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Abstract

We analysed the structure of deeply knotted proteins representing three unrelated families

of knotted proteins. We looked at the correlation between positions of knotted cores in

these proteins and such local structural characteristics as the number of intra-chain con-

tacts, structural stability and solvent accessibility. We observed that the knotted cores and

especially their borders showed strong enrichment in the number of contacts. These

regions showed also increased thermal stability, whereas their solvent accessibility was

decreased. Interestingly, the active sites within these knotted proteins preferentially located

in the regions with increased number of contacts that also have increased thermal stability

and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains

provides a favourable environment for the active sites observed in knotted proteins. Some

knotted proteins have homologues without a knot. Interestingly, these unknotted homo-

logues form local entanglements that retain structural characteristics of the knotted cores.

Introduction

Proteins belonging to several unrelated protein families fold towards their native structures in
such a way that their polypeptide chains get tied into knots [1–3]. Most of them form simple
trefoil knots, but there are also proteins forming more complex knots such as figure-of-eight,
pretzel-like pentaknot and Stevedore’s knot [1, 4–6]. It should be stressed here that these knots
are not results of some accidental entanglements of long polypeptide chains but their complex
structure and topology is entirely dictated by their sequence [7, 8]. However, folding of knotted
proteins is much slower and thus less efficient than of unknotted analogues [7–9]. In that
respect, the requirement to form a knot during folding provides evolutionary disadvantage.
Yet, several known families of knotted proteins have their knotted domains strongly conserved
even in lines of organisms that got separated more than over a billion years ago [10].

We investigate here what can be the structural and functional advantage of tightly knotted
protein folds that have made them conservedduring evolution.We specifically check whether
portions of polypeptide chains directly involved in knot formation have gained some special
properties.We observed that amino acids positioned at the borders of knotted cores show
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strongly increased number of contacts giving them the possibility to form various chemical
bonds. Borders of the knotted cores showed also increased thermal stability and decreased sol-
vent accessibility. We also lookmore closely at how the knotted core contributes to the forma-
tion of catalytic centres and binding sites for substrates and cofactors. In addition, we compare
structural properties of two very similar in structure and function protein homologs where one
is knotted and the other unknotted.

Results

In our search of functional advantages of knots, we concentrate on proteins forming trefoil
knots as these are the most frequently observed among knotted proteins. Analysis of the geom-
etry of protein knots leads to the definition of knotted core and knot tails [10–12]. The knotted
core is the smallest subchain of the entire polypeptide chain, which still forms the knot, while
the tails are the parts of the chain remaining on both sides of the knotted core (see Fig 1).
Searching for possible functional advantages of knots in proteins, we focus on deeply knotted
proteins, since these are especially difficult to fold [13] and hence their formation my result in
possibly unique properties. As deeply knotted proteins we consider those, in which the shortest
knot tail is at least 20 amino acids long. In addition, we concentrate on tight knots. Since the
smallest knotted core found in KnotProt database [3] consists of 42 amino acids, we set a limit
of 84 amino acids (twice the minimal size) on the core size. Finally, to increase the chance of
finding structural characteristics caused by knotting and not by some possible structural simi-
larities of compared proteins, that are unrelated to knotting, we decided to analyse only the

Fig 1. Knotted core and active sites in TrmL protein. a. Structure of TrmL protein (PDB id 4JAK, chain A of the dimer) is shown with a matrix

encoding the knot type of every subchain (see the main text). The diagonal shows the linear map of the chain. Colours permit finding

corresponding regions in the structure shown above the diagonal. The knotted core is indicated along the diagonal as a bold line. Violet beads

placed along the protein chain and the diagonal indicate the positions of four amino acids binding SAH. The red entries in the matrix denote intra-

chain contacts. Black lines mark the knot termini. The numbers denote residues’ indices. b. An enlarged portion of the matrix with simplified

representation of the core forming right-handed 31 knot. Violet beads indicate the positions of amino acids participating in the SAH binding (cyan

lines). c. SAH bound to the “highlighted” residues within the knotted core. d. Leu78, located in the knotted core entry and which is one of the amino

acids contributing to SAH binding site, shows large number of contacts connecting it with the encircling polypeptide chain. e. Ile122, which is

located immediately after the exit point from the knotted core also shows a large number of contacts with the encircling polypeptide chain (orange

stripes). This number is not as high though as that of the preceding amino acid that is located at the exit point from the core (cyan stripes).

doi:10.1371/journal.pone.0165986.g001
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knotted proteins which are very different from each other, when comparing their structure and
function. As a result, we study here three knotted proteins: a methyltransferase from the
SPOUT superfamily, N-acetyl-ornithine transcarbamoylase, and a ribonucleoprotein partici-
pating in RNA splicing. Our choice is consistent with previous classification of knotted pro-
teins showing that there are 7 different protein families containing a 31 knot, but only three of
them possess a deep, tight knot [14].

Knotted core and active sites in TrmL protein

SPOUT is a large protein superfamily of rRNA or tRNA-modifying methyltransferases [15,
16]. These proteins form dimers important for activity [17] and each monomer forms a deep
trefoil knot providing binding site for the cofactor of the methyl transfer reaction—S-adenosyl-
methionine (SAM). For SPOUT family members it was shown that amino acids located at the
border of the knotted core show high conservation [18, 19]. Relatively recently one of SPOUT
members, TrmL, which is a tRNA methyltransferase from E. coli was crystallizedwithout
(PDB id 4JAK) and with (PDB id 4JAL) S-adenosylhomocysteine (SAH) [20]–by-product aris-
ing when SAM already “donated” its methyl group to tRNA. The analysis of the crystal where
TrmL binds SAH allows determination of the exact amino acids involved in ligand binding. It
is interesting to check, whether these are located within or in the immediate vicinity of the
knotted core of the protein.

Fig 1a shows the structure of TrmL protein (to facilitate perception of the polypeptide struc-
ture only one of two monomers of crystalizedTrmL dimer is shown) together with a matrix
representation that encodes the knotting of all subchains of the analysed protein [11, 21]. All
subchains, whose starting and ending residues, indicated along the abscissa and ordinate,
respectively, fall within the green rectangle can be considered as forming an open trefoil knot.
Therefore, the knotted core of TrmL starts around the Leu78 residue and ends around the
Thr121 residue, as indicated in the KnotProt database [3]. The extent of the knotted core is
depicted on the matrix diagonal that corresponds to the linear map of the entire protein. It
should be mentioned though that defining the borders of the knotted core is somewhat prob-
lematic as the borders can vary depending on the algorithm used to detect and define knots
[22–24]. The main source of variance between different algorithms is the chosen closing proce-
dure needed to characterize the knot type. Our probabilistic algorithm, implemented in Knot-
Prot database [3], averages over a large number of randomly chosen closing directions and by
this is independent of the arbitrary choice of the chain closure. In Fig 1 the violet beads placed
on the structure of TrmL protein indicate positions of 4 residues that according to PDB entry
4JAL bind SAH. The positions of these 4 residues are also placed along the diagonal of the
matrix. It is visible that two of these 4 residues locate at the extremities of the knotted core,
with the next one locating in the core centre. Fig 1b and 1c focus on the knotted core and its
immediate vicinity. Fig 1b schematically shows the open 31 knot formed by the corresponding
portion of the TrmL chain as well as the approximate positions of the 4 residues binding SAH.
Fig 1c shows the actual structure of the corresponding portion of the protein together with the
bound SAHmolecule. The 31 knot is visible, although its recognitionmay not be obvious since
the polypeptide chain does not form a minimal crossing representation of the 31 knot.

In addition to pinpointing the position of the knotted core, the matrix presented in Fig 1a
indicates all intra-chain contacts defined as in [25] and marked as red squares. The non-local
contacts stabilize formed knots and may also be responsible for the conservation of the knotted
character of this protein during evolution. Hence, we focused on the contacts between amino
acids that are distally located from each other along the polypeptide chain. Therefore, we
imposed the condition that the sequential distance separating the contacts should be at least of
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4 amino acids.We were especially interested in contacts between residues located within the
knotted core or in its immediate vicinity. Particularly interesting are clusters of contacts that
correspond to the regions where the chain enters or exits the knotted core. The horizontal and
diagonal lines on the matrix formed by red marks clearly show that the terminal portions of
knotted core form a large number of contacts. Fig 1d and 1e show these interactions for indi-
vidual residues that are located at the N- and C-terminal end of the knotted core, respectively.
It is visible that a large number of contacts realizable by individual amino acids are correlated
with the particular architectonic motive of tightly knotted proteins where portions of their
polypeptide chain are encircled in a nearly perpendicularway by other portions of the same
chain forming the knotted core. It is striking that one of the 4 amino acids contributing to the
active site of TrmL is exactly the amino acid at the entry to the knotted core and thus forming
very extensive set of contacts. Moreover, the second active residue located just outside the knot-
ted core also shows increased number of interactions, although this number is smaller than
that of the neighbouring amino acid delimiting the knotted core (see Fig 1e). We would like to
stress here that the algorithm that defines borders of knotted cores was described earlier using
strict mathematical considerations for curves in space [10] and its detection of knots’ borders
in proteins is absolutely independent of the number of contacts in these regions. In addition,
the positions of the boundaries, determinedwith single residue resolution, are as listed in Knot-
Prot [3]. Also other published methods of determining the borders of the knotted cores [22–
24] gave very consistent results (See S1 File).

The increased number of contacts involving two regions where the polypeptide chain enters
and leaves the knotted core (Fig 1a, 1d and 1e), inspired us to check how the number of intra-
chain contacts per residue varies along the polypeptide chain of TrmL. Fig 2a shows that both
borders of the knotted core form strong local maxima in the total number of contacts formed.
In addition, these maxima are broad i.e. there are several sequentially close amino acids which
form a large number of contacts. A similar high and broad maximum of contacts is also
observed in the centre of the knotted core. Interestingly, each of these three broad maxima of
contacts in the borders and in the centre of the knotted core “hosted” one of the four amino
acids binding SAH.We should however point out, that these maxima are not strictly global.
Though, when considering only short and buried long-distance contacts (i.e. excluding water
mediated contacts), these maxima exceed all the others (data not shown).

Next, we investigated whether these three maxima of contacts provide increased stability to
the borders as well to the centre of the knotted core as compared to the rest of the protein. Fig
2b shows the B-factor profile (the measure of atoms mobility) obtained for the crystallizedpro-
tein. It is well visible that these three maxima with many contacts correspond to the regions
that show increased stability. The stabilization of knotted cores was proposed earlier as a possi-
ble functional advantage of knotted proteins [1, 26–29]. Our analysis revealed though that this
stabilization is strongly pronounced at the borders and the centre of the knotted core. As
shown in Fig 1d and 1e these regions show many stabilizing interactions that are correlated
with the fact that in tight knots there are tight clasps where one segment is locally encircled by
the other. It is tempting to speculate that evolutionary conservation of knotted proteins is con-
nected with the specific properties provided by the clasp motifs where one polypeptide chain
turns around another chain in a nearly perpendicularorientation [30].

Finally, we analysed the solvent accessibility (SASA) of all residues in the functional dimeric,
apo form of the protein (see Fig 2c). As could be intuitively expected the exit/entry regions into
the knotted core form strong local minima in the solvent accessibility. Interestingly, these low
accessibility regions are in the immediate vicinity of two regions that are highly accessible to the
solvent and are located just outside of the knotted core. Considering now the solvent accessibil-
ity of the four amino acids that contribute to the SAH binding site we can see that the three of
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Fig 2. The number of contacts, relative thermal motion (B-factor) and solvent accessibility (SASA) of

TrmL protein. a. The number of contacts in the TrmL polypeptide chain shows strong and broad maxima at

the borders and in the centre of the knotted core. Out of the four amino acids involved in SAH binding the

three of them locate in these three maxima of contacts. b. B-factor shows strong local minima at the borders

and in the centre of the knotted core. Three out of four residues involved in SAH binding are located at or in

the immediate vicinity of these sites. c. SASA shows strong local minima at the borders and in the centre of
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them that are located in the centre and in the extremities of the knotted core show very low sol-
vent accessibility. Low solvent accessibility of these sites is required for the formation of hydro-
phobic pockets that are needed to bind S-adenosylmethionine [31]. On the other hand, the
neighbouring regions should be solvent accessible to allow even hydrophobic solutes to
approach. The fourth SAH binding amino acid is already outside of the knotted core and as
such shows a high solvent accessibility, a high B-factor and a low number of contacts (see Fig 2).

Our results indicate that active sites in deeply knotted TrmL proteins locate within their
knotted cores in such regions that have somewhat extreme properties caused by knotting.
These properties are: large number of contacts with other parts of the chain, specific restriction
of thermal fluctuation and high screening from solvent inside the knotted core. On the other
hand, these residues have nearby regions that are highly exposed to solvent by being located
just outside of the knotted core.

Knotted core and active sites in AOTCases

To check, whether other deeply knotted proteins show similar properties, we analysed N-acetyl-
L-ornithine transcarbamoylase (AOTCase, PDB id 3KZN) [32], which is required for biosynthe-
sis of arginine in several species of eubacteria. This protein was crystalizedwith its natural sub-
strate acetylornithine, which permitted to determine amino acids involved in ligand binding.
Fig 3a shows the matrix encoding the position of the knotted core and intra-chain contacts in
the AOTCase. Along the diagonal of the matrix we indicated the location of the three amino
acids involved in acetylornithine binding as well as the extent of the knotted core. It is well visi-
ble that one of the three amino acids binding acetylornithine is located at the border of the knot-
ted core. Looking on the contact map one may again notice many contacts within the knotted
core including direct interactions between the regions where the polypeptide chain enters and
exits the core. Fig 3a shows a schematic presentation of the knotted portion of the protein form-
ing a right-handed 31 knot and indicates also approximate positions of the three amino acids
that bind N-acetylornithine.A detailed structure of the entire protein is shown in Fig 3b.

In Fig 3c the number of contacts per residue of the AOTCase is analysed. One can see that
similarly to the TrmL protein, AOTCase shows strong local maxima in the number of con-
tacts at both borders of the knotted core. Interestingly, the three amino acids involved in acet-
ylornithine binding are all in the regions with local maxima of contacts and one of them (as
already mentioned) localizes exactly at the border of the knotted core. Fig 3d and 3e show
that both the B-factor and SASA feature strong local minima at both borders and in the cen-
tre of the knotted core. Interestingly, the two other amino acids that bind acetylornithine and
which are located outside of the knotted core are also in the regions with local minima of B-
factor and SASA.

Knotted core and active sites in Rds3p protein

Our next analysed protein that forms a deep trefoil was the splicing factor Rds3p (PDB id
2K0A) characterized by NMR [33]. This protein contains 3 zinc finger motifs where each con-
tains four cysteines involved in coordinating a zinc ion that stabilizes each domain. Fig 4a
shows the matrix identifying the position of the knotted core as well as the intra-chain contacts
within the Rds3p protein. It is well visible that amino acids at both borders of the knotted core
show numerous contacts with other residues of the knotted core, including direct contact

the knotted core. The SASA values are presented as running averages over a window of 8 residues. The

gradient colour (horizontal axes) corresponds to colouring of the protein in the Fig 1a, the binding residues

are marked by violet beads and dashed lines, and the knot core is delimited by green lines.

doi:10.1371/journal.pone.0165986.g002
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Fig 3. Correlation between knotting and structural characteristics of AOTCase. a. Matrix encoding the knotting pattern in AOTCase and

intra-chain contacts (red entries). The diagonal shows the linear map of the chain and indicates placement of the knotted core. The colours

correspond to Fig 3b. Black lines shows the knotted core ends with index of residues delimiting the core. In the upper triangle schematic

depiction of +31 knot. The violet beads represent the binding residues (cyan lines). b. The crystal structure of AOTCase (PDB id 3KZN) with the

binding residues marked as violet beads. c. Total number of contacts shows local maxima for substrate binding and knot delimiting residues.

One substrate-binding residue almost overlaps with the core end. Here, due to high number of residues the running average over a window of 3

residues is depicted. d, e. B-factor and SASA plots show increased stability and decreased solvent accessibility of the substrate-binding and

knot delimiting residues. The gradient colour (horizontal axes) corresponds to colouring of the protein in the Fig 3b, the binding residues are

marked by violet beads and dashed lines, and the knot core is delimited by green lines.

doi:10.1371/journal.pone.0165986.g003
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Fig 4. Correlation between knotting and structural characteristics of Rds3p protein. a. Matrix encoding the knotting pattern in Rds3p

and intra-chain contacts (red squares). The diagonal shows the linear map of the chain and indicates placement of the knotted core. The

colours correspond to Fig 4b. Black lines show the knotted core ends with index of residues delimiting the core. In the upper triangle schematic

depiction of -31 knot. The violet beads represent the zinc binding residues (cyan lines). b. The NMR-derived structure of Rds3p (PDB code

2K0A, model 1) with the binding residues marked in violet. The zinc ions are depicted with their interactions with cysteine residues (dashed

lines). c. Total number of contacts shows that knot delimiting and most of binding residues are characterized by local maxima of contact

number. 8 out of 12 binding residues locate inside the knotted core, two more in its exact vicinity. d, e. Thermal fluctuation of the residues and

SASA plots show increased stability and decreased solvent accessibility of the ion-binding and knot delimiting residues. As Rds3p was

analysed by NMR, instead of B-factor, the mean square displacement is depicted. The binding residues are marked by violet dots and dashed

lines, and the knot core is delimited by green lines.

doi:10.1371/journal.pone.0165986.g004
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between the two borders. The schematic drawing in Fig 4a shows the formed left-handed 31
knot together with approximate positions of 8 cysteines coordinating zinc ions. This drawing
also shows that 8 out of 12 cysteines coordinating 3 zinc ions are located within the knotted
core (with one immediately adjacent to the entry into the core) and two additional cysteines
are located just outside of the knotted core. Fig 4b shows the detailed structure of the Rds3p
protein with its 3 coordinated zinc ions.

Fig 4c, 4d and 4e show that similarly to the TrmL and the AOTCase, analysed earlier, Rds3p
protein also shows strong local maxima of contacts in the regions corresponding to the two
borders of the knotted core (Fig 4c) and that these two border regions form strong local min-
ima of thermal fluctuation (Fig 4d) as well as of solvent accessibility (Fig 4e). In case of Rds3p
protein the cysteines coordinating zinc ions can be considered as forming active sites of this
protein. Each of three zinc ions is coordinated by four cysteines. Fig 4c, 4d and 4e show that at
least two cysteines of every four localize in one of the regions with large number of contacts,
small thermal fluctuations and low solvent accessibility. The majority of these regions localize
within the knotted core or in the border regions of the core.

Comparison between knotted and unknotted homologous proteins

We observed that in tightly knotted proteins the borders of their knotted cores are enriched in
intra-chain contacts and active sites. However, formation of regions with high number of
intra-chain contacts is unlikely to be limited to knotted proteins only. In fact, very similar bio-
chemical reactions can be performed by knotted and unknotted proteins. This is the case of
tRNA methyltransferases, where in addition to knotted proteins (such as TrmL protein dis-
cussed earlier) there are also unknotted proteins that show no homology to knotted methyl-
transferases and in which the catalytic domains form the Rossmann folds (e.g. FTSJ RNA
methyltrasferase) [15]. Probably the best example of proteins with very similar structure and
function, which differ with respect to knotting, is provided by two classes of transcarbamoy-
lases: knotted AOTCases (describedpreviously) and unknotted OTCases. These two classes of
enzymes transfer carbamoyl group from carbamoylphosphate to N-acetyl-ornithine or orni-
thine, respectively. Both enzymes have very similar, nearly superimposable structures (Fig 5a).
The crucial difference is in the vicinity of the active region where one short polypeptide sec-
tion passes either on one, or another side of other short section, introducing or removing one
essential crossing of the trefoil knot (Fig 5b). That local rearrangement does not change signif-
icantly the number of contacts in the relevant protein regions. Fig 5c, 5d and 5e show that sub-
strate binding sites in unknotted OTCase with PDB code 4JQO have very similar
characteristics to substrate binding sites in knotted AOTCases (see Fig 3). These sites are
located in regions with large number of contacts, where thermal fluctuations and solvent
accessibility are reduced. Although the change from knotted to unknotted form of transcarba-
moylases did not change much the characteristics of the regions where active sites are located,
one should stress that the overall structures of AOTCases and OTCases are very similar and
that two out of three essential topological crossings, necessary to form the trefoil knot, are still
present in the unknotted OTCase. In the place of knots in AOTCases, OTCases form entan-
glements that formally are not knotted though.

It is interesting to consider why the knotted and unknotted homologues differ in the sub-
strate specificity. The presence of the knot in the AOTCase keeps one portion of the chain sep-
arated from the ligand-binding pocket and thus enlarges it (Fig 5a and 5b). This permits that
pocket to bind larger cofactor—N-acetyl-ornithine. In unknotted OTCase the released chain
moves towards the ligand-binding pocket (see thick chain section in Fig 5a and 5b), effectively
reducing it, as would be required for binding of a smaller ligand, ornithine.
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Fig 5. Comparison between knotted and unknotted carbamoylotransferases and structural characteristics of OTCase. a.

Superimposed structures of knotted AOTCase (red, PDB id 3KZN) and unknotted OTCase (yellow, PDB id 4JQO) with ligands (acetylornithine

and citrulline respectively, in stick representation). The thick darker fragments denote the short polypeptide chain, whose position determines the

topology of the protein. The black oval shows the fragment which was enlarged in Fig 5b. b. Enlarged fragment of Fig 5a with topologically crucial

rearrangement of the chain. In the case of OTCase chain, the (dark yellow) loop is much closer to the substrate than the analogous (dark red)

loop in case of AOTCase. The gradient arrows denote the chain movement which has to be done in order to change the topology. c. Total

number of contacts for OTCase. Here, due to high number of residues, the running average over a window of 3 residues is depicted. d, e. B-

factor and SASA for OTCase. Binding residues are marked by violet beads and dashed lines.

doi:10.1371/journal.pone.0165986.g005
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Discussion

The analysed three examples of very different knotted proteins that are unrelated in sequence
and function revealed their several similar structural properties that correlate with the presence
of deep knots in these proteins. Probably the principal common property of these knotted pro-
teins is strongly increased number of contacts in the border regions of the knotted core (see
Figs 1–4). As illustrated in Fig 1d and 1e knot border regions show many contacts as there
chains form tight clasps where one segment is locally encircled by the other. High number of
intra-chain contacts naturally leads to high thermal stability and to exclusion of solvent from
these regions. In addition to borders of the knotted core also other regions within the core
show increased number of contacts with the resulting thermal stabilization and solvent exclu-
sion (see Figs 2–4). The active sites (involved in binding of substrates, cofactors and stabilizing
ions) of the three proteins show the preference to be localized in the regions with many intra-
chain contacts that in turn lead to increased stability and limited solvent accessibility of these
sites. Presumably, formation of tight knots with characteristic structuralmotifs, where portions
of polypeptide chains are encircled in a nearly perpendiculardirection by other portions of the
same chain (see Figs 1, 3 and 4) provide very favourable environment for protein active sites.
Of course, protein knotting is not necessary for the formation of regions with increased num-
ber of contacts. Knotted AOTCases and unknotted OTCases maintain very similar regions
with increased number of contacts. However, unknotted OTCases do form local entanglements
maintaining two out of three crossings of knotted AOTCases (see Fig 5).

Methods

Contact maps

The contact maps were calculated using Frustratometer server [25]. Two amino acids are
treated to be in contact, if the distance between their Cβ (or Cα in case of glycine) is less then
6.5 Ǻ (short-distance contacts), or in range 6.5–9.5 Ǻ (long-distance contacts). The set of long-
distance contacts splits into water mediated (between solvent exposed residues) and buried
(non-exposed to solvent) [34].

Protein structures

Protein structures were taken from RCSB database with original numbering of the residues.

Knot detection and matrix representation

Protein topological state, matrix representation as well as knotted core and tail lengths were
taken from KnotProt database [3]. For Rds3p and AOTCase proteins residue numbering had
to be adjusted to RCSB numbering pattern.

Structural comparison of the protein

The structural comparison were conducted using jFATCAT-flexible algorithm using the tool
available on RCSB webpage [35, 36].

Binding site recognition

The information about the binding site of proteins were taken directly from PDB structure on
RCSB website.
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Protein depiction

Molecular graphics and analyses were performedwith the UCSF Chimera package. Chimera is
developed by the Resource for Biocomputing, Visualization, and Informatics at the University
of California, San Francisco (supported by NIGMS P41-GM103311) [37].

Features calculation

B-factors for TrmL and AOTCase were the mean residue values taken from the PDB structure.
In case of Rds3p protein the mean square displacement of Cα atoms (recorded for each model
in NMR structure) was used as an analogue of B-factor. The total SASA was computed using
Chimera Software with MSMS package [37, 38]. The values obtained were normalized accord-
ing to the total surface of amino acids [39] to calculate normalized SASA.

Supporting Information

S1 File. Supporting information. Comparison of methods characterizing positions of knotted
cores in proteins.
(PDF)
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