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Precision-cut human liver slice cultures (PCLS) have become an important alternative
immunological platform in preclinical testing. To further evaluate the capacity of PCLS, we
investigated the innate immune response to TLR3 agonist (poly-I:C) and TLR4 agonist
(LPS) using normal and diseased liver tissue. Pathological liver tissue was obtained from
patients with active chronic HCV infection, and patients with former chronic HCV infection
cured by recent Direct-Acting Antiviral (DAA) drug therapy. We found that hepatic innate
immunity in response to TLR3 and TLR4 agonists was not suppressed but enhanced in
the HCV-infected tissue, compared with the healthy controls. Furthermore, despite recent
HCV elimination, DAA-cured liver tissue manifested ongoing abnormalities in liver
immunity: sustained abnormal immune gene expression in DAA-cured samples was
identified in direct ex vivo measurements and in TLR3 and TLR4 stimulation assays.
Genes that were up-regulated in chronic HCV-infected liver tissue were mostly
characteristic of the non-parenchymal cell compartment. These results demonstrated
the utility of PCLS in studying both liver pathology and innate immunity.

Keywords: liver slice culture, innate immunity, hepatitis C virus, direct-acting antiviral treatment,
inflammation, fibrosis
INTRODUCTION

We recently reported the development of PCLS as an immunological platform (1, 2). Compared
with other approaches, the PCLS method has the advantage that hepatocytes and the major subsets
of non-parenchymal cells (KC, LSEC and HSC) are cultured together in their normal anatomical
relationships, enabling the analysis of liver cell function in the context of intercellular interaction.
Furthermore, the patterns of liver disease that are present in fresh tissue are maintained over time in
the slice cultures (1). For example, steatotic liver slices retained fat droplets, and cholestatic liver
slices displayed yellow-green pigment in hepatocytes. However, it remains unclear whether PCLS
has the capacity to reveal alternations in innate immunity that may occur in pathological liver tissue
as compared with healthy controls. As a proof of principle, we used PCLS to compare the dynamic
responses of liver tissue collected from three groups of patients which included non-infected
org March 2022 | Volume 13 | Article 8115511
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subjects, chronic HCV-infected patients, and patients whose
HCV infection was cured by DAA treatment.

HCV-infected liver tissue is of particular interest, because
HCV infection is one of the most common liver diseases in the
USA and globally. Approximately 71 million individuals are
infected with HCV worldwide (3). The acute phase of infection
is often subclinical, but 55–85% of infected individuals develop a
chronic infection leading to progressive liver pathology (4). The
World Health Organization (WHO) estimated that
approximately 399,000 people died from HCV- related diseases in
2016, mostly from cirrhosis and hepatocellular carcinoma (HCC).

The recent introduction of highly effective direct-acting
antiviral (DAA) drugs has presented a unique opportunity to
investigate if the diseased liver returns to normal after HCV
elimination. The extent to which such drugs revert the liver to
normal is not fully resolved, with some studies suggesting that
HCV clearance with DAA therapy leaves residual abnormalities
in innate immunity in peripheral monocytes and NK cells (5, 6),
adaptive immunity in peripheral CD4+ and CD8+ T cells (7–10),
in gd-T cells (11), in mucosal associated invariant T cells (12),
and in the persisting risk to hepatocellular cancer (13–16). Other
studies also found abnormal serum lipids (17), persistent
epigenetic modifications (18–20), and sustained hepatic
inflammation (21) in liver biopsies after DAA treatment. To
our knowledge, no studies have evaluated hepatic innate
immunity of untreated versus DAA-treated HCV infection in
the context of intact liver tissue.
MATERIALS AND METHODS

Liver Samples, Preparation, and Culturing
Fresh non-tumor liver tissues were obtained from patients
undergoing liver resection at the University of Washington
Medical Center (Seattle, WA, USA). All patients in this study
prospectively consented to donate liver tissue for research under
the Institutional Review Board protocol #00001852. Tissue from
DAA-treated patients were collected from those who achieved
sustained virologic response (SVR), with HCV viral load being
non-detected after the completion of DAA therapy. 7 HCV-
infected, 10 DAA-cured, and 11 non-infected controls were
studied. The non-infected controls are subjects with no known
history of HCV exposure, their HCV negative status verified by
testing their liver tissue for HCV RNA. Clinical details of these
patients are provided in Table S1.

PCLS was performed as previously described (1). Briefly, liver
cores of 6 mm diameter were excised from the resected liver
tissue using a biopsy punch (Integra Miltex, York, PA, USA),
stored in BELZER-UW solution (Bridge to Life Ltd., Columbia,
SC, USA), and transferred to the research laboratories typically
within 1 h of tissue excision. Slices 250 mm thick were prepared
Abbreviations: PCLS, precision-cut liver slice; TLR, toll-like receptor; NPC, non-
parenchymal cell; KC, Kupffer cells; LSEC, Liver sinusoidal endothelial cells; HSC,
hepatic stellate cells; HCV, hepatitis C virus; DAA, direct-acting antiviral; ISGs,
interferon-stimulated genes; HCC, hepatocellular carcinoma; ICC, intrahepatic
cholangiocarcinoma; SVR, sustained virologic response.
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using a vibrating microtome, Leica VT1200 S (Nussloch,
Germany), using Dulbecco’s Modified Eagles Medium
(DMEM) as the cutting medium. Liver slices were cultured
individually on 0.4 µm millicell organotypic inserts in 24 well
plates (Millipore Corporation, Billerica, MA, USA). The
culturing medium comprised 1 × advanced-DMEM medium,
5% Fetal Bovine Serum (FBS), 1 × GlutaMAX, 0.5 × Penicillin-
Streptomycin, 1 × Insulin-Transferrin-Selenium supplement and
15 mMHEPES (pH 7.2 - 7.5) (all from Gibco, Grand Island, NY,
USA). The liver cultures were maintained on a rocking platform
at 17 rpm in a humidified incubator at 5% CO2 and atmospheric
concentration of O2 at 37°C. The medium was renewed every
two to three days.

Histology of Liver Slices
Liver slices were fixed with 10% neutral-buffered formalin at
room temperature for 24 h. The fixed liver slices were embedded
in paraffin and were sliced into 4 mm-thick sections. Trichrome
stain, picrosirius red stain, and hematoxylin and eosin (H&E)
stain were analyzed with the standard protocol in the Pathology
Research Services Laboratory at Department of Laboratory
Medicine and Pathology at UW. The fibrosis score of liver
slices was analyzed by a pathologist blinded from the patient
clinical diseases. The Scheuer/Batts-Ludwig method was used for
fibrosis scoring, with 0: No fibrosis, 1: portal fibrosis, 2: peri-
portal fibrosis, 3: bridging fibrosis, and 4: cirrhosis. The whole-
slide images were recorded with Nanozoomer Whole Slide
Scanner (Hamamatsu City, Shizuoka Pref., Japan) and
visualized with NDP.view2 software (Hamamatsu).

Liver Perfusion and Isolation of Liver Cells
Human liver cell isolation procedures were adapted from several
sources (22, 23). Cell isolation was performed on perfused tissue
wedges, rather than cores which do not maintain adequate
vasculature to allow perfusion. Perfusion buffer contained 1 ×
Hank’s Balanced Salt Solution (HBSS, without Ca++, Mg++, or
phenol red, from Gibco), 10 mM HEPES (pH 7.2-7.5) and 0.5
mM EDTA (pH 8.0). Collagenase buffer contained 1 × HBSS
(Gibco), 5 mMMgCl2, 5 mM CaCl2, 5 mM HEPES (pH 7.2-7.5),
0.5% w/v Collagenase IV (Sigma-Aldrich, St. Louis, MO, USA),
0.25% w/v Protease (Sigma), 0.125% w/v Hyaluronidase (Sigma),
0.05% w/v DNase I (Sigma). Fresh aliquots of enzymes were
added to the buffer on the day of the perfusion experiment. Forty
mL of Perfusion buffer and 20 mL of Collagenase buffer were
used for each 10 g of liver tissue. Buffers were pre-warmed to
37°C prior to the perfusion step.

Liver tissue wedges were sequentially perfused with Washing
buffer (1 × HBSS and 10 mM HEPES, pH 7.2-7.5), Perfusion
buffer, Washing buffer, and the recirculating Collagenase buffer at
a flow rate of 12 mL/min (Gilson’s MINIPULS 3, Middleton, WI,
USA). The perfused liver tissue samples were gently mashed with
a sterile syringe plunger through a sterile mesh strainer in ice-cold
DMEM medium. Cell extracts were filtered through a 100 mm
sterile strainer and centrifuged at 50 × g at 4°C for 3 min to enrich
for hepatocytes in the pellets and non-parenchymal cells in the
supernatant. The supernatants were transferred to a new tube and
kept on ice. The pellets were washed three times with ice-cold
March 2022 | Volume 13 | Article 811551
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DMEMmedium, and were pelleted each time at 50 × g at 4°C for
3 min. To further improve the purity of the isolated hepatocytes,
cell pellets were resuspended with 5 mL of ice-cold PBS, overlaid
with 10 mL of 25% Percoll gradient solution. The mixture was
centrifuged at 1400 × g (no brake) at 4°C for 20 min. The pellet
contained the purified live hepatocytes. The viability of the
isolated hepatocytes was determined with the trypan blue
exclusion assay (Thermo Fisher Scientific, Waltham, MA,
USA). If the viability was greater than 50%, the isolated
hepatocytes were stored for RNA extraction.

For the non-parenchymal cells (NPC), the 50 x g centrifuge
supernatants were further centrifuged at 500 × g at 4°C for 7 min.
The pellets were resuspended in 5 mL of ice-cold PBS, and
overlaid on top with 50% and 25% Percoll gradients (10 mL
layers each), and were centrifuged at 1400 × g (no brake) at 4°C
for 20 min. Cell layers were collected into 20 mL PBS each, and
centrifuged again at 500 × g at 4°C for 7 min. A fraction of the
pellets were saved for RNA extraction, which were the total NPC.
The rest of the pellets were resuspended with the ice-cold Flow
buffer containing 1 × PBS, 2% FBS, and 1 mM EDTA. The
experimental protocol is illustrated in Figure S1.

Flow Cytometry and Cell Sorting
The isolated non-parenchymal cells were stained with an antibody
mixture that included eBioscience (San Diego, CA, USA): anti-
CD45 (Cat. No. 15-0459-42); BioLegend (San Diego, CA, USA):
anti-CD3 (Cat. No. 317330), anti-CD11b (Cat. No. 553310), anti-
CD14 (Cat. No. 301834), anti-CD31 (Cat. No. 303120), anti-CD32
(Cat. No. 303206), anti-CD68 (Cat. No. 333814), and anti-CD271
(Cat. No. 345110). In addition, cells were also stained with LIVE/
DEAD Fixable Far Red Dead Cell Stain Kit (Cat. No. L10120, Life
Technologies, Carlsbad, CA, USA). The incubation mixture was
kept at 4°C for 30 min in the dark on a rocking platform. The
mixture was centrifuged with 500 × g at 4°C for 7 min. Cells were
washed once with Flow buffer.

The antibody-labeled cells were sorted with a BD Aria III (BD
Biosciences, San Jose, CA, USA). Analysis of cell populations was
performed using FlowJo software, version 9.8.5 (FlowJo, LLC,
Ashland, OR, USA). Kupffer cells were selected as the CD45+,
CD3−, CD14+, CD68+, CD32+ populations (24, 25). LSECs
were selected as CD45−, CD31+, CD11b− (26). HSCs were
selected as CD45−, autofluorescence positive with the emission
wavelength at 460 nm, SSC-H (high) (27, 28) (Figure S1). Cells
were pelleted at 500 × g at 4°C for 7 min, and were stored in -80°C
before RNA extraction.

RNA Isolation and qRT-PCR Analysis
The RNA of liver slices or the purified liver cells was isolated with
TRIzol and the Direct-zol RNA MiniPrep Kit (Zymo Research,
Irvine, CA, USA). The RNA concentration was measured with
nanoDrop (Thermo Fisher Scientific). The cDNA was
synthesized with the QuantiTect Reverse Transcription Kit
(Qiagen, Hilden, Germany).

A pre-amplification was performed before the multiplex qRT-
PCR assays to improve the detection sensitivity (29, 30), which
included PCR reactions of cDNA as templates, and the
0.2 fold- diluted primer mixture of TaqMan assays of interest
Frontiers in Immunology | www.frontiersin.org 3
(Thermo Fisher Scientific) and the BIO-X-ACT Short Mix
reagents (Bioline USA Inc., Taunton, MA, USA). The pre-
amplified samples were diluted five-fold with RNase- and
DNase-free H2O. Samples were analyzed with a 48 × 48
dynamic array and a BioMark HD microfluidics system
(Fluidigm, San Francisco, CA, USA). The Fluidigm Real-Time
PCR Analysis software was used to calculate Ct thresholds, using
the settings of quality threshold 0.65, baseline correction linear,
Ct threshold method auto detection. Gene abundance of
individual liver slices was normalized to the arithmetic mean
of Ct values of ACTB, HPRT, and GAPDH. Typically, three liver
slices were analyzed for each subject for each time point. The
arithmetic mean delta Ct of three liver slices was used in the figures
and for statistical analysis. The hierarchical clustering was
analyzed with Cluster 3.0 (31). Heat map was visualized with Java
Treeview (version 1.1.6r4) (32).

HCV RNA Measurement
HCV RNAwas measured with a Food and Drug Administration-
approved Abbott Real-Time HCV assay (Abbott Molecular, Des
Plaines, IL, USA) as previously described (21, 33). Fifty ng of
total RNA for each sample was input in the assay, and HCV IU/
ng total RNA was calculated from the calibration curve of
positive controls. The reliable detection limit for HCV with
this assay was 1.2 IU/50 ng liver total RNA.

Validation of Liver Cell Types With
Cell-Type-Specific Genes
Liver cell-type-specific genes for hepatocytes, Kupffer cells (KC),
liver sinusoidal endothelial cells (LSEC) and hepatic stellate cells
(HSC) were obtained from previous microarray analysis of liver
FACS purified cells (1) and recent publications of liver single cell
RNAseq (34, 35). Enrichment of the FACS purified liver cell
types were confirmed by the selective expression of cell-type-
specific genes.

Ex Vivo Stimulation of Liver Slices With
Poly-I:C and LPS
Liver slices were cultured ex vivo for 7 days. Final concentrations
of 15 mg/mL polyinosinic–polycytidylic acid (poly-I:C) (Sigma,
Cat. No. P1530), 1.5 mg/mL lipopolysaccharide endotoxin (LPS)
(Sigma, Cat. No. L2630) or 1 × PBS (control, matched by
volume) were added to the growth medium. During the
stimulation, liver slices were maintained on transwell inserts
placed on a rocking platform at 37°C. Three liver slices were
harvested at each time point, including 0 h (time zero control),
2 h, 4 h, 8 h, 12 h or 24 h. The concentrations of poly-I:C and LPS
treatments were based on our previous studies with isolated liver
leukocytes (36) and liver slices (1).

Archival Data
Some gene expression data from a subset of the non-infected
control subjects (#1,3,4,5,6) in Figures 1, 5 and S2, S7 were
previously published in a proof-of-concept study (1), and appear
here in the pool of control data. Inclusion of these data expands
the number of non-infected controls, allowing us better to
resolve differences due to active or DAA-cured HCV infection.
March 2022 | Volume 13 | Article 811551
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For genes that were evaluated in both data-sets, we include direct
comparisons in Figure S9. The archived data were fully
consistent with newer data, justifying their inclusion.

Statistical Significance Test
The non-parametric Mann Whitney test, Kruskal-Wallis test
with Dunn’s post test with multiple test comparison correction,
and Wilcoxon matched-pairs signed rank test were performed
Frontiers in Immunology | www.frontiersin.org 4
using Prism (version 9.1.0) (GraphPad Software Inc., CA, USA).
Multiple comparison correction was not applied in the gene
expression analysis, because a specific set of genes were targeted
for analysis unlike the standard procedure in a data-driven
functional genomics study. In this circumstance, correction for
type I error is not advised, because the correction could lead to
inflation of type II error (i.e. false negatives) (37). The issue of
type II errors also arises because of the limited number of tissue
FIGURE 1 | Innate immune response of human liver slices to poly-I:C or LPS treatment. Non-HCV-infected specimens are shown. IFN-b and IFN-l expression
peaked at 2-4 h, whereas interferon-stimulated gene expression for IFIT1, CXCL10 and MX1 peaked round 4-12 h. Each marker represents a patient time-point
summary which consist of 2-3 biological replicates of liver slices. Relative abundance at the log2 scale is shown, with the median, 25% and 75% quantile values
indicated with violin plots.
March 2022 | Volume 13 | Article 811551
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samples available to us. For these reasons, we treated each gene
we selected as an individual measurement.
RESULTS

As a first step, we verified the robust response of liver slices during
poly-I:C and LPS exposure (Figures 1, S2). The 2 h time point
confirmed that IFN-b and IFN-l gene expression was stimulated
prior to the elevation of interferon-stimulated genes IFIT1/2,
CXCL10, MX1 and RSAD2 by poly-I:C. The induction of these
antiviral genes was greater with poly-I:C compared with LPS
treatment (Figures 1, S2). In contrast, IL-1B and IL-6 and IL-12B
were more robustly stimulated by LPS. The response of IL-1B and
IL-6 extended to 24 h post stimulation; in comparison,TNF peaked
at 2 h, and gradually declined at 4, 8, 12, 24 h post-stimulation time
points (Figures1,S2).The temporal andgene specificity inpoly-I:C
and LPS response provided the basis for further dynamic testing of
HCV-infected and DAA-cured liver tissue.

Detection and Quantitation of HCV RNA
With Liver Slices
Liver tissue fromeight chronicHCV-infectedpatientswere studied.
All eight patients were diagnosed with primary liver cancer, either
hepa toce l l u l a r c a r c inoma (HCC) or in t r ahepa t i c
cholangiocarcinoma (ICC). Four HCV genotypes were identified
including HCV G1a, G1b, G2, G6. Likewise, liver tissue from ten
DAA-cured patients were studied. The DAA-cured patients
completed 8-24 weeks of DAA therapy. All subjects achieve
sustained virologic response (SVR) with HCV RNA below the
limit of detection after completion of DAA treatment. However,
theseDAA-curedpatientswerediagnosedwithprimary liver cancer
(HCC or ICC) post DAA therapy. The time from completion of
DAA treatment to liver resection surgery (i.e. the time liver tissue
was collected) ranged from less than 1 month to 20 months, with a
median of 9 month post-DAA therapy completion (Table S1).

To confirm HCV infection in the samples from subjects with
chronic HCV infection, HCV copy number and genotype were
analyzed byUWVirology usingCLIA-approvedHCVassays. Liver
slices originated from the chronic HCVpatients were all confirmed
withdetectableHCVRNA, ranged from1.2 to9760.1withamedian
value of 3325.4 IU/50 ng total RNA. In comparison, none of the
non-infected or DAA-treated subjects were positive for HCV RNA
ex vivo based on the limit of detection of 1.2 IU/50 ng total RNA
(Figure 2A). Moreover, chronic HCV-infected liver slices
continued to be HCV positive after 7 days of ex vivo culture
(Figure 2B), with a range of 1.8-14365.8, and median of 405 IU/
50 ng total RNA. The viral load on day 7 did not significantly differ
from day 0 (Wilcoxon matched-pairs signed rank test, two-
tailed, P=0.4688).

Fibrosis in Chronic HCV-Infected and
DAA-Cured Liver Tissue
Because chronic HCV infection induced liver cirrhosis, we
examined the liver tissue for fibrosis using picrosirius red and
Masson’s trichrome staining (Figure 2C). Previous indirect
measurements with transient elastography and noninvasive
Frontiers in Immunology | www.frontiersin.org 5
fibrosis indices reported regression of liver fibrosis after DAA
treatment (38, 39). Nevertheless, direct analysis of the liver tissue
revealed that six out of eight DAA-cured patients met the
definition of cirrhosis (i.e., fibrosis score of 4, Scheuer/Batts-
Ludwig method) in livers despite the absence of HCV RNA,
even after 20 months after DAA therapy (Figures 2C, 3).
Likewise, the untreated chronic HCV livers were fibrotic as
expected (40). None of the non-infected subjects had advanced
liver fibrosis. Since the duration between the liver tissue collection
and the time point of SVR ranged from less than 1 month to 20
months, it remains plausible that the fibrosis will be slowly
resolved over a greater time span (41, 42). Since only the HCV+
and previously HCV+ liver tissue samples were fibrotic, an
important caveat relating to our study is that the abnormal
immune gene expression in both the HCV-infected and the
DAA-cured liver slices could result from HCV infection, as a
consequence of fibrosis, or from cross-talk between these two
pathological processes.

Immune Gene Abnormality in Chronic
HCV-Infected and DAA-Cured Ex Vivo
We used multiplex qRT-PCR to examine the expression of 140
cellular genes with functions in immune activation and
suppression, and tissue repair. Forty immune genes differed in
expression in chronic HCV-infected livers versus non-infected
patients (Mann Whitney test, two-tailed, P < 0.05) (Figure 4A).
This included antiviral interferon (IFN)-stimulated genes (ISGs)
including IFIT1/2/3, ISG15, RSAD2, MX1, CXCL9, CXCL10,
consistent with previous reports (43–46). In addition, immune
activation genes includingMHC genesHLA-A, HLA-DRA, CIITA,
CD80,CD86, tumornecrosis factor (TNF) superfamily genesOX40,
4-1BB, TNFSF9, TNFRSF18 and inflammation genes including
CASP1, IL-12A, IL-12B, TNF, IL-18, and NFKB were also
significantly up-regulated in HCV-infected livers (Figure 4A).

DAA treatment (i.e., HCV cure) restored 28/40 of the
antiviral genes to baseline, as reported previously (47), but 11
immune genes remained elevated after cure of HCV infection.
These included immune activation genes (HLA-A, CIITA, 4-1BB,
CCL5, CCR2), inflammatory genes (CASP1, IL-12A), and
immune suppression-associated genes (CTLA4, TIGIT, IDO1).
Another immune suppression-related gene ARG1 was
significantly decreased in HCV+ and DAA-cured livers,
compared with non-infected controls (Figure 4A and Table 1).

The phosphoinositol-3-kinase (PI3K) pathway-linked genes
are susceptible to modification by HCV infection (18, 20, 48) and
liver fibrosis (49, 50). We found that SPHK1, BTG2, SOX9,
SNAP25, and GPRC5B were significantly up-regulated in
chronic HCV infected livers. Furthermore, SPHK1, BTG2, and
SOX9 remained significantly up-regulated after HCV clearance
with DAA treatment (Figure 4A).

Immune Gene Subsets Mapped to Hepatic
Non-Parenchymal Immune Cells
To identify the cellular origin of the dysregulated immune gene
subsets, we investigated gene expression with liver cells subsets
purified using FACS-sorting (1). Six liver wedge samples of non-
infected liver tissue were large enough in size and anatomically
March 2022 | Volume 13 | Article 811551
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ideal for perfusion through the vasculature, which allowed them
to be dissociated and analyzed for gene expression. We could not
do this with samples from HCV-infected or DAA-cured patients
due to limitations in the amount of liver tissue obtained. The
purity of isolated liver cell types was confirmed based on the
expression of cell marker genes (1, 34, 51), including FCN1,
NLRP3, ITGA4 for KC, EMCN, VWF, CD34 for LSEC, FGFR2,
PDGFRB, COL1A1, LRAT for HSC, and FBP1, RBP4, ALB for
hepatocytes (Figure S3).

Many immune genes that were up-regulated in HCV-
infected or DAA-cured fibrotic liver tissue were significantly
Frontiers in Immunology | www.frontiersin.org 6
enriched in the NPC compartment (Table 1 and Figure 4B).
For a smaller subset of immune genes, we were able to map
them to specific immune cells with greatest expression: for
example CIITA mapped to Kupffer cells (KC), HLA-A and
CX3CL1 mapped to liver sinusoidal endothelial cells (LSEC),
and IL-12B mapped to Hepatic Stellate Cells (HSC)
(Figures 4B, S4). Even though the NPC fraction may not
include the cell types targeted by HCV infection, previous
studies demonstrate that NPC can be activated through
paracrine signaling from the neighboring HCV-infected
hepatocytes (44, 52, 53).
BA

C

FIGURE 2 | HCV and fibrosis analysis with human liver slices. (A) All eight chronic HCV samples (blue color) were confirmed with positive HCV RNA detection. None
of the DAA cured subjects (red color) or the non-infected controls (black color) was positive for HCV RNA. The limit of reliable detection (LoD) was 1.2 IU/50 ng liver
total RNA. (B) HCV RNA remained robustly detected in the day 7 liver slices cultured from chronically HCV-infected patients. The viral load between day 0 and day 7
liver slices was not statistically significant (P = 0.4688, Wilcoxon matched-pairs signed rank test). (C) Fibrosis analysis of the day 0 ex vivo liver specimens with
trichrome staining and picrosirius red staining indicated that in DAA-treated, and now HCV-negative patients in this study there was persistent fibrosis, similar to
untreated HCV and different from tissue without a history of HCV infection. The scoring system was based on the Scheuer/Batts-Ludwig method. The fibrosis score
included 10 non-infected patients, 4 chronic HCV patients, and 8 DAA-treated patients. In other words, 4 out of the 7 HCV+ subjects, and 8 out of the 10 DAA-
cured subjects were analyzed. Due to tissue availability, not all subjects could be analyzed in this way. The minimum and maximum data points for each subgroup
are shown. Statistical significance was based on Mann-Whitney test. **P < 0.01. ††P < 0.01.
March 2022 | Volume 13 | Article 811551
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FIGURE 3 | Examples of trichrome stain, picrosirius red stain, and H&E stain analysis of human liver slices. Arrow indicates the nodule formation in the cirrhosis
livers. The Scheuer/Batts-Ludwig method was used for fibrosis scoring, with 0, No fibrosis; 1, portal fibrosis; 2, peri-portal fibrosis; 3, bridging fibrosis; and 4,
cirrhosis. The DAA-4 liver tissue was collected 12 months after the completion of 24-week DAA therapy. DAA-9 liver tissue was collected 20 months after the
completion of 12-week DAA therapy.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8115517
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Innate Immune Responses Were Altered in
HCV Infected and DAA-Cured Liver Tissue
We stimulated liver slices with poly-I:C and LPS for varying
times using the method established in our previous study (1).
We verified the immune genes activated by tissue slicing had
Frontiers in Immunology | www.frontiersin.org 8
broadly stabilized after 4 days of ex vivo culture for HCV-
infected and DAA-cured slices (Figures S5A, B), similar to the
non-infected slices described previously (1). Day 7 was thus an
ideal time-point to add exogenous stimuli, and the expression
of immune genes was recorded at the day 7 baseline (T0) prior
BA

FIGURE 4 | Immune gene changes at the day 7 baseline in chronic HCV-infected and DAA-cured livers. (A) Hierarchical clustering of immune genes with statistically
significant elevation in HCV or DAA-cured subjects at Day 0 or Day 7 time points. The group-level fold changes are shown, which were calculated with the mean Ct
value of each gene within each patient group. Decreased fold changes are colored in green, and increased fold changes are colored in red. (B) The up-regulated
genes in HCV and DAA-cured at day 7 time points. Genes were mapped to liver cell types according to the cell type analysis with day 0 non-infected livers. Genes
are grouped by expression patterns in cell compartments and in specimen type. The overlapped genes up-regulated at both day 0 and day 7 time points are bolded
and underscored.
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TABLE 1 | Immune gene changes ex vivo (Day 0).

Fold change Statistical significance2 Cell-type-specific information3

1HCV/ Con DAA/ Con DAA/HCV HCV/ Con DAA/ Con DAA/HCV

Antiviral genes

Cured by DAA at D0 baseline4

CXCL10 54.39 2.93 0.05 0.0003 0.4598 0.0004 NPC, KC
RSAD2 7.68 1.05 0.14 0.0007 0.7197 0.0007 NPC
IFIT1 7.16 1.51 0.21 0.0007 0.211 0.002 NPC
IFIT3 7.02 1.61 0.23 0.0002 0.0653 0.0004 NPC
CXCL9 6.80 1.45 0.21 0.0016 0.7197 0.0017 NPC, HSC
IFIT2 5.39 1.82 0.34 0.0007 0.0535 0.033 NPC, HSC
ISG15 6.16 1.04 0.17 0.0115 0.8421 0.0012 likely NPC, HSC
MX1 7.05 1.01 0.14 0.0004 0.9682 0.0002 likely NPC

Immune activation genes

NOT cured by DAA at D0 baseline5

HLA-A 3.84 1.61 0.42 0.0002 0.022 0.0012 NPC, LSEC
CCL5 3.30 1.92 0.58 0.0033 0.022 0.0878 NPC
CCR2 9.93 4.45 0.45 0.0007 0.0104 0.02 likely NPC
4-1BB
(CD137, TNFRSF9)

6.35 3.17 0.50 0.0007 0.0279 0.0702 likely NPC

CIITA 5.03 4.64 0.92 0.0007 0.0003 0.6691 likely KC

Cured by DAA at D0 baseline

HLA-DRA 2.53 1.43 0.56 0.0052 0.2775 0.1088 NPC
CD80 3.54 1.91 0.54 0.0012 0.1823 0.0553 NPC
CD86 2.32 1.25 0.54 0.0418 0.447 0.1613 NPC
OX40
(TNFRSF4)

3.93 2.46 0.63 0.0033 0.0789 0.3638 LSEC

TNFRSF18 5.62 2.97 0.53 0.0006 0.0745 0.351 HSC, LSEC
TNFSF9 2.97 2.08 0.70 0.036 0.2224 0.2721 likely KC
CXCL1 2.73 1.01 0.37 0.1447 0.9048 0.003 HSC
IFNG 2.69 0.83 0.31 0.1738 >0.9999 0.0431 NPC

Inflammation genes

NOT cured by DAA at D0 baseline

CASP1 3.13 2.71 0.87 0.0007 0.0435 0.0136 NPC
IL-12A 3.71 1.91 0.51 0.0037 0.0434 0.0185 LSEC

Cured by DAA at D0 baseline

IL-12B 2.86 1.29 0.45 0.0262 0.7577 0.1738 HSC
TNF 2.77 1.06 0.38 0.0115 0.7802 0.0046 NPC, KC, HSC
IL-18 2.40 0.90 0.37 0.0164 0.6607 0.025 NPC, HSC
NFKB 1.46 1.01 0.69 0.0283 >0.9999 0.0317 N/A

Immune Suppression genes

NOT cured by DAA at D0 baseline

CTLA4 6.52 2.70 0.41 0.0003 0.0172 0.033 likely NPC
TIGIT 4.77 3.20 0.67 0.0003 0.0172 0.033 likely NPC
IDO1 4.35 2.52 0.58 0.0052 0.0435 0.1613 NPC
ARG1 0.45 0.39 0.89 0.0229 0.0056 0.6806 Hep, uncommon in KC, LSEC

Cured by DAA at D0 baseline

B7-H4 4.49 3.70 0.83 0.0059 0.0541 0.7104 HSC
VISTA
(VSIR)

2.10 1.40 0.67 0.0021 0.1333 0.3638 KC, LSEC, HSC

CD47 1.43 1.24 0.87 0.0418 0.3562 0.3148 NPC, KC, LSEC, HSC
PDCD1 5.16 2.30 0.44 0.0205 0.0592 0.1416 not cell-type-specific
LAG3 1.88 1.19 0.64 0.0164 >0.9999 0.0712 not cell-type-specific
TIM3 2.18 0.99 0.46 0.0079 0.8633 0.0164 NPC

(Continued)
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to the treatment. Twelve of the immune genes remained at
elevated baseline in HCV-infected or DAA-cured samples
compared with non-infected control (Figures 4A, B). The
PBS mock stimulation did not significantly induce IFNs and
ISGs in liver slices (1). Notably, expression of TLR3, TLR4, and
NF-kB were not significantly different at day 7 among chronic
HCV-infected, DAA-treated and non-infected liver slices
(Figure S6A). We used the DCt method with internal
normalization to ACTB, GAPDH and HPRT to evaluate the
gene expression level post stimulation (Figure S7). We also
used the DDCt method against the day 7 T0 to assess the
enhanced net increase of genes during TLR3/TLR4 response
(Figure 5). We confirmed that TLR3 and TLR4 are primarily
expressed in the NPC compartment (Figure S6B), consistent
with the expectation that NPCs in the liver are the primary
responders to these triggers (54).

These studies revealed the following findings. First, robust
induction of IFNs and ISGs by both TLR3 and TLR4 agonists
was observed in liver slices from all three groups of liver
specimens (i.e., non-infected, HCV-infected, and DAA-cured).
The sequential signaling cascade induced by TLR3 and TLR4
pathways described in Figures 1, S1 for non-infected liver tissue,
were also pronounced in the HCV-infected and DAA-cured liver
tissue. For example, IFNB1 and IFNL3 (IL28B) peaked at 2-4 h,
prior to the maximum abundance of ISGs (IFIT 1/2/3, RSAD2
and MX1) which occurred at 4-8 (Figures 5, S6).

Second, some immune genes were not suppressed but
induced more strongly by TLR3 agonist in liver slices of
Frontiers in Immunology | www.frontiersin.org 10
chronic HCV-infected liver at least at one time point
(Mann-Whitney test, two tailed, P < 0.05). These included
antiviral genes, MX1, RSAD2, IFNG, chemokine genes CCL7,
CX3CL1, and inflammatory genes TNF and CASP1 (Figure S8).
Other common activation markers for TLR3 signaling, including
IFNB1, IL28B, IFIT1/2/3, ISG15, CXCL10, IL-1B and CCL-5,
were also responsive in chronic HCV-infected slices with
elevation of greater than 10-fold, as strong as changes in the
non-infected liver slices. Thus, TLR3 sensing and signaling did
not appear to be impaired in chronic HCV-infected liver slices.

TLR4 sensing and signaling were similarly robust in chronic
HCV-infected livers. IFIT1/2/3 and CCL7 were identified at
greater abundance post LPS stimulation in chronic HCV-
infected liver slices on at least one time point (Mann-Whitney
test, two tailed, P < 0.05) (Figures 6A, S7).

Third, most of the hyper-induction of the genes in HCV-
infected tissue (9/11 genes in TLR3 response, 10/11 genes in
TLR4 response) was not reversed in the tissue from formerly
HCV+, but now successfully treated donors. IFNB1, CCL5, ISG15
and IL-12B were more strongly induced by LPS or poly-I:C in
DAA-cured tissue, previously not identified with HCV-infected
tissue (Figures 6A, B).

In terms of the DDCt net increase, TNF, IL-1B, IL-8, CTGF,
and CX3CL1 were more strongly induced in HCV-infected liver
tissue during LPS or poly-I:C stimulation. Likewise, TNF, CTGF
and IFIT2 were abnormally induced in DAA-cured liver tissue
(Figures 5, 6B). The abnormal induction of TNF, IL-1B, IL-8,
and CTGF at 12 h and 24 h in chronic HCV liver slices, indicated
TABLE 1 | Continued

Fold change Statistical significance2 Cell-type-specific information3

1HCV/ Con DAA/ Con DAA/HCV HCV/ Con DAA/ Con DAA/HCV

FOXP3 2.94 0.70 0.24 0.1416 0.8633 0.0079 not cell-type-specific

PI3K pathway genes

NOT cured by DAA at D0 baseline

SPHK1 3.50 2.13 0.61 0.0052 0.04 0.2523 HSC
BTG2 2.19 2.10 0.96 0.0907 0.0188 0.8371 N/A
SOX9 2.62 2.30 0.88 0.0549 0.04 >0.9999 Not cell-type-specific
SNAP25 3.03 1.88 0.62 0.0164 0.0503 0.351 N/A
GPRC5B 2.30 1.91 0.83 0.0311 0.1615 0.351 N/A

Tissue repair genes

Cured by DAA at D0 baseline

TIMP1 1.98 1.29 0.65 0.0311 0.447 0.2698 LSEC
MMP9 2.04 1.13 0.56 0.0164 0.7802 0.1331 Not cell-type-specific
PDGFB 1.62 0.93 0.58 0.2523 0.8633 0.0164 LSEC
TGFB1 2.18 1.27 0.58 0.0712 0.447 0.0431 KC, LSEC, HSC
March 20
Liver tissue was perfused, and total livers, hepatocytes (Hep) and NPC populations (NPC) were obtained with differential centrifugation. Kupffer cells (KC), liver sinusoidal endothelial cells
(LSEC), and hepatic stellate cells (HSC) enriched populations were obtained with FACS from NPC (Figure 1B). RNA was extracted from each cell type, followed by qRT-PCR gene
expression analysis using the fluidigm platform.
1The comparisons were HCV/Con, chronic HCV-infected versus non-infected controls; DAA/Con, DAA-cured versus non-infected controls; DAA/HCV, DAA-cured versus chronic HCV-
infected.
2Statistical significance was based on non-parametric two-tailed Mann-Whitney test.
3Cell-type-specific information was based on analysis of the non-HCV-infected samples. N/A means cell-type-specific gene information not analyzed. This was due to the limit of sample
availability and the assay through-put with fluidigm assays.
4Cured by DAA at D0 baseline categorized the gene subsets that were normalized to the same level as non-infected controls.
5Not cured by DAA at D0 baseline categorized gene subsets that were not normalized to the correct levels as the non-infected controls.
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FIGURE 5 | Delta-delta Ct analysis showing up-regulated genes post- poly-I:C or LPS stimulation in chronic HCV-infected and DAA-cured liver slices. The relative gene
abundance was normalized to to the arithmetic mean of Ct values of ACTB, GAPDH and HPRT1. The relative abundance was further normalized to the day 7 time zero
measurements. Statistical significance was based on two-tailed Mann-Whitney test. *, statistical significantly different between non-infected versus chronic HCV liver slices.
†, statistical significantly different between non-infected versus DAA-cured liver slices. ‡, statistical significantly different between chronic HCV versus DAA-cured liver
slices. Levels of statistical significance are indicated thus: *P < 0.05 **P < 0.01. The mean and standard deviation within each group are plotted.
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persistent inflammation (Figure 5). Importantly, a subset of
these genes TNF in KC, CTGF in LSEC, CCL7, ISG15 for HSC,
and IL-8, IL-1B, IFIT2/3, RSAD2, MX1, CCL5 for NPCs, and
IFNB1 were only revealed through the TLR3 and TLR4
stimulation assays, but not with the ex vivo day 0
measurements. These results highlighted the unique value to
measure dynamic changes with liver tissue to reveal immune
signaling defects (Figures 6B, S9).
DISCUSSION

In this study, we pioneered the PCLS technology to study innate
immune response within normal and pathological liver tissue.
We showed that immune abnormalities persist after the
elimination of HCV by anti-viral therapy, and the persisting
inflammatory and immune signatures featured genes
Frontiers in Immunology | www.frontiersin.org 12
characteristic of hepatic non-parenchymal cells. Innate
immunity in response to TLR3 and TLR4 agonists was not
suppressed but enhanced in HCV-infected tissue, and these
abnormalities were not corrected after effective DAA treatment.

In human hepatocyte cultures (55, 56) HCV infection
triggered cleavage of MAVS and TRIF host proteins by HCV
NS3/4A protease, disrupting TLR3-antiviral signaling. Reduction
of protein levels of MAVS and TRIF was also observed previously
in chronic HCV-infected livers (57, 58). The novel aspect of
PCLS is to study whole liver slices consisting of hepatocytes
(infected cells) and non-parenchymal cells (NPC, non-infected
cells). We observed a robust response to TLR3 signaling in the
HCV-infected liver, which supports the idea that ISG induction
may be weak in HCV infected hepatocytes, but is strong in HCV
infected liver due to paracrine activation of NPC. The data on the
direct effect of HCV on the TLR3 response in liver tissue are
novel and distinct from previous work focused on the IFN-
BA

FIGURE 6 | Altered TLR3 and TLR4 response in chronic HCV-infected liver slices not restored in DAA-cured liver slices. (A) Hierarchical clustering of immune
responsive genes with 2-fold or greater induction during LPS stimulation. The statistical significance P value with DCt method is shown. Gene abundance of
individual liver slices was normalized to the arithmetic mean of Ct values of ACTB, GAPDH and HPRT. Two-tailed Mann-Whitney test was used. Greater significance
P value is colored with darker red. (B) Genes up-regulated with P < 0.05 at one time point in either poly-I:C or LPS treatment were included as up-regulated genes.
Genes boxes were colored with the enriched expression in cell compartment of day 0 information. Using the DDCt method, genes that increased in expression
during TLR3/TLR4 response are highlighted with a black bordering; genes shown to increase based on both DDCt and DCt methods are highlighted with black
bordering and black solid circles. Genes names are colored by in HCV- or DAA- samples or both. These genes were further grouped by whether they were
differentially expressed in TLR3 or TLR4 treatment not at the baseline level, and whether poly-I: C or LPS treatment revealed differential responses.
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induced gene expression in chronically HCV-infected liver by
pegylated IFN therapy (59, 60), since such direct activation of
IFN signaling bypasses MAVS and TRIF.

A previous study reported that HBV does not interfere with
innate immune response based on chronic HBV-infected liver
biopsy tissues (61). However, in chronic HCV-infected tissue, we
found innate immunity via TLR3 and TLR4 was not suppressed
but enhanced. The different outcome may reflect the differences
in immune evasion mechanisms between DNA and RNA viruses.
Furthermore, the tissue status and treatment method were not
identical between the two studies. In chronic HCV-infected
tissue, advanced fibrosis was observed, and this study also used
the day 7 as treatment time zero when immune activation by
tissue slicing was broadly stabilized.

From the days of IFN-based therapy, we know that HCV-
induced liver disease can regress when the virus is eradicated
from the liver (62). However, halting or reversing liver disease
upon IFN cure of HCV has not been universal; some patients
with advanced disease still go on to develop HCC (63–65). DAA
drugs are now able to cure the majority of HCV infections, even
in subjects with advanced liver disease. Nevertheless, clearance of
HCV with DAA treatment may only partially restore immune
cell function. In this study, we have identified immune genes that
were restored to normal by DAA treatment, and more
importantly immune genes that were not restored ex vivo (i.e.,
at day 0 time point), including a subset of immune activation
genes, inflammation genes, immune suppression, and PI3K
pathway genes.

In North America, the era during which some, but not all
HCV patients were treated with DAA was brief and has passed.
Within this narrow time frame, we worked with tissue from
patients who were treated for surgical resection of a liver lesion.
Accordingly, there are inherent limitations to this study. First,
due to the small sample size, we did not further classify patient
subgroups based on HCV genotypes. Likewise, other subject
characteristics including gender, age, genetic polymorphisms
(such as IL28B), and liver fibrosis status, all of which may
affect immunity and responses to HCV infection (13, 66, 67)
were not used as factors to subdivide patient groups in the
downstream analysis. Nonetheless, we observed significant
effects that cut across these hidden variables, with consistent
identification of aberrant immune gene expression at baseline
day 0 and day 7, as well as those with altered TLR3 and TLR4
responses. Second, we cannot determine whether the sustained
abnormality is due to the host response to hepatic fibrosis or
HCC rather than HCV-mediated. The DAA-cured subjects we
studied were based only on those who developed HCC or ICC
post DAA therapy, since these were the patients who underwent
liver resection. Thus, our DAA-cured samples only covered a
unique sub-group of DAA-cured patients. Third, only KC, LSEC,
HSC enriched genes could be assigned to specific liver cell type.
Many other differentially expressed genes were mapped to the
NPC compartment, but the analysis of isolated cells did not give
us sufficient resolution to allow us to assign any genes to other
liver cell types, such as CD8+ T cells, CD4+ T cells, NK cells,
dendritic cells and monocytes.
Frontiers in Immunology | www.frontiersin.org 13
Previous analysis with DAA-cured PBMC suggest both the
functional phenotypes (8, 11, 68, 69) and the frequency/
composition (70, 71) of immune cells are relevant aspects not
fully restored by DAA therapy. Since we did not interrogate the
expression of these genes in NPCs from samples other than the
non-infected controls, it is unclear whether the gene expression
changes were contributed mainly by the NPC cell phenotypes or
by the overall greater abundance of immune cells in HCV+ and
DAA-cured livers. Hence, IHC analysis of overall abundance of
NPC populations in liver slices between groups would be
impactful to address this question. Future study may extend
the conclusion through analysis of a more diverse group of
clinical situations, including chronic HCV patients and DAAs-
SVR cases with or without fibrosis or HCC, as well as non-HCV
related liver tissues with fibrosis or HCC. Liver tissue with longer
time span post DAA therapy (>20 months) will also help clarify
the resolution of liver cirrhosis by DAA therapy.

We made use of the PCLS approach opportunistically to
obtain data from the group of untreated HCV-infected subjects,
a group that has now disappeared from the surgical patient pool,
at least in North America. Despite the heterogeneity of both
subjects and controls, this study demonstrates the power of PCLS
to document functional responses of intact human liver tissue.
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