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As a selective histone deacetylase (HDAC) inhibitor developed in China, chidamide has been applied for the treatment of refractory
peripheral T-cell lymphoma (PTCL) andmultiple solid tumors, including lung cancer. However, the underlyingmechanisms are not well
elucidated. In our present study, we found that chidamide and radiation acted synergistically to suppress cell and xenograft growth of lung
squamous cell carcinoma cells by inducing cell apoptosis. Moreover, chidamide alone or a combination of chidamide and radiation
treatment inhibited cancer cell stemness. miRNAmicroarray analysis demonstrated thatmiR-375was the highest upregulatedmicroRNA
(miRNA) inNCI-2170 andNCI-H226 cells treatedwith chidamide alone or treatedwith chidamide plus radiation, comparedwith normal
control. Inhibition of miR-375 attenuated the promoting effect of chidamide alone and chidamide plus radiation-induced NCI-2170 and
NCI-H226 cell apoptosis and reverted the suppression of cancer stemness caused by chidamide alone or chidamide plus radiation
treatment. Moreover, EIF4G3, a scaffold protein in the translation initiation complex, was found to be a direct target of miR-375 based on
the luciferase reporter assay and western blot analysis. Interestingly, both chidamide alone and chidamide plus radiation treatments
suppressed the mRNA and protein expression of EIF4G3. Silence of EIF4G3 also induced cell apoptosis and suppressed tumor growth in
NCI-2170 and NCI-H226 cells.*ese data suggest that chidamide shows a synergistic effect with radiation therapy on lung squamous cell
carcinomas bymodulating themiR-375-EIF4G3 axis, whichmay afford an effective strategy to overcome the drug resistance of chidamide
in clinical cancer therapy.

1. Introduction

Lung cancer is one of the leading causes of cancer-associated
deaths all over the world, with a high metastatic potential [1].
Lung cancer can be divided into two main groups: small-cell
lung cancers (SCLCs) and non-small-cell lung cancers
(NSCLCs) [2]. NSCLCs account for 85%of lung cancer and can
be further classified into four subtypes according to their

histological and molecular features: lung large-cell carcinomas
(LCLCs), lung neuroendocrine tumors (LungNETs), lung
adenocarcinomas (LUADs), and lung squamous cell carci-
nomas (LSCCs) [3]. LSCCs are the main type of NSCLC
showing strong malignancy. Although advanced treatment
strategies and technologies such as surgical treatment, radio-
therapy, and chemotherapy have been developed rapidly, the
five-year survival rate among patients with LSCC remains very
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poor with increased risk of recurrence [4]. *erefore, it is
urgently needed to furtherly understand the molecular
mechanisms underlying LSCC initiation and progression and
to seek effective methods for early detection and treatment.

Chidamide, a selective inhibitor of HDAC1, 2, 3, and 10
developed wholly in China, has been entered into clinical
trials both in the United States and China. In December
2014, chidamide has been approved by the China Food and
Drug Administration (CFDA) as a treatment strategy for
peripheral T-cell lymphoma (PTCL) [5]. Interestingly, ac-
cumulating studies have demonstrated that chidamide
shows an effective antitumor activity in multiple solid tu-
mors, including liver cancer, colon carcinoma, and lung
cancer [6–11]. In lung cancer, Hu et al. have performed a
phase I trial of chidamide combined with paclitaxel and
carboplatin in patients with advanced NSCLC and found
that a combination treatment of chidamide and paclitaxel or
carboplatin was tolerated without unanticipated toxicities or
pharmacokinetic interactions [6]. Chidamide has also been
reported to enhance the suppressive effect of platinum on
NSCLCs [11]. However, the underlying mechanisms
through which chidamide suppresses lung cancer are
unclear.

MicroRNAs (miRNAs) represent a class of noncoding
short RNAs with 19–24 nucleotides in length, which was
highly conserved in eukaryotes. miRNAs play an important
role in regulating multiple physiological and pathological
processes by binding to the 3′-untranslated regions (3′-
UTRs) of target genes [12, 13]. Dysregulation of miRNA has
been implicated in the initiation and progression of a wide
range of cancers, including liver, gastric, breast, lung, and
colorectal cancers. For instance, Tian et al. found that silence
of miR-203 promotes tumor cell growth and invasion by
upregulating the SNAI2 in prostate cancer [14]. miR-22
inhibits breast cancer cell proliferation and increases pac-
litaxel sensitivity by suppressing N-RAS [15]. Aberrant
expression of miRNAs has also been observed in lung
cancer. For example, downregulation of miR-98-5p in
NSCLC suppresses NSCLC proliferation and metastasis by
targeting TGFBR1 [16]. miR-5195-3p inhibits cell prolifer-
ation, migration, and invasion in human NSCLC by tar-
geting MYO6 [17].

Among these cancer-related miRNAs, miR-375 was
initially identified as a critical regulator of insulin secretion
and a novel therapeutic target for diabetes treatment [18].
Further studies have demonstrated that miR-375 partici-
pates in various cancer types by targeting several critical
target genes including ATG7, AEG-1, YAP1, SP1, IGF1R,
JAK2, and PDK1 [19]. *e deregulation of miR-375 in tu-
mors can be caused by a variety of mechanisms such as
aberrant promoter methylation [20–22]. Deregulation of
miR-375 can also be used as a biomarker for cancer pre-
diction and diagnosis [23, 24]. In lung cancer, Jin et al. have
reported that miR-375 expression was obviously increased in
lung adenocarcinoma and SCLCs but reduced in LSCCs
[25]. However, the exact role of miR-375 in lung cancer,
especially in LSCCs, is not fully understood.

In the present study, we found that a combination of
chidamide and radiation treatment promoted synergistic

cytotoxicity and suppressed tumor stemness in LSCCs.
Importantly, miR-375 was upregulated in NCI-2170 and
NCI-H226 cells treated with chidamide alone or with chi-
damide plus radiation, compared with normal control. In
addition, suppression of miR-375 attenuated chidamide
alone and chidamide plus radiation-induced NCI-2170 and
NCI-H226 cell apoptosis and suppressed tumor growth and
stemness. Moreover, EIF4G3 was identified as a direct target
of miR-375. Interestingly, both chidamide alone and chi-
damide plus radiation treatments suppressed the mRNA and
protein expression of EIF4G3. Silence of EIF4G3 also in-
duced cell apoptosis and suppressed tumor growth in NCI-
2170 and NCI-H226 cells. *ese data suggest that chidamide
shows a synergistic effect with radiation therapy on lung
squamous cell carcinomas by modulating the miR-375-
EIF4G3 axis.

2. Materials and Methods

2.1.Cell Cultures andTreatment. Human lung squamous cell
carcinoma NCI-H2170 and NCI-H226 cells were obtained
from ATCC (Manassas, VA, USA) and maintained in
DMEM (Invitrogen, Carlsbad, CA, USA) with 10% fetal
bovine serum (FBS; GIBCO, Waltham, MA, USA) and 1%
penicillin/streptomycin (Beyotime, Shanghai, China) at 37°C
in a 5%CO2 incubator. Chidamide (BioVision, Milpitas, CA,
USA) was diluted in dimethyl sulfoxide (DMSO; Sigma-
Aldrich, Shanghai, China). Cells were exposed to 300 nM of
chidamide for 24 h or/and 6MV X-ray radiation using a
linear accelerator (Elekta; Stockholm, Sweden) at single
doses of 0, 1, 2, and 4 Gy.

2.2. miRNA Mimic, Inhibitor, and siRNA Transfection.
Cells were cultured to about 75% confluence before trans-
fection. Control mimic, miR-375 mimic, control siRNA, and
EIF4G3 siRNA were transfected into cells using Lipofect-
amine RNAiMAX Reagent (*ermo Fisher Scientific,
Waltham, MA, USA) following the manufacturer’s manual.
Forty-eight hours after transfection, the cells were applied
for the following experiment. *e siRNA oligos were syn-
thesized by Santa Cruz (CA, USA).

2.3. Cell Proliferation. Cell Counting Kit-8 was applied to
determine the proliferation rate of NCI-H2170 and NCI-
H226 cells with indicated treatment as previously described.
Briefly, two thousand treated cells were plated into 96-well
plates. *en, CCK-8 solution was added at the harvest time
and incubated for an additional 30min. *e absorbance was
determined at 450 nm on the microplate reader (Molecular
Devices, Walpole, MA, USA).

2.4. Apoptosis Assay. Apoptosis assay was performed by
Annexin V/PI double staining using the Annexin V-FITC
apoptosis detection kit (BD Biosciences, Pharmingen, CA,
USA) following the standard manual. Briefly, treated cells
were washed with cold 1x PBS and resuspended in 1x
binding buffer. Five μl of FITC-labeled Annexin V and 5 μl
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of propidium iodide (PI) were added to the suspended cells
and gently mixed, following by the incubation at room
temperature for 15min in dark. At last, the samples were
detected on the flow cytometer (BD Biosciences).

2.5.miRNAMicroarray. miRNA microarray was performed
as previously described [26].

2.6. Real-TimeRT-PCR. Real-time RT-PCR was performed as
previously described [27]. *e primers used for real-time PCR
detection were as follows: 5′-GTCGTATCCAGTGCAG
GGTCCGAGGTATTCGCACTGGATACGACGGTTTG-3′
(miR-375 reverse transcription), 5′-GTGCAGGGTCCG
AGGT-3′ (miR-375, forward), 5′-GCGCGACGAGCCCC
TCGCT-3′ (miR-375, reverse), 5′-CTCGCTTCGGCAG-
CACA-3′ (U6, forward), 5′-AACGCTTCACGAATTTGCGT-
3′ (U6, reverse), 5′-CCACAGCGCCATGTTGGAT-3′ (EIF
4G3, forward), 5′-GATCTTTATCCCCCTCCCCG-3′ (EIF4G
3, reverse), 5′-GCACCGTCAAGGCTGAGAAC-3′ (GAPDH,
forward), and 5′-ATGGTGGTGAAGACGCCAGT-3′ (GAP
DH, reverse).

2.7. Luciferase Reporter Assay. *e luciferase reporter assay
was determined using the psi-CHECK2 dual-luciferase
system (Promega, Madison, WI, USA) following the stan-
dard manual. *e QuickMutation™ Site-Directed Muta-
genesis Kit (Beyotime, Shanghai, China) was applied for
construction of EIF4G3 3′-UTR reporter plasmids with a
mutant miR-375 binding site. Primer sequences used for
construction of these plasmids were as follows: 5′-
GCGCGATCGCAACTTCAAATACACAAAATG-3′ (EIF4
G3-WT, forward), 5′-GCGTTTAAACCTGTCCAAAGGA
GAAGTCAC-3′ (EIF4G3-WT, reverse); 5′-AGGCTTGT
AAATACATACTTGTTTTATTTAAAAAAAC-3′ (EIF4G3
-Mut1, forward), 5′-GTTTTTTTAAATAAAACAAGTATG
TATTTACAAGCCT-3′ (EIF4G3-Mut1, reverse); 5′- CAC
TTTGAAAATATAAACTTGTTTTAAAGACAAAC-3′ (EI
F4G3-Mut2, forward), and 5′-GTTTGTCTTTAAAACA
AGTTTATATTTTCAAAGTG-3′ (EIF4G3-Mut2, reverse).

2.8. Western Blot Analysis to Determine Protein Expression.
Western blot analysis was performed as previously described
[28]. *e primary antibodies were as follows: anti-EIF4G3
(AV40487; Sigma, Shanghai, China), anti-Bax (ab182733;
Abcam), anti-BCL2 (#2872; Cell Signaling Technology), and
anti-β-actin (AF0003; Beyotime).

2.9. ALDEFLUOR Assay and Flow Cytometry. *e ALDE-
FLUOR Kit (Stemcell Technologies) was used for ALDH+

cell analyses according to the manufacturer’s manual. For
each sample, one-half of cells was treated with 50mM of
diethylaminobenzaldehyde (DEAB) to define negative gates.

2.10. Sphere Formation Assay. Sphere formation assay was
determined as previously described [29].

2.11. Xenograft Mouse Model. Treated cells were subcuta-
neously injected into both sides of flank areas of 6–8-week-
old BALB/c nude mice for 42 days. Tumor volumes were
measured using the following equation: 0.5× length×width2
each other day after palpable tumors appeared. *e study
protocol was approved by the Animal Care and Use com-
mittee of Harbin Medical University.

2.12. Immunohistochemistry. Immunohistochemistry assay
was performed as previously described [30].

2.13. Statistical Analysis. All data were expressed as
mean± standard deviation (SD). Statistical analysis was
performed using the software GraphPad Prism 5. Student’s
t-test was used to determine the statistical differences, in
which p< 0.05 was considered to be significant.

3. Results

3.1. Both Chidamide Alone and Chidamide Plus Radiation
Combinational Treatment Synergistically Promote Cell Apo-
ptosis and SuppressedCancerCell Stemness inNCI-H2170 and
NCI-226 Cells. Initially, to determine the effect of chida-
mide on cellular proliferation in LSCC cells, we treated
NCI-H2170 and NCI-226 cells with 300 nM of chidamide
for 24 h or/and 6mV X-ray radiation using a linear ac-
celerator at single doses of 0, 1, 2, and 4 Gy. *e results
indicated that chidamide, radiotherapy, and their combi-
national treatment inhibited cell proliferation in NCI-
H2170 and NCI-H226 cells (Figures 1(a)–1(c)). Next, to
explore the possible mechanism underlying chidamide-
regulating proliferation of LSCC cells, we intended to
testify whether cellular apoptosis could be contributed to
the synergistic anticancer effect of chidamide and radiation
on LSCC. After treating the NCI-H2170 and NCI-226 cells
with 300 nM of chidamide for 24 h and/or with 2 Gy ra-
diation, the effect of chidamide, radiotherapy, and their
combinational treatment on cell apoptosis was determined
by flow cytometry. Both the early and late apoptosis rates
were significantly increased in cells treated with chidamide,
radiotherapy, and their combination (Figures 1(d)–1(f )).
*e results demonstrate that chidamide and radiation
synergistically inhibit LSCC cell proliferation potentially
via inducing cellular apoptosis.

It has been known that cancer stem cells (also named
cancer-initiating cells or cancer stem-like cells) play a central
role in tumor progression, metastasis, recurrence, and
chemotherapy resistance. Herein, we also detect the effect of
chidamide on lung cancer stemness. Results of sphere for-
mation assay demonstrated that the sizes and number of
spheres were suppressed by chidamide alone or a combi-
nation treatment of chidamide and radiation (Figures 2(a)–
2(j)). To determine the population of cancer stem cells,
ALDEFLUOR assay was performed. *e results demon-
strated that chidamide alone or a combination treatment of
chidamide and radiation reduced the population of ALDH+

cells (Figures 2(k)–2(m)).
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3.2. Chidamide Alone or a Combinational Treatment with
Chidamide and Radiation Upregulates miR-375 Expression.
Next, we sought to elucidate the molecular mechanism
underlying antitumor activity of chidamide. As miRNAs
play a critical role in tumorigenesis, we hence focused on the
expression profile alterations of miRNAs. *e Affymetrix
miRNA 2.0 Array was applied to identify differentially
expressed miRNAs in NCI-H2170 and NCI-H226 cells in
response to chidamide, radiotherapy, and their combina-
tional treatment. Among the upregulated miRNAs, miR-375
showed the most remarkable fold (Figure 3(a)). Moreover,
real-time PCR results also validated that both chidamide and
chidamide plus radiation combinational treatment elevated
the expression of miR-375 in NCI-H2170 and NCI-H226
cells (Figure 3(b)). Interestingly, radiation alone could not
upregulate miR-375 expression, which indicates a crucial
role of miR-375 in mediating the antitumor activity of
chidamide against LSCC.

3.3. Suppression of miR-375 Reverses the Promoting Effect of
Chidamide on LSCCCell Apoptosis and Attenuates Reduction
of Cancer StemCells Caused by Chidamide. To delineate the
role of miR-375 in the chidamide-induced LSCC cell
apoptosis, we transfected NCI-H2170 and NCI-H226 cells
with control inhibitor and miR-375 inhibitor following
chidamide, radiation, and their combinational treatment,
respectively. CCK8 assay was performed to measure the
proliferation rate in these treated cells. As shown in
Figures 4(a) and 4(b), transfection of miR-375 inhibitor
effectively suppressed the expression of miR-375 both in
NCI-H2170 (Figure 4(a)) and NCI-H226 (Figure 4(b))
cells. Moreover, miR-375 inhibition significantly reele-
vated the proliferation rates of NCI-H2170 and NCI-
H226 cells, which were suppressed by chidamide or
chidamide plus radiation combinational treatment
(Figures 4(c) and 4(d)). In addition, both the chidamide

and chidamide plus radiation combinational treatment-
induced cell apoptosis were rescued by miR-375 inhibitor
(Figures 4(e)–4(j)). To further address the underlying
mechanism, western blot analyses were performed to
detect the expression of BAX and BCL2 in these treated
cells. Data from the western blot analysis revealed that
both chidamide and chidamide plus radiation combina-
tional treatment upregulated the protein expression of
BAX and downregulated BCL2 protein level, which were
diminished by the transfection of miR-375 inhibitor
(Figure 4(k)). Moreover, inhibition of miR-375 also re-
versed the population of ALDH+ cells suppressed by
chidamide alone or chidamide and radiation combina-
tional treatment (Figures 5(a) and 5(b)).

3.4. Chidamide Reduces Xenograft Growth by Elevating miR-
375 Expression In Vivo. Our in vitro results demonstrated
that chidamide inhibited LSCC cell proliferation and in-
duced cell apoptosis via upregulation of miR-375 expres-
sion. Here we sought to further investigate the in vivo
antitumor activity of chidamide. Xenograft nude mice were
established by subcutaneous inoculation of treated NCI-
H2170 cells. *e results indicated that the cells treated with
chidamide or chidamide plus radiation generated smaller
tumors than control (Figures 6(a)–6(c)). Meanwhile, as
Figures 6(d)–6(f ) show, transfection with miR-375 reele-
vated the tumor growth rate suppressed by chidamide or
chidamide plus radiation combinational treatment. In
addition, these results were confirmed by TUNEL staining
(Figures 6(g)–6(j)).

3.5. EIF4G3 Is a Direct Target of miR-375. Furthermore, we
identified the target genes of miR-375 using TargetScan
online software (http://www.targetscan.org/vert_72/).
Among the numerous targets, eukaryotic translation initi-
ation factor 4 gamma 3 (EIF4G3) was selected as the
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candidate target gene for miR-375 for further analysis, as its
3′-UTR contains two conserved binding regions of miR-375.
*e binding sites between miRNA-375 and EIF4G3 are
shown in Figure 7(a). To clarify whether EIF4G3 is a direct
target of miR-375, a dual-luciferase reporter assay was ap-
plied to determine the luciferase activities of EIF4G3 3′-
UTR. As shown in Figure 7(b), transfection of miR-375
mimic significantly reduced the luciferase activity of the

wild-type 3´-UTR of EIF4G3 compared with the control
mimic-transfected cells (Figure 7(b)). However, less sig-
nificant differences were found between cells transfected
with control mimic and the miR-375 mimic when
cotransfected with the mutated 3′-UTR of EIF4G3
(Figure 7(b)). Additionally, results of western blotting
revealed that miRNA-375 significantly downregulated
EIF4G3 (Figure 7(c)).
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Figure 2: Chidamide or chidamide combined with radiation treatment suppressed cancer stemness in NCI-H2170 and NCI-H226 cells.
(a–j) Sphere formation assay to determine the self-renewal capacities of NCI-H2170 and NCI-H226 cells treated with chidamide alone or a
combination of chidamide and radiation. *e sphere sizes and number were calculated in Figures 2(c)–2(j). (k–m) Treated cells with
chidamide alone (300 nM) or combined with radiation treatment were subjected to ALDEFLUOR assay and the population of ALDH+ cells
were counted by flow cytometry. Statistical significance was determined by Student’s t-test and indicated by ∗p< 0.05; ∗∗p< 0.01; and
∗∗∗p< 0.001 (vs. control); ##p< 0.01; ###p< 0.001 (vs. Gy).
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3.6. Silence of EIF4G3 Promotes Cell Apoptosis and Suppresses
Xenograft Growth in NCI-H2170 and NCI-H226 Cells. To
determine the role of EIF4G3 in the biological behaviors of
LSCC cells, we first detected the expression of EIF4G3 in NCI-
H2170 and NCI-H226 cells treated with chidamide or chi-
damide plus radiation combinational treatment. *e results
demonstrated that both chidamide and chidamide plus radi-
ation combinational treatment suppressed EIF4G3 expression
both at themRNA and protein levels (Figures 7(d)–7(f)). Next,
we silenced the expression of EIF4G3 in NCI-H2170 and NCI-
H226 cells and found that silence of EIF4G3 significantly
induced cell apoptosis (Figures 7(g)–7(i)). Moreover, silence of
EIF4G3 in NCI-H2170 cells obviously suppressed xenograft
growth (Figures 7(j)–7(l)).

Taken together, our study systematically demonstrates
that chidamide and radiation synergistically promote LSCC
cell apoptosis and suppressed tumor growth and stemness by
modulating the miR-375-EIF4G3 axis.

4. Discussion

*eHDAC inhibitors can be used for various diseases, some
of which have entered clinical trials. In cancer, HDAC in-
hibitors are becoming promising novel tumor therapeutic

drugs exerting anticancer function across a wide range of
cancers, especially in leukemia. Chidamide, an orally active
novel HDAC inhibitor of the benzamide class, selectively
inhibits HDAC1, HDAC2, HDAC3, as well as HDAC10. In
pancreatic cancers, chidamide augments gemcitabine-in-
duced cell growth arrest and apoptosis by downregulating
the antiapoptotic gene MCL-1 [31]. Chidamide has been
tested extensively for its tumor inhibitory activity. In colon
cancer cells, chidamide suppresses cell proliferation and
induces cell cycle arrest by inhibiting the PI3K/AKT and
RAS/MAPK signaling pathways. In non-small-cell lung
cancer cell lines, chidamide and carboplatin synergistically
induce cell growth arrest [11]. In the present study, we
demonstrated that chidamide-induced cellular growth in-
hibition of NCI-H2170 and NCI-H226 LSCC cells and it
synergistically augmented radiation-induced cell apoptosis.
Previous reported studies have demonstrated that HDAC
inhibitors show significant single-agent anticancer activity
in T-cell lymphomas. Consistent with these results, our data
also show that chidamide alone induces cell apoptosis and
suppresses tumor growth in LSCC.

Although previously published data also demonstrate
chidamide induces cell apoptosis, the underlying mecha-
nism is not very clear. Our data showed that both chidamide
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Figure 3: Chidamide alone or chidamide and radiation combinational treatment upregulates miR-375 in NCI-H2170 and NCI-H226 cells.
(a) miRNA microarray to identify the differential expressed miRNAs in NCI-H2170 and NCI-H226 cells subjected to radiation (2 Gy),
chidamide (300 nM), and their combinational treatment. (b) Real-time PCR to determine the expression of miR-375 in NCI-H2170 and
NCI-H226 cells with indicated treatment. Statistical significance was determined by Student’s t-test and indicated by ∗p< 0.05; ∗∗p< 0.01;
and ∗∗∗p< 0.001 (vs. control); ##p< 0.01; ###p< 0.001 (vs. Gy).
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NCI-H2170 and NCI-H226 cells, respectively. (a–c) Chidamide, radiation, and their combinational treatment inhibited tumor growth in
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and chidamide plus radiation combinational treatment in-
duced the expression of endogenous miR-375 in NCI-H2170
and NCI-H226 cells. Moreover, rescue experiments indi-
cated that the apoptosis-promoting function of chidamide
depended on the upregulation of miR-375 expression. In
addition, the scaffold protein EIF4G3 was identified as a
direct target of miR-375 and the suppression of EIF4G3
induced cell apoptosis and inhibited tumor growth in NCI-
2170 and NCI-H226 cells. *ese data conclude that chida-
mide exhibits a synergistic effect with radiation therapy on
LSCC by modulating the miR-375-EIF4G3 axis. Our finding
may represent a universal mechanism underlying the syn-
ergistic antitumor interactions between HDAC inhibitors
and DNA damaging agents in tumorigenesis, which should
be confirmed in our future studies.

In the study of NCI-H2170 and NCI-H226 cell lines, it
has been found that chidamide, radiation, and their
combinational treatment could exert an anti-LSCC effect.
However, unlike chidamide and chidamide plus radiation
combinational treatment, radiation alone could not
upregulate the expression of miR-375 and downregulate
the expression of EIF4G3. *ese results suggest the miR-
375/EIF4G3 axis may not be involved in the regulation of
radiotherapy alone-induced cell apoptosis. On the other
hand, acquired drug resistance frequently occurred to
destroy effective therapy with chemotherapeutic agents,
leading to an unsatisfactory clinical outcome. *erefore,
HDAC inhibitor combined with radiation at different dose
might have multiple targets and pathways to induce cell
apoptosis.
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Figure 7: EIF4G3 is a direct target of miR-375. (a) Schematic view to present putative miR-375 binding sites in the 3′UTR region of EIF4G3.
*emutant sequences are shown below. (b) Luciferase reporter assay to assess the effect of miR-375 on the transcription of Renilla luciferase
with 3´UTR of EIF4G3 expression. Data were shown as means± SEM. Each group was performed in six biological replicates. ∗p< 0.05;
∗∗p< 0.01. (c) Western blot analysis to determine the protein expression of EIF4G3 in NCI-H2170 and NCI-H226 cells transfected with
miR-375 mimic at the concentration of 0 nM, 50 nM, and 100 nM, respectively. (d)-(e) Detection of the mRNA expression of EIF4G3 in
NCI-H2170 and NCI-H226 cells with indicated treatment. (f ) Western blot analysis to detect the expression of EIF4G3 in the indicated
groups. (g–i)*e apoptosis rate of NCI-H2170 and NCI-H226 cells transfected with 100 nM of EIF4G3 siRNA, compared with control. (j–l)
EIF4G3 inhibition significantly suppresses tumor growth in vivo in NCI-H2170 cells. Tumor growth curves and tumor weight analysis are
shown in Figures 5(h) and 5(i), respectively. All the data were statistically analyzed by Student’s t-test. ∗p< 0.05; ∗∗p< 0.01; and
∗∗∗p< 0.001.
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In conclusion, our results systematically explored the
role of miR-375/EIF4G3 axis in chidamide-induced LSCC
apoptosis and tumor growth arrest, which may afford an
effective strategy to overcome the drug resistance of chi-
damide in clinical cancer therapy.
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