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Abstract: In this work, we evaluated the effect of protein corona formation on graphene oxide
(GO) mixture toxicity testing (i.e., co-exposure) using the Daphnia magna model and assessing acute
toxicity determined as immobilisation. Cadmium (Cd2+) and bovine serum albumin (BSA) were
selected as co-pollutant and protein model system, respectively. Albumin corona formation on GO
dramatically increased its colloidal stability (ca. 60%) and Cd2+ adsorption capacity (ca. 4.5 times)
in reconstituted water (Daphnia medium). The acute toxicity values (48 h-EC50) observed were
0.18 mg L−1 for Cd2+-only and 0.29 and 0.61 mg L−1 following co-exposure of Cd2+ with GO and
BSA@GO materials, respectively, at a fixed non-toxic concentration of 1.0 mg L−1. After coronation of
GO with BSA, a reduction in cadmium toxicity of 110 % and 238% was achieved when compared
to bare GO and Cd2+-only, respectively. Integration of datasets associated with graphene-based
materials, heavy metals and mixture toxicity is essential to enable re-use of the data and facilitate
nanoinformatics approaches for design of safer nanomaterials for water quality monitoring and
remediation technologies. Hence, all data from this work were annotated and integrated into the
NanoCommons Knowledge Base, connecting the experimental data to nanoinformatics platforms
under the FAIR data principles and making them interoperable with similar datasets.

Keywords: nanoecotoxicity; co-exposure; nanosafety; harmonisation; nanoinformatics

1. Introduction

Graphene oxide (GO) is a promising carbon-based nanomaterial for the remediation and detection
of environmental pollutants, such as pesticides and heavy metals, from contaminated water. However,
it is imperative to evaluate the toxicity and the potential risks associated with these emerging materials
from the nanotechnology industry [1]. Proteins interact with nanomaterials by forming a molecular
coating commonly called the protein corona, modulating their attachment to and internalisation by cells
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and their subsequent toxicity [2–4]. This protein coating impacts critically on the nanomaterial surface
chemistry properties by modulating its interactions with biological and environmental systems [5].
Bovine serum albumin (BSA) is a globular protein (66.5 kDa) which has been studied as a model
biomolecule in nanobiotechnology, nanotoxicology and environmental nanoscience. Liu et al. (2010)
demonstrated that BSA is a universal “adhesive” protein facilitating development of GO hybrid
materials decorated with metallic nanoparticles [6]. Recently, it was demonstrated that BSA covalently
bound to GO is a very interesting hybrid material for removal of uranium ions from seawater [7] and
to produce filter membranes for metallic ion removal (i.e., AuCl4−, Co2+, Cu2+, Fe2+) from aqueous
solutions [8]. In addition, BSA has been considered as a model protein for assessing the fate of graphene
oxide and other nanomaterials in the aquatic environment and colloidal nano-interactions with
dissolved organic matter, such as humic substances [9–12]. Recently, Sun et al. (2020) demonstrated
that both protein structure and concentration are determinants for GO stability in aquatic environments,
and that GO lateral size and solution chemistry are also crucial factors [13]. Despite these findings,
there is a lack of systematic understanding of the protein corona formation on GO and its impacts on
aquatic systems, such as ecotoxicological effects during combined exposure with other pollutants [14].

Data management is one of the most neglected practices in every day scientific research and is
typically not implemented, if ever, until very late in experimental practice when valuable information
and metadata may have been lost. This has a significant impact on experimental reproducibility, and data
completeness and re-usability, especially when the increasing complexity of experimental and analytical
workflows are considered [15]. This is especially important as the emergence of nanoinformatics requires
a high volume of interoperable high-quality data [16–18]. As stated in the EU–US Nanoinformatics
Roadmap 2030, datasets need to be enriched with sufficient metadata and annotated with established
ontologies to allow easy integration with other data and re-use. Such integrated analysis can lead to
the uncovering of hidden pattern and relationships, as demonstrated by Labouta et al. (2019), following
the combination and meta-analysis of 93 peer-reviewed publications on the cytotoxicity of organic and
inorganic nanomaterials [19]. Papadiamantis et al. discuss the role of metadata for nanosafety and
nanoinformatics further in this special issue.

Data interoperability is especially important in a regulatory context, where standardised guidelines
(e.g., OECD, ISO) need to be followed during experimental practice and becomes even more
prominent as computational tools and workflows come into the picture. As a result, protocol and
medium harmonisation are of the utmost importance as several cytotoxicity meta-analysis studies
have stressed and demonstrated a significant correlation between the type of assay and medium
used and the resulting hazardous effects [20–22]. To achieve this, the Horizon 2020 e-infrastructure
project NanoCommons (www.nanocommons.eu) has been developing a cloud-based Knowledge
Base, which links nano-related databases, and provides data curation and storage solutions linking
information about the nanomaterials, their medium or environmental conditions and the overall
test conditions to the resulting effect data, enabling tracking of changes to the particles over the
experimental timeframe. NanoCommons offers a wide range of data management workflows covering
the entire data lifecycle, from experimental planning up to publication and online data availability
and accessibility. These workflows contain the implementation and use of electronic laboratory
notebooks (ELNs), standardised templates to capture data and metadata as they are produced and
semantic annotation using established ontologies. These practices facilitate and streamline experimental
research, allow full implementation of the FAIR (findable, accessible, interoperable and reusable) data
principles [23], promote innovation, risk assessment and governance of nanomaterials and support the
sustainability of the nanotechnology and the advanced materials community, where graphene oxide is
a leading contender.

Mixture or combined pollutant toxicity is an important issue in ecotoxicology and regulation
of mixtures of chemicals [24,25]. In the environment, nanomaterials will interact with different
types of co-pollutants, incurring joint toxicological effects [14,26,27]. Graphene oxide interacts with
environmental pollutants (e.g., pesticides, surfactants, dyes and heavy metals) by modulating the
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toxicity of these toxic compounds against several biological models, including bacteria, cells, plants and
fish [28]. Considering the Daphnia magna model, it was demonstrated that carbon nanomaterials,
such as single walled carbon nanotubes, can increase the acute toxicity of metals such as Cu2+ and
Cd2+ following co-exposure scenarios [29,30]. Other reports have indicated that graphene oxide
can mitigate toxicity of these heavy metal ions on this aquatic model organism [31,32]. However,
a critical research gap currently is the absence of standardised protocols for toxicity assessment of
nanomaterials and chemical mixtures that takes account of the unique features of nanomaterials such
as their corona formation and environmental ageing which may influence their adsorption capacity
for co-pollutants [33,34]. Therefore, it is difficult to compare the literature data reports published so
far involving nanomaterials, heavy metals and D. magna toxicity. The annotation of experimental
data into nanoinformatics platforms (i.e., NanoCommons) is a promising alternative to overcome this
current scenario, supporting harmonised protocols and comparable scientific data and identification
of differences between datasets based on their exposure conditions. Additionally, this approach
has the potential to reduce the cost and time required for experimental research thereby supporting
regulation [18].

In this work, we evaluated the effects of albumin corona graphene oxide (BSA@GO) on cadmium
toxicity to D. magna. BSA-corona formation on the graphene oxide surface acts by enhancing the
adsorption capacity of cadmium and thus reducing its availability and toxicity to D. magna (mitigation
effect) during co-exposure experiments. These findings suggest that this could be a very interesting
approach to design non-toxic GO-BSA hybrid materials for water quality monitoring and environmental
remediation technologies. This is the first report of the influence of protein corona formation on acute
mixture toxicity in the D. magna model. Finally, all experimental data from this work were annotated
and integrated into the NanoCommons platform using harmonised ontological terms associated with
the environmental health and safety aspects of nanomaterials and the full dataset is available for
further analysis and re-use.

2. Materials and Methods

2.1. Data Management

The data management plan (DMP) was based on the FAIR principles and the need for the data
and metadata to be digitised and semantically annotated as soon as they are generated. Initially,
a detailed mapping (instance map) of the experimental workflow was drawn using Lucidchart [35].
The whole experiment was divided into instances, i.e., important experimental steps where the extrinsic
characteristics of the nanomaterials might change, each one containing the specific information needed
to fully describe the nanomaterial and its surroundings. This allowed the experimental team to have
a complete picture of the entire workflow and to identify any gaps that may exist. The instance
map also acts as a graphical abstract for the dataset produced. For data and metadata capturing the
SciNote electronic laboratory notebook (ELN) was used [36]. Based on the instance map generated
for the dataset the necessary protocols were gathered and imported into SciNote and linked with
the respective experimental workflows. Similarly, for each experimental step the respective data
curation templates were drawn-up and compiled into SciNote for the data capture to take place as
the data are generated. Furthermore, all used terms were semantically annotated, using mainly the
eNanoMapper ontology (ENM) [37] and all ontological IDs were linked to the SciNote ELN and the
produced datasets. For terms that were not included in ENM, relevant terms were identified from other
ontologies (e.g., NPO, CHEBI and CHMO). Following data capture, the produced datasets, along with
all relevant metadata (protocols, assays, instruments types and settings), were automatically extracted
and sent for upload into the NanoCommons Knowledge Base (https://ssl.biomax.de/nanocommons/).

https://ssl.biomax.de/nanocommons/
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2.2. Synthesis of the Graphene Oxide

Natural graphite flakes were purchased from Sigma-Aldrich (St. Louis, MO, USA). The graphene
oxide used in this work was synthesized according to Hummer’s method with modifications [38].
Briefly, 5.0 g of graphite and 3.75 mg of NaNO3 were mixed in a round bottom flask containing 370 mL
of H2SO4 for 20 min under magnetic stirring in an ice bath. 22.5 g of KMnO4 in 300 mL of ultrapure
water was slowly added and the mixture reaction was kept stirring for 72 h at room temperature. Then,
the mixture was stirred for another 1 h at 95 ◦C. After the temperature reduced to 60 ◦C, H2O2 (15 mL,
30%) was added and the solution was left to stand overnight at room temperature. The mixture was
centrifuged at 6000 rpm for 15 min and rinsed with 1.0 L of an aqueous solution of H2SO4 (3%) and
H2O2 (0.5%) to remove oxidant ions and inorganic impurities. The resulting product was dialyzed
against ultrapure water for 72 h. The graphene oxide dispersion was lyophilized and stored in a glass
desiccator at room temperature.

2.3. Characterisation of Graphene Oxide

The size distribution of the GO flakes was measured by atomic force microscopy (AFM) on
a Multimode 8 microscope with a Nano Scope 5 controller with peakforce tapping (Bruker, MA,
USA). The GO dispersion (10 µg mL−1) was dropped onto a clean mica surface and dried in a
desiccator overnight at room temperature. Then the GO flakes were measured using a silicon tip
(tapping mode) with nominal resonance frequency of 320 kHz and nominal force constant of 42 N m−1.
Thermogravimetric analysis (TGA) was performed for the GO on a STA 449F3 Jupiter@ instrument
(NETSCH, Deutschland, Germany), employing a heating rate of 110 ◦C mim−1 (from 25 to 750 ◦C)
with a synthetic air flow of 50 mL min−1. X-ray diffraction analysis (XRD) to structurally characterise
the GO was performed on an Advanced Eco D8 XDR instrument (Bruker, MA, USA), using a Cu Kα1
radiation (λ: 1.5406 Å) at 40 kV in the range of 2θ = 5–90◦. For surface chemistry analysis, the GO
was characterised using attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR, Nicolet™,
Thermo Scientific, MA, USA); and X-ray photoelectron spectroscopy (XPS, K-alpha, Thermo Scientific,
MA, USA), applying a pass energy of 200 eV and 50 eV to obtain the survey and high-resolution spectra,
respectively. Raman confocal spectroscopy was employed for structural defects characterisation in GO
with laser 532 nm (Horiba®, Kyoto, Japan).

2.4. Preparation and Characterisation of BSA@GO Material

Bovine serum albumim (BSA, 98% purity) was obtained from Sigma-Aldrich (St. Louis, MO,
USA). The GO stock-dispersion (20 mg in 20 mL of ultrapure water) was prepared using an ultrasound
bath (Cole-Parmer, CPXH 40 Hz, IL, USA) for 60 min. A total of 100 µL of GO stock-dispersion
was incubated with 900 µL of BSA (1.0 mg mL−1) in phosphate buffer saline (PBS, pH 7.4) solution
for 60 min at 37 ◦C in a thermoblock system (Thermomixer C, Eppendorf, Hamburg, Germany).
After this incubation period, the albumin corona coated graphene oxide (BSA@GO) was obtained by
centrifugation at 14,000 rpm for 60 min at 4.0 ◦C, followed by three washing steps with PBS buffer.
The final pellet (BSA@GO sample) was re-suspended in ultrapure water for Cd2+ adsorption, dispersion
stability and toxicity studies. This sample was also dried under speed-vacuum (SpeedDry, Christ,
Osterode am Harz, Germany) for material characterisation in the solid-state, employing ATR-FTIR and
TGA analyses as previously described (see item 2.3.) For AFM analysis, 10 µg mL−1 of BSA@GO in
ultrapure water was dropped onto a clean mica surface and dried in a desiccator overnight at room
temperature. The surface roughness of the material was monitored in tapping mode with nominal
resonance frequency of 320 kHz and nominal force constant of 42 N m−1 (Nano Scope 5, Bruker,
MA, USA). Scanning electron microscopy (SEM, FEI Quanta 650 FEG, Hillsboro, OR, USA) was also
performed, but the results were poor and did not provide any useful information.
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2.5. Dispersion Stability Studies

The colloidal dispersion stability (agglomeration and deposition behaviour) of GO and BSA@GO
was monitored by UV–VIS spectroscopy (at 400 nm) in reconstituted water from 0 to 72 h (incubation
time). Firstly, dispersions (10 mL) of GO and BSA@GO materials at 10 mg L−1 were prepared in
triplicate. For UV–VIS monitoring, we collected the supernatant (100 µL) following settling at each
interval of time and measured the absorbance at 400 nm (Spark® microplate reader, Tecan, Männedorf,
Switzerland). The average hydrodynamic size and surface charge (zeta-potential) of both samples were
analysed by dynamic light scattering (DLS) and electrophoretic light scattering (ELS) on a Zetasizer Nano
ZS equipment (Malvern Instruments, Malvern, UK). For DLS/ELS measurements, 1.0 mL of sample
was prepared and kept in the appropriate cuvette and used to obtain the time-resolved hydrodynamic
diameter (HD), polydispersity index (PdI) and zeta-potential values in ultrapure water and reconstituted
water. These experiments were performed in triplicate under static conditions at 20 ◦C.

2.6. Cadmium Adsorption Experiments

Cadmium chloride (CdCl2, 99.9% purity) was obtained from Sigma-Aldrich (St. Louis, MO, USA).
The adsorption capacity of Cd2+ onto GO and BSA@GO materials was verified with adsorption
experiments. Adsorption isotherms were obtained by varying the initial concentration of Cd
(1.0–10 µg L−1) at a fixed concentration of both graphene-based materials (10 mg L−1). Firstly,
the mixed solutions of GO and BSA@GO and Cd2+ in reconstituted water were prepared and kept
for 72 h under orbital mixing (20 rpm) at 20 ◦C (Stuart® Rotator SB3, Cole-Parmer Vernon Hills, IL,
USA). Then, the supernatant was collected by centrifugation for 30 min at 14,000 rpm (Eppendorf
5430R, Hamburg, Germany). The residual Cd2+ ion concentrations in the supernatants were measured
by inductively coupled plasma mass spectrometry (ICP-MS; Nexion 300x PerkinElmer, MA, USA).
All adsorption experiments were performed in independent triplicates. The total amount of Cd2+

adsorbed at adsorption equilibrium was calculated by the equations:

Adsorption (%) =
C0 −Ce

C0
× 100% (1)

Qe =
(C0 −Ce) × V

W
(2)

where Qe is adsorption capacity (mg mg−1); Co and Ce are the ion concentrations at the beginning and
end of the adsorption assay (mg L−1); V is the solution volume (L); and W is the mass of adsorbent (g).
The Freundlich model (Equation (3)) was used to describe the adsorption behaviour of Cd2+ onto GO
and BSA@GO materials:

log Qe = log K +
(1

n

)
log Ce (3)

where K (mg g−1) is the adsorption capacity constant from the Freundlich model and n is the Freundlich
linearity index and is related to the adsorption intensity. The numerical values were calculated by
linear fit of the respective plot using the intercept and slope value, respectively.

2.7. Toxicity Assays with Daphnia Magna

The D. magna culture was maintained at the Brazilian Nanotechnology National Laboratory
(LNNano/CNPEM, Campinas, SP, Brazil). The culture of organisms and acute toxicity testing were
conducted according to the Brazilian Technical Standards Association guideline ABTN NBR 12713:2016.
D. magna cultivation and all toxicity experiments were performed under controlled temperature
(20 ± 1.0 ◦C) and photoperiod (12:12h, light:dark) in biological incubators (B.O.D., Eletrolab EL212,
Sao Paulo, Brazil).

Five D. magna neonates (<24 h old) were exposed to the materials in 10 mL test solution
for 24, 48 and 72 h. For the acute toxicity determination, different concentration ranges of Cd2+
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(0.1–2.1 mg L−1), GO (1.0–100 mg L−1), BSA (1.0–100 mg L−1), and BSA@GO (1.0–100 mg L−1) were
evaluated. The acute toxicity of mixtures was evaluated using the following experimental design.
Low concentrations of GO and BSA@GO showing no mortality (i.e., 0.1, 1.0 and 10 mg L−1) were mixed
with Cd at concentrations ranging from 0.1 to 2.1 mg L−1. The concentration of Cd2+ in reconstituted
water (stock-solution) was evaluated using inductively coupled plasma optical emission spectrometry
(ICP-OES, Perkin Elmer, MA, USA). The chemical composition of the reconstituted water is described
in the supplementary materials. The parameters for the reconstituted water used were pH (7.6–8.0)
and hardness (175–225 mg L−1 of CaCO3).

The conditioned medium for toxicity testing (CMT) was prepared by incubating 500 neonates
(less than 24 h old) in 1.0 L of reconstituted water for 72 h. After this incubation period, the daphnids
were removed and this medium was used in the toxicity testing. The total protein content in the
CMT was quantified by Bradford assay (Sigma-Aldrich, MO, USA). For protein quantification, 200 mL
of CMT was concentrated (to the final volume of 1.0 mL) using Centricon tubes (Amicon Ultra-15
Centrifugal Filter Unit, Millipore, MA, USA).

2.8. Statistical Analysis

PriProbit software was used to obtain the EC50 values via Probit analysis including 95% confidence
limits (CL) by regression analysis according to Sakuma [39]. The concentration-response curve
(Sigmoidal fitting) was obtained with Origin-Pro 2018 software.

3. Results and Discussion

There is a clear need to collect the physicochemical and toxicological nanomaterial data in
consistently organised electronic datasets which can be integrated into nanoinformatics platforms
to support predictive models toward data-driven approaches in nanotechnology and nanosafety
regulation [17,18,40,41]. Moreover, nanomaterials have a complex and versatile nature, which leads to
continuous transformations not only when exposed to environmental and biological media, but also
during storage [42,43]. These transformations lead to substantial challenges for the risk assessment of
nanomaterials, which become greater the more complex the study systems are (e.g., functionalisation,
corona formation, ageing and mixtures). The difficulty of handling and studying nanomaterials
under environmentally or biologically relevant conditions leads scientists to design, implement and
perform complex experimental workflows. These usually contain several steps of increasing complexity
requiring careful planning of the data and metadata that are required to be captured and can lead to
gaps in the produced datasets, which in turn result in difficulties during analysis and decrease the
data’s interoperability and reusability potential. To overcome such risks, a detailed data management
plan (DMP) needs to be put together and implemented from the experimental design phase. Including
a visual representation of the entire experimental procedure is recommended (see Figure 1), which will
help to identify gaps and facilitate the implementation of pre-annotated, FAIR and detailed (meta)data
templates that can be used during everyday experimental practice.

Experimental visualisation (Figure 1) allowed us to gather all the information needed to implement
a detailed SciNote workflow, populate all the required (meta)data and create a complete high-quality
and interoperable dataset. The dataset was then extracted and sent to the NanoCommons Knowledge
Base (https://ssl.biomax.de/nanocommons/) for uploading and further exploitation (e.g., integration
into computational workflows). To our knowledge, this is the first demonstration of the potential
application of nanoinformatics data management tools linked to graphene-based materials, focusing on
heavy metal adsorption and mixture toxicity in the D. magna model.

https://ssl.biomax.de/nanocommons/
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(e.g., a dispersion step, a corona formation step etc.).



Nanomaterials 2020, 10, 1936 8 of 20

The synthesis of graphene oxide is the starting point for its technological applications and
toxicity assessment. Hummer’s method is commonly used to produce graphene oxide by chemical
exfoliation of graphite, and it has been applied to large-scale production and applications of
GO-based materials. The final graphene oxide material quality is totally dependent on the synthetic
method employed [44]. In addition, the physico-chemical characterisation of nanomaterials is a
fundamental step toward toxicity assessment and environmental applications. Therefore, the GO
produced was well-characterized by AFM, XRD, Raman, UV–VIS, and XPS techniques (Figure S1,
supplementary information). The morphological characterisation by AFM confirmed the single layer
aspect (<1.5 nm thickness) of the GO material produced, and the flake size distribution ranges from
18 to 308 nm, with a mean value of 141 nm. The XRD analysis confirmed the very characteristic
diffraction peak of graphene oxide (2θ = 10.59◦) that was obtained in the range from 5◦ to 35◦ (2θ).
Raman spectroscopy is a powerful technique to evaluate the structural defects in carbon nanomaterials,
presenting two typical bands for these types of materials. The G band, located at 1591 cm−1, is the
result of Csp2 vibration of carbon atoms. The D band, located at 1331 cm−1, is related to structural
defects. Thus, the ratio of the intensity of D-band (ID) to the intensity of G-band (IG) was estimated
as ID/IG = 0.85. The UV–VIS absorption spectrum exhibits a peak at 230 nm, that is characteristic of
π-π* transitions of C-C aromatic bonds. The chemical composition of the GO surface was investigated
by X-ray photoelectron spectroscopy (XPS). The survey spectrum shows the presence of carbon
(~68%) and oxygen (~32%). The deconvoluted C1s spectrum shows the presence of oxygen functional
groups as epoxy/hydroxyl (C−O) (52%), carboxyl/esters (C=O) (9.4%) and π-π* transitions (4.2%),
besides the graphitic/aromatic carbon (Csp2) (5.7%) and aliphatic carbon (Csp3) (28%). Collectively,
these results confirm the synthesis of GO material with similar properties to other graphene oxide
samples commonly used for nanotoxicology and environmental applications [45–47].

For protein corona characterisation, a comparative study between bare GO and BSA@GO was
performed exploring AFM, FTIR and TGA as complementary techniques (Figure 2). AFM imaging
revealed that the thickness of the GO flakes was ca. 1.0 nm (Figure 2A). AFM has also applied to study
the interaction of proteins with GO, and it allows visualization of protein corona formation by measuring
the surface roughness and thickness of the GO-protein hybrid materials. The BSA@GO material
showed a higher surface roughness (1.22 ± 0.26 nm) when compared to bare GO (0.24 ± 0.01 nm),
indicating the presence of albumin adsorbed onto the GO surface (Figure 2B). Similar results have
been reported in the literature for other model proteins, such as immunoglobulins and peroxidase,
as well as to mixture of proteins (i.e., foetal bovine serum) associated with graphene oxide [48].

The TGA and FTIR analysis of GO and BSA@GO were performed to evaluate the thermal behaviour
and functional groups on these materials. The FTIR spectrum (Figure 2C) of GO shows the broad
absorption band at ~3403 cm−1, attributed to the stretching vibration of O-H. The strong absorption
band at 1728 cm−1 (νC=O) indicates the presence of carboxylic acid groups in the graphene oxide
flakes. In addition, the absorption peak at 1625 cm−1 corresponds to the stretching vibration of C=C
and that at ~1060 cm−1 is assigned to the νC-O (primary alcohol) in the GO lattice. It is noteworthy
that after BSA corona formation on the GO surface, the absorption bands at 1728 cm−1 (carboxylic acid)
and ~1060 cm−1 (primary alcohol) considerably reduced, suggesting the reduction of COOH in the GO
lattice [6,49]. Nevertheless, the appearance of characteristic absorption bands (1535 and 1650 cm−1) of
BSA in the FTIR spectrum of BSA@GO indicate the formation of an albumin corona-graphene oxide
complex (Figure 2C).
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spectroscopy (ATR-FTIR); and (D) Thermogravimetric analysis (TGA) spectra of GO, BSA and BSA@GO.

To further explore the interaction of BSA with the GO surface, thermogravimetric analysis (TGA)
was used. The TGA curve (Figure 2D) of GO shows a mass loss of ~16% until 100 ◦C, which corresponds
to the evaporation of adsorbed water molecules from the surface of GO. The thermal decomposition
event observed in the range of 150–300 ◦C was attributed to the combustion of labile functional groups
such as hydroxyl, carboxyl, epoxy, and then stable carbonyl groups with total weight loss of ~36%.
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This result was confirmed from the DTG curve, which shows a strong exothermic peak at 215 ◦C,
suggesting the burning of these functional groups. It is noteworthy that the thermal decomposition of
the main lattice of GO occurred in the temperature range 300–520 ◦C with weight loss of ~44%, which
was validated from the broad exothermic peak observed in the DTG curve at 440 ◦C. This data indicate
the existence of smaller nanoflakes of GO with high order of oxidation (OH, COOH, C=O, C-O-C
functional groups). Interestingly, the TGA/DTG curves of GO@BSA display a total weight loss of 12%
in the first exothermic thermal decomposition event (150–300 ◦C), which is 24% less than that of GO,
suggesting reduction of the labile functional groups (e.g., COOH) in the GO lattice [6,49]. In addition,
the last exothermic combustion event of the graphene oxide-BSA complex was extended to 705 ◦C
with total weight loss of 70%, constituted of approximately 26% GO, indicating the formation of the
albumin corona-graphene oxide complex.

Nanomaterial dispersion stability has an important influence on nanotoxicity. In general,
nanomaterial surfaces have high free energy; therefore, thermodynamic driving forces act to minimize
the surface energy, and consequently, nanomaterials will suffer physical and chemical transformations,
such as dissolution, agglomeration, and surface chemistry modifications, upon interaction with
biological and environmental media. All these transformations are dependent on medium composition
and exposure conditions, including solution pH, ionic strength and composition [22,50]. The synthetized
GO shows a high dispersion stability in ultrapure water up to 72 h, monitored by UV–VIS and DLS
measurements (Figure S2, supplementary information). However, after the incubation in reconstituted
water (Daphnia culture medium) agglomeration and sedimentation behaviours are observed over the
incubation time (Figure 3).
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The reconstituted water contains dissolved divalent cation species (i.e., Mg2+ and Ca2+), promoting
the agglomeration behaviour observed. The presence of these cations can decrease the repulsive energy
or increase the attractive energy between the GO particles, resulting in agglomeration phenomena [51].
Interesting, the BSA@GO shows better dispersion stability in reconstituted water and it was observed
that approximately 60% of this hybrid material is stable in the dispersion up to 72 h (Figure 3).
The increase in dispersion stability of graphene after albumin corona formation can be explained by the
strong steric repulsion forces promoted by BSA adsorption to the GO surface, that prevent the double
layer compression effect caused by the cations dissolved in reconstituted water. The hydrodynamic
diameter (HD) and zeta potential (ZP) of GO and BSA@GO were evaluated in ultrapure water and
reconstituted water (Table 1).
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Table 1. Hydrodynamic diameter (HD), polydispersity index (PdI), and zeta potential (ZP) measurements
of GO and BSA@GO dispersions (10 mg L−1) in ultrapure water and reconstituted water at 20 ◦C.

Materials
Ultrapure Water Reconstituted Water

HD (nm) PdI ZP (mV) HD (nm) PdI ZP (mV)

GO 196.7 ± 2.8 0.232 ± 0.007 − 31.9 ± 5.9 1490.3 ± 117.5 0.615 ± 0.060 − 16.3 ± 0.6
BSA@GO 975.8 ± 123.1 0.834 ± 0.100 − 35.8 ± 1.7 1715.0 ± 56.5 0.798 ± 0.031 − 19.3 ± 1.2

As expected, an increase in the HD value of GO was observed after the protein corona formation
(from 196.7 nm to 975.8 nm) in ultrapure water, and the HD values observed in reconstituted water for
GO and BSA@GO are 1490.3 nm and 1715.0 nm, respectively (Table 1). The protein corona can change
the HD values by increasing the particle size, due to the protein coating thickness and/or by leading to
particle agglomeration through protein-protein interactions. Although the HD does not represent the
real size of non-spherical particles like GO, and DLS analyses performed are not able to distinguish
aggregation (strong chemical bonds) from agglomeration (van der Waals bonds) events, it does
provide an interesting approach to qualitatively assess the changes in GO after corona formation [48].
In general, ZP values of±30 mV indicate that nanoparticles can produce electrostatically stable colloidal
dispersions [52]. The GO and BSA@GO show a ZP values of −35 ± 1.7 mV in ultrapure water; however,
a decrease in this value was observed for GO (−16.3 ± 0.6 mV) and BSA@GO (−19.3 ± 1.2 mV) in
reconstituted water. Although the ZP is lower than ± 30 mV, the albumin corona enhanced the steric
stability of GO in reconstituted water (as demonstrated in Figure 3), as a result of the layer of BSA
molecules preventing the GO molecules from coming into contact with one another. These results
indicate that the BSA@GO material becomes more hydrophilic and could form more hydrogen bonds
with H2O molecules compared to the GO materials.

Non-covalent interactions between proteins and GO have a critical influence on the nanomaterial
dispersion stability in aqueous medium and lead to the coronation [53]. In addition, GO can absorb
biomolecules by different mechanisms such as hydrogen bonding, hydrophobic interaction,π-π stacking,
electrostatic and van der Waals interactions [9,54]. Sun et al. (2018) demonstrated that BSA affects the
GO colloidal stability in a nonlinear relationship with the BSA concentration, suggesting an integrated
result of compressing electric double layers and steric repulsion induced by the interactions of BSA and
GO [9]. More recently, it was also demonstrated that GO materials displaying different lateral sizes and
functional groups exhibited different interactions with BSA in aqueous medium. In this case, the water
parameters such as ionic strength, solution pH, protein structure and concentration, had a pivotal
influence on these nano–bio interactions [13]. Liu et al. (2019) studied the protein corona formation of
GO in aqueous medium containing divalent cations (i.e., Ca2+ and Mg2+), concluding that an increase
in ionic strength under neutral pH conditions resulted in stronger binding between human serum
albumin (HSA) and GO, as well as a more compact HSA protein layer (corona) on the GO, indicating
an important role of electrostatic interactions in controlling HSA–GO complexes [11].

Understanding the interaction of GO with cadmium is very important for mixture (nano)ecotoxicology
as well as to the applications of these materials in water remediation technologies. Herein, the adsorption
profiles during equilibrium binding of Cd2+ onto GO and BSA@GO are shown in Figure 4.
The adsorption capacity of GO and BSA@GO increased with increasing Cd2+ concentration, the average
Cd2+ adsorption values observed are 12% and 54% for the GO and BSA@GO, respectively (Table S1).
These results confirm that the albumin corona coated graphene oxide adsorbs approximately 4.5 times
more cadmium ions from the dissolved phase (reconstituted water) than bare GO. The classical
Freundlich model was applied to describe the adsorption equilibrium results obtained (Figure 4).
The Freundlich model considers a nonideal multilayer adsorption onto heterogeneous surfaces and its
exponential equation is presented by the plot logQe versus logCe.
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The adsorption behaviour observed by Bian et al. (2015) and Ni and Li (2018) for Cd2+ onto
graphene oxide is also in agreement with the Freundlich model [31,55]. In our study, the Freundlich
parameter n observed for the interaction of Cd2+ with GO is 1.262, indicating that the adsorption is
favourable under the studied conditions because n > 1.0 (Figure 4C). On the interaction between Cd2+

and BSA@GO, the n value calculated is 1.011, suggesting that the adsorption is linear because n ~1.0,
that is, the energies are identical for all adsorption sites (Figure 4D). The regression coefficient (R2 > 0.9)
shows that the experimental data are well fitted by the Freundlich model. It is well-known that the
oxygen-containing functional groups (e.g., -OH, -COOH) on the GO surface play an important role in
the adsorption of Cd2+, probably by cation exchange and electrostatic attraction between the ions and
the functional groups [55]. The superior Cd2+ adsorption capacity of BSA@GO compared to bare GO
could be due to the enhanced number of active sites/oxygen-containing functional groups that can
interact with Cd2+ through ion exchange, surface complexation and chelation [56]. Further, the higher
material surface roughness of BSA@GO as observed in the AFM image (Figure 2B) could enhance
the contact area of interaction. Another advantage of BSA@GO is its improved dispersion stability in
reconstituted water (Figure 3). Likewise, computational molecular modelling and experimental data
showed that Cd2+ mainly interacts with the negatively charged amino acid residues of serum albumin
(i.e., Asp451, Pro447 and Gln221) predominately through electrostatic forces [57]. Overall, the albumin
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corona reduces therefore the material agglomeration behaviour and generates more free functional
groups/sites for Cd2+ interaction when compared to bare GO [58].

Assessing the nanoecotoxicological effects of GO is a key step towards a proactive and responsible
innovation and governance of new materials, ensuring that their risks to environmental health are
considered in parallel to development of applications. Once released into the aquatic environment,
the GO would interact and co-exist with other pre-existing environmental contaminants; therefore,
it is necessary to understand the impacts of combined toxicity with co-pollutants on aquatic model
organisms. Nanomaterials could mitigate the toxicity of co-contaminants by adsorbing the pollutant
and reducing its free concentration (and bioavailability), but if the pollutant-adsorbed nanomaterials
are taken up by the organisms and the co-pollutant dissociates from the nanomaterial surface
the toxicity could be enhanced [26,27,59]. Therefore, first, we evaluated the acute toxicity of bare
GO and BSA@GO materials to D. magna. And after 72 h of exposure acute toxicological effects
(immobilisation) were completely absent for both materials up to 100 mg L−1, which is considered the
highest-dose recommended for ecotoxicity testing of chemicals according to OECD guidelines (Table S2,
supplementary information). Moreover, it should be noted that the ecotoxicity of graphene-based
materials against aquatic organisms is a complex issue due to significant challenges in dispersion and
dosing and the aforementioned transformations [60]. For example, Lv et al. (2018) [61] demonstrated
that graphene oxide is toxic to D. magna (72 h-LC50 = 45.4 mg L−1) while another study reported a
72 h-LC50 value of 145 mg L−1 [31]. In part, the variability in the results published so far is associated
with differences in the graphene physico-chemical properties (e.g., flake size, structural defects,
oxygenated groups and purity) and the agglomeration/aggregation events occurring in the exposure
medium [62,63]. Additionally, surface chemistry modifications such as interactions with natural
organic matter (NOM) can modulate the toxicity of GO-based materials towards D. magna [64,65].
The lack of any effects from our GO and BSA@GO materials over 72 h is related to the fact that we
used environmentally relevant concentrations, rather than dosing until effects were observed.

The hazard of cadmium in aquatic systems is a well-known environmental health concern due
to its non-biodegradability, bioaccumulation, and toxic effects to aquatic organisms such as plants,
invertebrates and fish [66]. Besides, this heavy metal has been considered a model pollutant for
ecotoxicology and water quality research [67]. Furthermore, it has been demonstrated that Cd2+

can promote severe toxic effects in D. magna by inducing oxidative stress (production of reactive
oxygen species, ROS) and genotoxicity (DNA damage), as well as long-term negative effects on the
reproduction and metabolism of daphnids [68]. In our study, the EC50 values observed are 0.36,
0.18 and 0.12 mg L−1 after exposure of D. magna neonates to Cd2+ for 24, 48 and 72 h, respectively
(Figure 5), which is consistent with results reported by Qu et al. (2013) [69].

An important control for this work was to assess whether BSA-only impacts on the toxicity of
Cd2+ to D. magna. We verified that BSA at a fixed concentration of 5.0 mg L−1 mitigated the cadmium
toxicity (Figure 6). The EC50 values observed for Cd2+ following co-exposure with BSA at 5.0 mg L−1

are 0.44, 0.30 and 0.18 mg L−1 to D. magna for 24, 48 and 72 h, respectively (Figure 6). These results
indicate that BSA mitigates the acute toxicity of cadmium by approximately 22.2%, 66.6% and 50.0% at
24, 48, and 72 h, respectively, when compared to the EC50 values of Cd2+-only (Figure 5). Probably,
the Cd-absorbed to BSA is less bioavailable to the daphnids, and therefore a reduction in Cd2+ toxicity
is observed. So far, the related studies in the literature were mainly focused on investigating the
effects of non-protein molecules (i.e., humic and fulvic acids) on the toxicity of cadmium during
co-exposure experiments with D. magna [70]. In general, the addition of humic substances during
toxicity testing reduces the bioavailability of heavy metals to daphnids, with consequent reduction
in the acute toxicity values. Recently, Lin et al. (2018) showed that the addition of different types
of peptides and proteins (i.e., tryptone, phycocyanin and BSA) can modulate the toxicity of pyrene
(organic pollutant) to D. magna [71].
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Figure 6. Acute toxicity of Cd2+ following co-exposure with BSA at 5.0 mg L−1 to D. magna after 24,
48 and 72 h in reconstituted water. PriProbit software was used to obtain the EC50 values via Probit
analysis including 95% confidence limits.

To assess the role of the BSA corona on Cd2+ and GO mixture ecotoxicity, we evaluate the
acute toxicity of GO and BSA@GO after co-exposure with Cd2+ to D. magna. As shown in Table 2,
the immobilisation of D. magna by Cd2+ decreases following the co-exposure of Cd2+ with both
graphene-based materials, indicating that the toxicity of heavy metal is mitigated by binding to the GO
materials, with binding to BSA in the corona being especially effective at removing Cd2+ from solution
and thus reducing its bioavailability to daphnids. The toxicity values observed after mixing Cd2+ with
BSA@GO are lower than those obtained from mixtures with bare GO.
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Table 2. The EC50 values (immobilisation) obtained from exposure to mixtures of Cd2+ (0.1–2.1 mg L−1)
at three concentrations (0.1, 1.0 and 10 mg L−1) of GO and BSA@GO in D. magna after 24, 48 and
72 h. PriProbit software was used to obtain the EC50 values via Probit analysis including the 95%
confidence limits.

Treatments
EC50 (mg L−1)

24 h 48 h 72 h

Cd2+ 0.35 (0.3 to 0.41) 0.18 (0.15 to 0.21) 0.11 (0.09 to 0.13)
Cd2+ + GO (0.1 mg L−1) 0.64 (0.54 to 0.74) 0.20 (0.17 to 0.23) 0.12 (0.10 to 0.14)
Cd2+ + GO (1.0 mg L−1) 0.79 (0.70 to 0.86) 0.29 (0.20 to 0.42) 0.16 (0.13 to 0.19)
Cd2+ + GO (10 mg L−1) 1.0 (0.86 to 1.17) 0.48 (0.42 to 0.55) 0.20 (0.17 to 0.23)

Cd2+ + BSA@GO (0.1 mg L−1) 0.71 (0.58 to 0.87) 0.30 (0.25 to 0.37) 0.10 (0.08 to 0.13)
Cd2+ + BSA@GO (1.0 mg L−1) 0.95 (0.82 to 1.10) 0.61 (0.53 to 0.70) 0.21 (0.18 to 0.24)
Cd2+ + BSA@GO (10 mg L−1) 1.43 (1.26 to 1.63) 1.17 (1.04 to 1.33) 0.76 (0.68 to 0.86)

The 48 h-EC50 values observed following the exposure at a high-dose of GO and BSA@GO
(10 mg L−1) with Cd2+ are 0.48 mg L−1 and 1.17 mg L−1, respectively. These data demonstrate that
both materials can mitigate the cadmium toxicity, but that the BSA@GO material is more effective than
GO and BSA-only. Therefore, the improvement in Cd2+ adsorption capacity to BSA@GO compared to
GO could effectively reduce the bioavailability of this metal in solution and consequently alleviate the
toxicity. Moreover, exposure to low concentrations of GO and BSA@GO (0.1 mg L−1) with Cd2+ shows
no effect on toxicity at 72 h in comparation with the control system (Cd2+ only), suggesting that the
exposure time and concentration of adsorbent materials are important parameters to be considered in
future comparative studies.

As reported by Ni and Li (2018) [31], GO can mitigate the acute toxicity of Cd2+ against D. magna,
and the mitigation of the toxicity of heavy metal ions brought about by GO is attributed to the high
adsorption and low desorption capacity, leading to decreased bioaccumulation of heavy metal ions
in the organism tissue. Besides, it was also reported that GO causes a reduction in biochemical
toxicity endpoints such as oxidative stress (ROS) monitored by enzymatic assays, including superoxide
dismutase (SOD), malondialdehyde (MDA) and reduced glutathione (GSH), when co-exposed with
heavy metals. Similarly, we can therefore conclude that the reduction in Cd2+ toxicity by bare GO and
BSA@GO are also probably due to decreased concentrations of Cd2+-free in the medium and the weak
desorption of metal ions from metal-adsorbed graphene materials.

Regarding the environmental relevance of this study, we can speculate about the potential for
future applications of BSA@GO hybrid materials for environmental remediation, considering its high
Cd+ adsorption capacity and ecotoxicity mitigating effect. However, it is well known that nanomaterials
could be transferred to other organisms due to ecological trophic interactions; therefore, it is important
to study the ecotoxicity of protein corona coated GO materials in mixtures with co-pollutants to other
aquatic model organisms and in food chains. For example, it was demonstrated that GO can enhance
the toxicity of Cd2+ against Palaemon pandaliformis (shrimp) and Geophagus iporangensis (freshwater
fish), disturbing the metabolism (oxygen consumption and ammonia excretion) of these aquatic
species [28,72].

The biological and environmental relevance of nanomaterial coronas is a central issue to advance
nanobiosciences, nano(eco)toxicology, and nanosafety research in a broad sense [73–75]. In this
regard, Nasser and Lynch (2016) [76] showed that protein eco-corona formation should be considered
during toxicity assessment of nanomaterials with the D. magna model. The biomolecules secreted
by D. magna (i.e., proteins and metabolites) in the testing medium impacts on the toxicological
profile of nanomaterials [77–79]. These studies have explored the “conditioned medium” approach to
demonstrate the impacts of eco-corona formation on nanomaterials uptake and toxicity to D. magna.
Basically, the conditioned medium consists of a mixture of proteins and metabolites secreted by
daphnids in the medium during a specific interval of incubation time. Herein, we assess differences in
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acute toxicity to Cd2+-only treatment compared to the mixture (Cd2+ + GO) against D. magna using the
conditioned medium test (CMT) when compared to the experiments performed in reconstituted water
(Table S3, supplementary information), with little difference observed. It should be noted however that
the total protein content secreted by D. magna was very low (0.02 µg mL−1) in the conditioned medium
tested in this work when compared with the results reported by Nasser and Lynch (2016) [76] that
reached approximatively 140 µg mL−1 using HH Combo medium. These results suggest therefore that
the absence of effects in our toxicity evaluations exploring the conditioned medium approach could be
linked to the low amount of protein in the CMT, which was measured by Bradford assay (Table S4,
supplementary information). Indeed, it is well known that the protein content is a critical parameter
for nanomaterial corona formation and their biological effects [5,48,80]. Thus, our findings highlighted
the importance of developing a standard protocol for medium conditioning, medium supplementation
with relevant biomolecules or pre-formation of coronas, as well as a need for advanced interlaboratory
studies for a better characterisation and understanding of the impacts of the protein and metabolite
eco-corona during Daphnia nanotoxicity testing and its implications for nanosafety regulation [81].

4. Conclusions

In summary, we demonstrate for the first time that albumin corona formation on GO surfaces
impacts on its interactions with Cd2+ during mixture toxicity testing with the model ecotoxicity
species D. magna. Our results show positive effects in terms of: (i) improvement in the material
dispersion stability over time in reconstituted water; (ii) increased adsorption capacity for Cd2+;
and (iii) enhancement of the mitigation effect on Cd2+ acute toxicity to D. magna for BAS@GO compared
to GO. These findings suggest that exploring protein corona formation on GO is an interesting approach
to produce hybrid nanomaterials for adsorption of heavy metals and mitigation of heavy metal
ecotoxicity. It is, however, important to note that these were acute studies (72 h) and thus longer-term
studies, as well as investigation of the impacts of the graphene corona in other aquatic model organisms
including more complex environmental exposure systems. Finally, all data from this study are available
for re-use via the NanoCommons Knowledge Base and are fully curated using ontologically validated
methodologies to advance safe-by-design approaches connecting graphene-based materials, mixture
ecotoxicity assessment and remediation of heavy metals from water.
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