer
(83) 5,739 5,848 1.09 1.03–1.15 Lung cancer
(84) 370 1,263 1.10 0.93–1.29 Colorectal cancer
(85) 2,283 2,785 1.18 1.09–1.27 Lung cancer
(86) 304 319 1.33 1.06–1.67 Lung cancer
(87) 690 1,538 1.19 1.03–1.38 Bladder cancer
(88) 5,457 4,493 1.38 1.30–1.47 Lung cancer
(40) 5,870 9,319 1.14 1.08–1.20 Lung cancer
(89) 2,086 11,034 1.27 1.19–1.37 Lung cancer
(90) 226 806 1.22 0.99–1.51 Acute myeloid leukemia
(91) 226 806 1.44 1.10–1.88 Glioma
(39) 242 1,496 0.55 0.45–0.68 Idiopathic pulmonary fibrosis
(92) 352 447 1.18 0.97–1.45 Lung cancer
(34) 277 831 1.19 1.04–1.37 Skin cancer
(93) 1,681 1,635 1.16 1.04–1.30 Lung cancer
(94) 3,534 4,098 1.08 1.02–1.16 Breast cancer
(95) 1,955 1,995 1.11 1.00–1.23 Pancreatic cancer
(96) 596 1,480 1.08 0.94–1.23 Endometrial cancer
(97) 1,854 4,949 1.30 1.19–1.41 Glioma
(98) 810 3,080 1.23 1.10–1.37 Glioma
(99) 1,029 1,668 1.31 1.17–1.47 Glioma

(Continued )

association 
rs2736100_c

study cases controls Odds 
ratio

95% ci Disease

(100) 660 523 0.92 0.78–1.09 Breast cancer
(100) 372 363 0.95 0.77–1.16 Prostate cancer
(101) 569 656 1.23 1.05–1.45 Acute lymphoblastic leukemia
(102) 1,878 3,670 1.27 1.19–1.37 Glioma
(103) 5,992 13,531 1.34 1.28–1.41 Lung cancer
(104) 807 708 1.24 1.05–1.48 Lung cancer
(105) 810 4,479 1.31 1.16–1.48 Myeloproliferative neoplasms
(106) 719 6,030 1.08 0.97–1.21 Lung cancer
(107) 10,812 13,913 1.15 1.10–1.20 Lung cancer
(108) 661 1,347 1.32 1.14–1.52 Lung cancer
(109) 1,045 8,403 0.75 0.67–0.85 Testicular cancer
(110) 1,660 1,299 1.39 1.28–1.50 Glioma
(111) 1,618 7,736 1.39 1.28–1.50 Glioma
(112) 239 553 1.30 1.04–1.61 Lung cancer
(113) 1,033 1,053 1.16 1.03–1.32 Cervical cancer
(114) 1,552 1,605 1.20 1.09–1.33 Lung cancer
(115) 370 686 0.78 0.63–0.96 Interstitial lung disease
(116) 1,404 5,040 1.24 1.10–1.39 Lung cancer
(117) 239 1,197 0.89 0.73–1.08 Depression
(118) 692 3,992 1.51 1.35–1.71 Glioma
(119) 580 580 0.81 0.69–0.95 Male infertility
(120) 1,735 1,036 1.11 0.99–1.24 Lung cancer
(121) 524 524 1.34 1.13–1.60 Lung cancer
(122) 1,425 3,011 1.26 1.11–1.43 Lung cancer
(123) 784 782 1.28 1.11–1.47 Lung cancer
(124) 2,096 2,147 1.38 1.27–1.51 Esophageal cancer

TaBle 1 | Continued
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associations between rs2736100 and disease, thereby preventing 
major publication bias. Finally, systematic reviews, abstracts, 
non-english studies and studies investigating rs2736100 not in 
the context of disease were excluded from the meta-analysis.

Data extraction
The following data was derived from each study: first author, year 
of publication, number of cases and controls, associated disease 
(cancer and non-cancer), and OR and 95% confidence interval 
(95% CI). Furthermore, the used inheritance model was checked 
as well as in which allele specifically was associated with the 
studied disease. When this information was not provided it was 
derived from the provided genotype data when possible.

Bias evaluation
(Publication) bias was evaluated by visual inspection of Doi plots, 
as well as calculates the Luis Furuya-Kanamori (LFK) index, 
which provides a statistic for the amount of bias in a Doi plot 
(No asymmetry: LFK index within ±1, minor asymmetry: LFK 
index exceeds ±1 but within ±2, major asymmetry: LFK index 
exceeds ±2).

statistical analysis
rs2736100 associations and (publication) bias were both analyzed 
using meta-analysis software MetaXL 4.0 (EpiGear International, 
Sunrise Beach, Australia). Due to the large number of different 
diseases that were included in this study, a high level of variation 
in study outcome, heterogeneity, was expected. The meta-analysis 
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FigUre 2 | Meta-analysis of non-cancer association to rs2736100 allele C. OR, odds ratio; 95% CI, 95% confidence interval.
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was, therefore, performed using the inverse variance heterogene-
ity method, to determine the pooled result and heterogeneity 
(43). Many studies do not provide genotype data. Therefore, 
we performed meta-analysis on the OR and 95% CI for allelic 
association.

resUlTs

non-cancerous Diseases
A meta-analysis was performed to analyze the association of TERT 
SNP rs2736100 with a group of cancer diseases and with a group 
of non-cancerous diseases. Table  1 shows all included studies. 
For the non-cancer group, 8 studies were found with diagnoses 
of pulmonary fibrosis and coronary heart disease among others. 
Each of these eight studies showed either a negative association 
between the C allele and disease or a non-significant result. 
Figure 2 shows a forest plot of a meta-analysis of these studies 
using the inverse variance heterogeneity model (43). The OR 
in this figure is an effect measure for the association with the C 
allele of rs2736100 in a co-dominant model. The pooled negative 
association with disease for the C allele was significant with an 
OR ratio of 0.81 [95% CI: 0.65–0.99]. Presence of the C allele is 
protective for non-cancerous diseases.

association with cancer
Meta-analysis for associations with cancer included 77 studies. 
These studies included a variety of cancers of which the majority 
(n =  46) involved studies on lung cancer (n =  33) and glioma 
(n = 13). The majority of studies reported a positive association 
with the C allele of rs2736100. However, four of the included 
studies reported a negative association with the C allele, these 
included two studies on testicular cancer, one on colorectal cancer 
and one on pancreatic cancer (50, 76, 109). In the meta-analysis of 
cancer studies, the pooled effect size was significant with a pooled 
OR of 1.16 [95% CI: 1.09–1.23] (Figure 3) and shows that the C 
allele is a risk allele for cancer.

Figure  4 shows the significant pooled ORs for the meta-
analysis of cancer and non-cancer diseases.

Potential bias from publication selection and other sources 
was evaluated using Doi plots and quantified by the LFK index 

(Figure 5). Figure 5A shows the Doi plot for the cancer meta-
analysis. A LFK index of 109 was found from indication minor 
influence from publication bias or bias from other sources. 
Figure 5B shows the Doi plot for non-cancer diseases.

DiscUssiOn

The results of the meta-analyses illustrate the duality of telo-
mere biology in disease predisposition. Pooled analysis showed 
that non-cancerous diseases, such as pulmonary fibrosis and 
coronary artery disease, associate positively with the telomerase 
A allele that is linked to shorter telomeres. Pooled analysis of 
cancer studies, however, showed an association with the opposite 
allele, the C allele that is linked to longer telomere length. This is 
supported by a recent study that showed an association of geneti-
cally increased telomere length and cancer, while the opposite 
protected against non-cancerous diseases (125). This two-sided 
association suggests opposite roles of telomere length in cancer-
ous and non-cancerous diseases.

The TERT SNP rs2736100 has robustly been associated with 
telomere length in healthy controls (41, 42). Studies showed that 
presence of the A allele is associated with shorter telomere length. 
This is in congruence with observations made in IPF, cardiovascu-
lar disease, and male infertility, where patients have been shown 
to have relatively short leukocyte telomeres (126–128). This SNP 
could, therefore, be part of the genetic background that increases 
susceptibility to these diseases in combination with other cellular 
and environmental factors that might cause increased cellular 
turnover (129). On the other hand, the C allele, which is associ-
ated with most cancer types, is associated with longer telomere 
length in health (42, 101). How the rs2736100 SNP influences 
telomere length is presently not understood. The SNP is located 
in intron 2 in TERT and was suggested to influence telomerase 
activity or to be in strong linkage with a functional variant in 
TERT (83, 101).

The dual associations of the SNP in this study would support 
the hypothesis that telomere maintenance is at an intersection 
between cancer- and premature-aging (130, 131). Cancer and 
aging share many molecular pathways, including telomere 
maintenance pathways. And while aging is associated with a 
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FigUre 3 | Meta-analysis of cancer association to rs2736100 allele C. OR, odds ratio; 95% CI, 95% confidence interval.
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FigUre 4 | Overall association of the cancer and age-related group of 
diseases with telomerase reverse transcriptase rs2736100 allele C. OR, odds 
ratio; 95% CI, 95% confidence interval.

FigUre 5 | Evaluation of (publication) bias for the cancer (a) and non-cancer (B) meta-analysis. LFK index, Luis Furuya-Kanamori index; OR, odds ratio.

progressive decrease in telomere length, cancer is characterized 
by immortalization of the cell often through telomerase activa-
tion (21, 132). Short telomeres accelerate aging through cell 
senescence, but long telomeres postpone senescence, which in 
turn, facilitates survival of cells with acquired oncogenic DNA 
alterations and thereby promotes tumorigenesis (35, 37, 38). 
The meta-analysis of cancer studies showed a pooled positive 
correlation with the TERT allele that is known to cause longer 
telomeres. This suggests that the majority of patients develop 
cancer due to a.o. the presence of long telomeres in tumor ini-
tiating cells. On the other hand, it is also well understood that 
critically short telomeres lead to chromosomal instability, which 
can cause tumorigenesis (32, 33, 36). Although the results of 
the meta-analysis suggest this if not the cause in the majority of 
cases, four cancer studies were included that originally reported 
an association with the TERT allele for short telomeres. For 
colorectal cancer there is general agreement that short telomere 
length increases tumor initiation by causing chromosomal insta-
bility (133). This would account for the association of colorectal 
cancer with the A allele of rs2736100 that is also associated with 
short telomere length (76). Testicular cancer is also associated 
with the A allele (109). Telomerase activity is restricted in most 
tissues, one exception being germ cells (21). It is assumed that in 
highly proliferative tissues, a genetic factor decreasing telomer-
ase activity may cause chromosomal instability leading to cancer.

Most non-cancer diseases showed an association with the 
A allele of rs2736100 SNP. Regarding telomere biology, disease 
susceptibility for pulmonary fibrosis is opposite to that of lung 
cancer, while both diseases are highly associated with smoking 
behavior. In case of short telomeres, smoking may cause increased 
senescence with subsequent pulmonary fibrosis, while in case of 
long telomeres; smoking may cause DNA damage in cells with 
sustained proliferative capacity. For coronary artery disease no 
significant allelic association has been found for rs2736100. 
But reports have shown a significant effect of this variant when 
analyzed in combination with other risk loci or when analyzed 
in a dominant model (41, 58, 62). However, conflicting data were 
found for the direction of the association, which could have been 
due to the ethnic background of the population. Codd et  al. 
reported an association between coronary artery disease and the 
A allele in a Caucasian cohort. Both Feng et al. and Ding et al. 
study Asian populations found no association or an association 
with the C allele (58, 62).

A limitation is that although an exhaustive literature search 
was performed, studies could have been overlooked. Some stud-
ies were excluded because of missing genotype data and some 
described an association without reporting the associated allele. 
Furthermore, it should be emphasized that the pathogenesis for 
most of the diseases mentioned in this study is not fully known 
and is suggested to be complex, involving both genetic and envi-
ronmental factors. Another limitation is the discrepancy in the 
number of studies found for cancer vs non-cancer. This results 
in a strong influence of interstitial lung disease on the pooled 
OR. Finally, (publication) bias was evaluated for both the cancer 
and non-cancer study (Figure 5). For both, meta-analyses asym-
metry was minor and the corresponding bias introduced by study 
selection and other sources is, therefore, also considered to be of 
minor influence on the pooled result.

The ambiguous effects of telomere maintenance do pose a 
great challenge for the development of therapeutic agents, for 
instance putative anti-aging therapeutics. Therapeutic agents 
aimed at increasing telomere length should be used with caution 
(25, 134). Telomerase activating agents used in the context of 
degenerative or aging-related diseases could facilitate tumori-
genesis or lead to proliferation of untargeted tissues (131, 135). 
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cOnclUsiOn

Meta-analyses showed that the TERT SNP rs2736100 C allele 
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