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Abstract

New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the
thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult
to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large
number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative
modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple
set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy,
and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are
demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway
thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates
due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding
the use of statistical thermodynamics to model non-equilibrium reactions are discussed.
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Introduction

Ideally, models of metabolism should predict metabolite levels,

characterize the thermodynamic requirements of pathways and

processes, be testable with experimental data, and provide insight

into the principles of cellular function and self-organization.

Simulations based on the law of mass action, such as kinetic

simulations, can in principle meet these requirements. However,

these simulations require knowledge of the thousands of rate

constants involved in the reactions. The measurement of rate

constants is very labor intensive, and hence rate constants for most

enzymatic reactions are not available. Moreover, the same prima
facie enzymes (ortholog) from different species, or even different

strains, have differing rate constants. For example, for dihydro-

folate reductase, the turnover rates for the substrate 7,8-

dihydrofolate measured in vitro vary five orders of magnitude

across species – from 284 s21 to less than 1 s21 [1]. If one were to

model the metabolism of an organism using kinetic simulations,

the rate constants for each enzyme would first need to be

measured.

Currently, flux-based approaches are the methods of choice for

modeling metabolism because they do not require the use of rate

constants. Instead, flux-based approaches are based on fitting

reaction flux values to an experimentally measured growth rate.

However, this computational convenience also limits the predic-

tive power of the methods, in that the prediction of metabolite

levels from flux values [2–4] relies on the assumption of

reversibility for non-equilibrium reactions [5,6]. Consequently,

predicted levels of metabolites may have large uncertainties,

especially when the range of calculated fluxes consistent with the

steady state assumption can span many orders of magnitude [7].

Moreover, flux-based methods do not provide any information on

energy requirements of pathways, sets of pathways, or organisms

in a community without likewise making assumptions about the

reversibility of non-equilibrium reactions [8,9].

An alternative to both these approaches is to model metabolism

using simulations of states rather than simulations of reactions.

State-based simulations were in fact the first computer simulations

ever performed and were reported in the classic Metropolis Monte

Carlo paper, Equation of State Calculations by Fast Computing
Machines, which came out of the Manhattan project [10]. Similar

time-independent, statistical mechanical methods are now widely

used in adsorption physics [11], quantum Monte Carlo simula-

tions [12], protein engineering [13], drug design [14] and

elsewhere. In the context of metabolic modeling, the state consists

of the set of concentrations of all metabolites. A change of state

occurs when the concentrations of the metabolites change due to a

reaction. The change of state is evaluated using state function such

as the Gibbs energy, the isothermal-isobaric free energy, or any

other appropriate state function. Therein lies the advantage of

simulations that model states rather than time-dependent reactions

– the parameters needed to model states (standard free energies of

reaction) are much easier to determine than the parameters

needed to model reactions (rate constants). An assumption used in

this study is that each reaction occurs with a frequency

proportional to the thermodynamic driving force on the reaction,
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although this assumption can be alleviated by including activities

in the model. The disadvantage is that the specific time-

dependence of each reaction is lost, which has some consequences

as discussed below. The simulations can be carried out stochas-

tically or deterministically, and equilibrium as well as nonequilib-

rium processes can be modeled. The usual caveat for state

simulations regarding dynamic bottlenecks in phase space apply

[15], and are discussed below.

As biology emerges as a physical science, researchers will likely

need different modeling approaches – kinetic, flux-based, or

statistical thermodynamic – based on the details of the question

being asked. In computational chemistry, for example, many

different models are employed depending on the research

question, ranging from electronic structure calculations with

electron correlation, to hybrid QM/MD, to molecular mechanics

models. The approach outlined in the paper can provide a detailed

model of metabolism that provides in-depth information, but not

all questions may require this level of information.

Here, the basic aspects of the statistical thermodynamics

background needed for simulating metabolic systems are present-

ed. The methods section does require some mathematical

background in multinomial statistics, however this background is

not necessary to understand the application presented in the

results section. The application is that of the tricarboxylic acid

cycle from Escherichia coli, for which the free energy, energy and

entropy profiles are determined as well as predictions of metabolite

concentrations. However, the point of this report is not to model a

particular process in high fidelity, but rather to demonstrate the

principles of applying statistical thermodynamics to metabolic

reaction networks. Finally, this report concludes with a discussion

of the advantages and limitations of using state-based simulations

to model metabolism.

Methods

Theory - Statistical thermodynamics of coupled reactions
This section provides the basic statistical thermodynamic

background that is needed to implement and characterize

simulations of coupled reactions based on modeling states.

Consider the reaction,

A
k1

k{1

B
k2

k{2

C ðScheme1Þ

This set of reactions is comparable to the conversion of citrate to

isocitrate via aconitate in central metabolism in which the waters

involved in the reactions are modeled implicitly. The number m of

molecular species is three (A, B and C), the number of particles of

type j is nj, and there are Ntotal~
Pm

speciesj nj total particles in the

system. For classical systems, the distribution of states are rooted in

Boltzmann statistics in which the particles are assumed to be

distinguishable. The partition function for the system is

Q~Ntotal ! P
m

species j

1

nj !
qj

nj :

The qj are the molecular partition functions for species j, andP
qj~q: Conceptually, q is not only the sum of the molecular

partition functions, but it is also the molecular partition function of

the hypothetical boltzon particle that can be in one of m states with

corresponding energy levels Gi~{RT log qi, i = 1…m. When

corrected for indistinguishability (corrected Boltzmann statistics),

the partition function for the system is given by [16,17],

Q~ P
m

species j

1

nj !
qj

nj :

The issue whether to use Boltzmann or corrected Boltzmann

statistics depends on whether the particles are distinguishable or

not. For example, when considering a high density of particles at

low temperature such that the N-body Schrodinger equation can’t

be separated, corrected Boltzmann statistics are appropriate.

However, the interest here is in considering particles that exist as

distinguishable chemical species. As a result, in the rest of the

discussion and for demonstration purposes Boltzmann statistics

will be used.

In statistical thermodynamics the free energy of the system is,

{A=kBT~ log Q

~ log Ntotal !P
m

j

1

nj !
qj

nj

0
@

1
A

In comparison, the multinomial probability mass density for a

set of independent and distinguishable objects is,

Pr (n1,:::,nmDNtotal ,h1,:::,hm)~Ntotal ! P
m

speciesj

1

nj !
hj

nj , ð1Þ

where hj is the probability of an object being of type j. Identifying

objects with chemical species, and taking the species probability as

the Boltzmann probability, hj~qj=q, the free energy can be

expressed in terms of the probability mass density [18],

{A=kBT~logQ

~ log Ntotal !P
m

j

1

nj !
qj

nj

0
@

1
A ð2Þ

~ log Pr (n1,:::,nmDNtotal ,h1,:::,hm)z log qNtotal ð3Þ

The difference between the multinomial probability mass

function Pr and the system partition function Q is log qNtotal – the

log of a multinomial expansion of q. The multinomial expansion is

simply the number of configurations that the system can obtain –

the extent of state space,
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qNtotal ~
X

qj

� �Ntotal

~
X

n1z���znm~Ntotal

Ntotal

n1! � � � nm!

 !
P

m

j
qj

nj

In contrast, the multinomial expansion used in the probability

mass function is,

1Ntotal ~
Xm

species j~1

hj

 !Ntotal

~
Xm

n1z���znm~Ntotal

Ntotal

n1, . . . ,nm

 !
P

m

j~1
hj

nj ~
X

states J

Pr (J)

where Pr (J) is shorthand for Pr (n1~n1(J),:::,nm~

nm(J)DNtotal ,h1,:::,hm). As long as Ntotal is constant, the probability

of state J is given by the multinomial probability mass function.

To demonstrate the relationship between free energy and

probability for Scheme 1, the probabilities Pr Jð Þ as a function of

the fraction of B species are mapped on to the total free energy

surface (Equation 3) in Figure 1. In this example, the number of

particles for species A is held fixed and only species B and C vary,

subject to the constraint nA + nB + nC = Ntotal. Values for nA,

Ntotal, and the free energy of formation of each species and other

parameters are given in Table 1, column 1. The probability

density is shown as a function of the fraction of B species,

rB~nB=Ntotal : The probability density is at a maximum of

1.6361022 at rB~0:26, exactly where the free energy is at a

minimum.

Configurational Energy and Entropy
The free energy above is an extensive function of the system

because of the dependence on the total number of particles.

The free energy per molecule or mole is often more useful for

comparative purposes. When normalized by the total number

of particles, the resulting scaled free energy a(J)~A(J)=Ntotal

is,

{a(J)=kBT~ log qz log Pr (J)ð Þ
1=Ntotal

~ log qz log Ntotal ! P
m

species j

1

nj(J)!
hj

nj (J)

0
@

1
A

1=Ntotal
ð4Þ

The second term is the log of the geometric mean probability

per particle. The usual thermodynamic formulation of the entropy

and energy can be recovered from Equation 4 using Sterling’s

approximation and separating the combinatorial terms from the

species probability hj ,

{a=kBT~ log qz
1

Ntotal

log Ntotal ! P
m

species j

1

nj !
hj

nj

0
@

1
A

~ log q{
Xm

species j

nj

Ntotal

log
nj

Ntotal

z
Xm

species j

nj

Ntotal

log hj ð5Þ

Writing the Boltzmann probabilities in Equation 5 in their

explicit form, and recognizing that rj~nj=Ntotal is the fraction of

the total population that exists as species j,

{a=kBT~{
Xm

species j

rj log rjz
Xm

species j

rj loge
{Ej

�
kBT~S{�EE=kBT

ð6Þ

In Equation 6, the first term is the configurational entropy [16].

The density rj~nj=Ntotal is a probability of the uniform

probability distribution, thus the configurational entropy is an

information entropy of the uniform probability distribution, not

the Boltzmann distribution. The second term in Equations 6 is

simply the average energy at the location {nA, nB, nC} in state

space.

Figure 2 shows the total energy, entropy and free energy of

Scheme 1 as a function of the fraction of species B. The reaction

conditions are the same as those used for Figure 1. Since only

species B and C can vary in this example and C has a lower free

energy of formation than B, the total energy of the system is a

linearly decreasing function of the fraction of B species. In contrast

the entropy is a convex function of the fraction of B species with a

maximum when there is an equal amount of each species, as one

would expect from a uniform probability distribution. Conse-

quently, the free energy minimum is a tradeoff between an entropy

that is maximized when particles are uniformly distributed and an

energy that is minimized with an increasing number of the lowest

energy species, C. The free energy minimum corresponds with the

maximum probability density (Figure 1). g

Changes of State
Next, consider changes in the counts of individual particles, but

such that the total number of particles is constant. The system may

be considered to be closed and the changes in concentrations are

due to fluctuations, or alternatively, the system may be open such

that the number of particles coming into the system is equal to the

number of particles going out, and the changes in the relative

concentrations are due to steady state processes.

The difference in free energy between two states in which Ntotal

is constant is,

{DAJK=kBT~ log
Pr (J)

Pr (K)

� �
ð7Þ

~ log LJK

where LJK is the likelihood ratio of the probability mass functions,

Pr(J )/Pr(K). If one allows changes between states dS to occur only

through a single firing of individual reactions, a Markov chain in

state space exists in which the probability of state J at step i is

represented by,
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Pr J,dsiz1ð Þ~
X

states
Kzds~J

Pr K ,dsið Þ Pr (J)

Pr (K)

~
X

states
Kzds~J

Pr K,dsið ÞLJK :

ð8Þ

To be clear, Equation 8 does not imply a relationship involving

time; it is simply a statistical relationship between states without

regard for time dependence. This should be clear from the

functional form of Equation 8, which is quite different from the

functional form for a time-dependent rate equation,

Pr(J Dtzdt)~Pr(J Dt)zdPr(J Dt,dt):

Because of differences in the time dependence of reactions,

however, an actual system may not exhibit the ideal behavior

implied by Equation 8. If used for modeling reactions, Equation 8

contains an assumption that at each possible change of state, the

choice is based on reversible thermodynamic likelihoods. That is,

for any change of state due to the firing of a single reaction, the

change of state can be modeled using the Boltzmann distribution.

This is a ‘‘local equilibrium’’ assumption and is equivalent to

assuming that the frequency of each reaction is proportional to the

thermodynamic driving force of the reaction. A similar assumption

is used in transition state theory [19], yet here the assumption is

not as severe; unlike transition state species, chemical intermedi-

ates in a reaction pathway are stable compounds that can be

isolated.

Changes in Thermodynamic Functions
Regarding changes in probability density due to changes in

state, the difference in mean free energy per particle between states

J and K when the total number of particles does not change but

the count of any species can vary is given by,

{DaJK=kBT~ log
�pp(J)

�pp(K)

~ log P
species j

nj(K)!

nj(J)!
hj

nj (J){nj (K)

 !1=Ntotal

Figure 1. Probability densities mapped on to the total free energy surface (Equation 3) for reaction scheme 1. The number of particles
for species A is held fixed and only species B and C subject to the constraint nA + nB + nC = Ntotal. Values for nA, Ntotal, and the free energy of formation
of each species and other parameters are given in Table 1, column 1.
doi:10.1371/journal.pone.0103582.g001
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Table 1. Parameters used for modeling the reactions shown in Scheme 1 for Figures 1–6.

Parameter Figures 1–4 Figures 5–6

DAT ~ {2:0

K1~ 2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e{DAT =RT
p

K2~ 0:5:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e{DAT =RT
p

nC0
~ 100

nA~ C0

K1K2
~3:42 e{DAT =RT C0

K1 K2
~100

nBreversable
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1

K2
AC0

q
~37

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1

K2
AC0

q
~200

GA~ {1

GB~ GA{RT log K1

GC~ {GA{GB{RT log K2

qA~ e{GA=RT

qB~ e{GB=RT

qC~ e{GC=RT

NTotal~ nAznBznC~140 nAznBznC~400

nB = 1ƒnBƒNTotal{nA

nC = NTotal{nA{nB

doi:10.1371/journal.pone.0103582.t001

Figure 2. Energy, entropy and free energy of reaction scheme 1 as a function of the fraction of species B. The reaction conditions are
the same as in Figure 1, and are given in Table 1, column 1.
doi:10.1371/journal.pone.0103582.g002
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The difference in mean free energy per particle between states J

and K is the mean difference in the probability mass density for

each state. When the difference is large, the probability of one

state is greater than probability of the second state. The sign of the

difference indicates which state is more probable.

The differences in entropy and energy between states on a per

particle basis are again obtained by separating the terms for the

individual species probability and combinatorics,

{DaJK=kBT~
1

Ntotal

X
species j

log
nj(K)!

nj(J)!

� �

z
X

species j

nj(J)

Ntotal

log hj{
nj(K)j

Ntotal

log hj

� � ð9Þ

Using Sterlings approximation again, the first summation can

be rewritten as,

1

Ntotal

X
species j

log
nj(K)!

nj(J)!

� �
~

1

Ntotal

X
species j

log nj(K)!{log nj(J)! ð10Þ

~
X

species j

rj(K) log rj(K){rj(J) log rj(J)
� 	

~DSJK

ð11Þ

The last equality again is the entropy difference in state space

according to the uniform probability distribution.

The second summation in Equation 9 is equal to the dif-

ference in the average energy between the states,X
species j

nj(J)

Ntotal

log hj {
nj(K)

Ntotal

log hj~
X

species j

nj(J)

Ntotal

log e{Ej=kBt{
�

log qÞ{ nj (K)

Ntotal
log e{Ej=kBt{ log q
� 	

~D�EEJK=kBT

Using the parameters in Table 1, column 2, the change in free

energy for traversing the reactions in Scheme 1 is shown in

Figure 3A. The equilibrium location of the system occurs at the

minimum in the total free energy (Figure 2) at rB = 0.26. Shown in

Figure 3B are the likelihoods of a change of state according to

Equation 7 for reactions 1 and 2 individually as well as for the

system of coupled reactions. At equilibrium, the likelihoods of a

change of state are equal for the forward and reverse steps of each

reaction, in accordance with detailed balance.

As one moves away from equilibrium, the likelihood of a change

of state is in accordance with Le Chatelier’s principle to restore

equilibrium. Shown in Figure 4 are the changes in energy and

entropy for the reactions of Scheme 1 under the conditions of

Table 1. Regardless of the initial state of the system (indicated by

rB in the figures), the energy change for each reaction is dictated

by the stoichiometry of the reaction and always involves a decrease

in one A particle and increase of one B particle for reaction 1, and

a decrease of one B particle and an increase in one C particle for

reaction 2. As a result, the energy change for each reaction, and

hence for both reactions together, does not depend on the state of

the system. The driving force to restore equilibrium is entirely

entropic – due to the greater number of ways of combinatorially

arranging the particles - as indicated by the variation in entropy

with rB shown in Figure 4.

At the equilibrium position of rB~0:26, DS=0 for a change of

state of either the system or for each reaction individually.

However, this does not violate the principle that the change in

entropy for a dynamic system at equilibrium is zero. Rather, the

rate of production of configurational entropy changes due to the

reactions, Jnet
:DS, (Jnet is the net flux of a reaction) is zero because

the net flux is zero, not because DS is zero. (N.b., the concept of

entropy production is generally discussed in regard to the entropy

of the state, not the configurational entropy – see below.)

Just away from equilibrium, the production rate for the

configurational entropy may not be minimal, however, since DS
may be large. In fact, since the configurational entropy is based

on the uniform distribution, DS approaches zero when the initial

reactants and final products are equally distributed. Importantly,

Figure 3. The change in free energy and likelihood across the reactions shown in Scheme 1. A. The equilibrium position is where the
total free energy change (solid line) crosses the ordinate at 0.0 Kcal/mol and the abscissa at 0.26 nB/Ntotal. In accordance with detailed balance, the
free energy change for each reaction is also 0 Kcal/mol. B. The combined likelihood for the reactions (solid line) is 1.0 at equilibrium, just as the
likelihoods for each reaction individually.
doi:10.1371/journal.pone.0103582.g003
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the configurational entropy is a measure of the uniform

probability distribution, which is not the natural probability

distribution of the species. Hence, the configurational entropy

may not be at a maximum when the system is fully relaxed

(equilibrium).

Equilibrium and Non-Equilibrium Steady States
The example discussed above contains the equilibrium steady

state. At equilibrium the thermodynamic likelihood (Equation 7) of

a change of state from the free energy minimum state to a state in

the neighborhood of the free energy minimum state is approxi-

mately 1.0. If the free energy minimum state is K and those in the

neighborhood of the minimum state are KzdS then,

L
KzdSa,K&L

KzdSb,K& � � �&L
KzdSf,K&1,

Here, K is the state of the system before a reaction and KzdSb

is the state of the system after reaction b: In any real system, the

values of the likelihood will fluctuate around the average value of

1.0.

Using this same approach, a thermodynamically stable, non-

equilibrium steady state can also be characterized. As in the

equilibrium case, thermodynamic stability occurs when each

reaction in a pathway is equally likely, but the likelihood is not

necessarily 1.0. Using the likelihood of a change of state due to a

reaction i for an open system, Li, the likelihood of each reaction of

the system can be any value such that,

L1&L2& � � �&LZw1 ð12Þ

where Z is the number of reactions in the pathway, or in terms of

equilibrium constants Keq and reaction quotients Qi,

Keq,1Q1
{1&Keq,2Q2

{1& � � �&Keq,zQz
{1

w1, ð13Þ

Figure 4. Changes in energy and entropy across the reactions shown in Scheme 1. In contrast to the total energy shown in Figure 2, the
change in energy is independent of the starting state of the system because the stoichiometry change is always the same. The change in entropy,
however, is not constant.
doi:10.1371/journal.pone.0103582.g004
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Equation 12 can be expressed as a maximum entropy

requirement in which the state entropy S in a state space

neighborhood C measures the probability density of states

reachable from an initial state S due to a series of Z reactions

involving a change of state dSi,

S C(S )ð Þ~{
XZ

Rxn i~1

Pr S i{1zdS ið Þ log Pr S i{1zdS ið Þ ð14Þ

The state entropy increases as the system stabilizes, and reaches

a maximum at equilibrium since equilibrium requires that each

respective reaction is equally likely. In a non-equilibrium system,

the neighborhood C is a reaction path and Equation 14 is the path

entropy described by Dewar, from which the fluctuation theorem,

the selection principle of maximum entropy production, and self-

organized criticality can be derived [20].

For reference, the state entropy at equilibrium can be compared

to the state entropy in absence of any reactions or ability of the

system to change states. For instance, a convenient reference state

would have all particles in the system existing as the initial

reactants, which for Scheme 1 would be such that nA~Ntotal : If

the chemical species A has the highest free energy of formation

(hence the lowest Boltzmann probability), then this state

(nA~Ntotal ) has the lowest probability density and state entropy.

Here the state entropy of this reference state is indicated by S0 to

indicate that it is the state entropy in the neighborhood of

complete order. The change in entropy from this reference state to

any other state is then DS K0~S C(K)ð Þ{S 0: Since the state

entropy is a probabilistic measure of the free energy, DS K0 is a

measure of the free energy dissipation due to the presence of the

reactions, which for biological systems would measure the in

energy dissipation due to biological processes. Using this definition

of state entropy, the entropy production rate can be characterized

as,

ep~Jnet
:DS K0

At equilibrium, the entropy production rate for the state

entropy defined above is zero since the net flux Jnet is zero. In

addition, since D2S eq,0 is the maximum of D2S K0, the change in

Figure 5. The state probability density and total free energy for the coupled reactions of scheme 1 that includes a non-equilibrium
thermodynamic stable state. Parameters are given in Table 1, column 2. In this case, the equilibrium/most probable state on the abscissa at 0.20
nB/Ntotal. The nonequilibrium steady state is located on the abscissa at 0.50 nB/Ntotal, and is stable only because of the applied driving force of -2 Kcal/
mol (Figure 7).
doi:10.1371/journal.pone.0103582.g005
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the state entropy due to any reaction around equilibrium is

d(DS K0)~dS K~0, on average.

A non-equilibrium, thermodynamically stable state occurs at the

point at which Equation 12 is satisfied, or when the state entropy

(Equation 14) no longer increases. The state probability density

and total free energy for the coupled reactions of Scheme 1 that

includes a non-equilibrium thermodynamic stable state is shown in

Figure 5. The stable state is maintained by constraining the

population of only species A in Scheme 1. The parameters used

here are similar to those used in Figures 1–4 and are listed in

Table 1, column 3; only the count of species A is different, which

has been adjusted to provide an overall driving force of -2.0 Kcal/

mol. The most probable state, which is a function of the total free

energy of the system according to Equation 3, is now at rB~0:20.

In this state, the species are distributed according to the

Boltzmann distribution with Ntotal~400 particles with the

constraint that nA = 100 particles. Because of the latter constraint,

the probability distribution is optimized only with respect to

reaction 2 – only species B and C can vary. Consequently, as

shown in Figures 6A and 6B, the likelihood ratio of the forward to

reverse reaction for reaction 2 is L~1:0 at rB~0:20, and the free

energy change, which is the log of the likelihood ratio, is 0.0.

However, since the likelihood of reaction 1 is much greater than

the likelihood of reaction 2 when nA is constrained to 100 particles,

the state at rB~0:20 is not thermodynamically stable with respect

to the full state space - it is only the most probable state with

respect to counts of species B and C. When nA is unconstrained

and Ntotal = 400, the most probable state (and global free energy

minimum) is at nA = 10, nB = 105, and nC = 285 (not shown).

The stable state at which the likelihood of each reaction is equal

occurs when the count of species C is also fixed such that

rB~0:50, as shown in Figure 6 A and B. At this state, the log

likelihood of each individual reaction is 0.72 (DA~{1:0Kcal/

mol), corresponding to a log likelihood ratio of 1.44 for the

coupled reactions (DAtotal~{2:0Kcal/mol), as shown in Fig-

ure 6. As in the equilibrium case shown in Figure 4, the energy

change for each reaction, and hence for both reactions together,

does not depend on the state of the system since the energy change

always involves a decrease in one A particle and increase of one B

particle for reaction 1, and a decrease of one B particle and an

increase in one C particle for reaction 2. What is different is that

now the free energy change for traversing the reactions is not zero

but matches the change in energy. Since the change in free energy

matches the change in energy, the change in configurational

entropy for the reactions is zero. This is the nature of a stable state

by definition – there are no changes in the counts/concentrations

of the chemical species. As mentioned above, the configurational

entropy is based on the uniform probability distribution and hence

is at a local or global maximum when the counts/concentrations of

initial reactants and final products are equal. Consequently, the

change in configurational entropy dS with respect to small

changes in the distribution is zero - the change in the

configurational entropy due to reaction 1 is exactly balanced by

the change in configurational entropy due to reaction 2 – a

minimum entropy production principle. More generally, for any

coupled reactions in a thermodynamically stable state, there is no

change in the configurational entropy due to the stable state. This

is a principle of minimum entropy change for a stable state.

Summarizing, for a thermodynamic stable state, the rate of

production of changes in configurational entropy, Jnet
:dS, is zero

just as in the equilibrium case but for a different reason: now the

change in configurational entropy is zero but the net flux Jnet is

not. Consequently, the rate of production of changes in

configurational entropy is at a minimum at both the equilibrium

and non-equilibrium stable states, but for different reasons.

One final note regarding the configurational entropy. Since the

configurational entropy is based on the uniform probability

distribution and not the natural Boltzmann probability distribu-

tion, a relatively high value of the configurational entropy may

indicate significant order in a system, not disorder or variation.

In contrast, a high value of the state entropy indicates that the

system is distributed more or less in accord with its natural

distribution. The state entropy production rate for a non-

equilibrium stable state K, Jnet
:DS K0, is greater than zero since

both the state entropy DS K0w0 (by definition above) and

Jnetw0: Although, DS K0may be at a local maximum at a non-

equilibrium stable state, it is nevertheless less than DS eq,0,

indicating that the system is ordered relative to equilibrium.

Figure 6. Shows the change in free energy (A) and log likelihood (B) for the coupled reactions of scheme 1. The non-equilibrium
thermodynamic stable state occurs at rB = 0.5.
doi:10.1371/journal.pone.0103582.g006
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Work done in establishing the stable state
In order to maintain the stable state, work must be done by an

external force against the tendency of the system to return to

equilibrium. For Scheme 1, the work consists of moving the system

from the (global) minimum free energy configuration to a

configuration in which the work required to create one C species

from A is 22.0 Kcal/mol. In this case, the work done to maintain

the steady state is 0.38 Kcal/mol. The general principle here is

that large thermodynamic driving forces give rise to otherwise

improbable configurations. These configurations are dissipative

structures, and self-organization is reflected in the configurational

entropy. This may seem counter-intuitive that, for instance, a

maximization of entropy may be a sign of organization, but one

must keep in mind that the natural distribution is the Boltzmann

distribution and the configurational entropy is based on the

uniform distribution. (In the trivial case when the Boltzmann

probability of each species is equal, the uniform probability

distribution also becomes a natural distribution for these species.)

Comparison of stable state and steady state
requirements

The thermodynamic stability requirement of Equation 12 can

be contrasted with the steady state requirement in which the net

flux of each reaction must be the same,

Jz1{J{1~Jz2{J{2~ � � �~Jzz{J{zw0: ð15Þ

This relationship, in fact, also holds for thermodynamically

stable states as a consequence of Equation 12. Although it is

tempting to infer additional relationships between flux and free

energy, the issue is complicated by the reaction statistics. The free

energy change pertains to a single change of state, and in the

context of this report the change of state due to a single reaction.

In contrast, the flux is a statistic of measuring multiple changes of

state, and is an emergent property of the system.

Open system with varying number of particles
For a non-equilibrium steady state system in which the total

number of particles can vary except the boundary particles –

which are the sources and sinks of material - the thermodynamic

probability of a state J is given by a probability density similar to

the multinomial Boltzmann distribution used in Equations 1–3 but

with the counts of the boundary species fixed and the multinomial

expansion of the molecular partition function of the hypothetical

boltzon (q) explicitly represented in the distribution to account for

normalization of the probability density,

Pr(J,Ntotal Dnin,nout,h1, . . . ,hm)~

qNtotal (I )Ntotal (J)! P
mbound

j~fboundary
speciesg

1
nj ! hj

nj P
m

j~mboundz1

1
nj (J)! hj

nj (J)

P?
Ntotal (K)~0

Pstates

combinations STP
nj ~Ntotal (K)

qNtotal (K)Ntotal (K)! P
mbound

j~fboundary
speciesg

1
nj ! hj

nj P
m

j~
mboundz1

1
nj (K)! hj

nj (K)

~

qNtotal (I)Ntotal (J)! P
m

j~mboundz1

1
nj (J)! hj

nj (J)

P?
Ntotal (K)~0

Pstates

combinations STP
nj~Ntotal (K)

qNtotal Ntotal (K)! P
m

j~mboundz1

1
nj (K)! hj

nj (K)

ð16Þ

Analogous to Equation 7 for a system with a constant number of

total particles, the odds of a change of state for an open system is

given by,

LJK~
Pr(J)

Pr(K)

The ratio of the open system probabilities is the likelihood ratio,

LJK , and the free energy change for a change of state is just the log

likelihood,

{DAJK

kBT
~ log LJK

~ log
Ntotal(J)!

Ntotal(K)!
z
Xm

species j

log
nj(K)!

nj(J)!
z

Xm

species j

nj(J){nj(K)
� 	

log qj :

In discussing an open system, it is more convenient to formulate

the free energy using molecular partition functions, qj , rather than

the corresponding Boltzmann probabilities, hj : Expressed in terms

of the mean free energy per mole and combining the factorial

terms,

{DAJK

NavokBT
~

1

Navo

log
Ntotal(J)!

Ntotal(K)!
P

m

species j

nj(K)!

nj(J)!

0
@

1
A

z
1

Navo

Xm

species j

nj(J){nj(K)
� 	

log qj

ð17Þ

~
DSJK

R
{

DEJK

RT

where Navo is Avogadro’s number and R~NavokB is the gas

constant. Of course, LJK can also be obtained as the likelihood ratio

of the concentrations of the reaction products and reactants at

reference values to those at non-reference values - usual product of

the equilibrium constant and the reciprocal of the reaction quotient,

Keq,bQ{1
b for a reaction b that involves a change of state from K to J.

Due to constraints at the boundary of the system, the probability

of a state determined from Equation 16 is not the same as the

equilibrium probability unless the boundary species are also at

equilibrium. When the state space is sampled according to the

Boltzmann probabilities the average number of particles is given

by,

�nni~
X

statesK

niPr(K):

However, the actual time-dependence of the reactions may

create bottlenecks in state space such that the sampling of state

space does not follow the Boltzmann probabilities. For instance, in

Scheme 1 the product B of the first reaction may be removed

quickly by the second reaction before it has a chance to become

distributed according to the Boltzmann probabilities. For instance,

both organic and biochemical systems are known to use high-

energy reaction products as intermediates in otherwise thermody-

namically favorable pathways. This is why one must be careful in

ð16Þ
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drawing conclusions about metabolite concentrations, flux values

[3,4] or reaction energetics [8,9] when using the assumption of

detailed balance to analyze non-equilibrium reactions [5,6]. The

time-dependent state probabilities can be sensitive functions of the

transition rates between states. In such cases the states are sampled

such that the average number of particles is given by,

�nni(t)~
1

t

X
states J

ð
ni(J)Pr(J Dt)dt

or using discrete time steps dt,

�nni(t)~
1

t

X
states J

X
t~0

ni(J)Pr(J Dt)dt:

The observed sampling may not result in a maximum likelihood

when the underlying distribution is assumed to be a Boltzmann

distribution.

Below, the symbol * is used to indicate the average value of a

property when the sampling of reactions follows a thermody-

namic likelihood distribution - the reaction with the most

favorable free energy change is more likely than a reaction with

a less favorable free energy changes as indicated by Equation 17.

That is, rather than a reaction being sampled according to a

specific time-dependent likelihood, the likelihood of an individual

reaction follows a Boltzmann likelihood. This does not necessarily

imply equilibrium, however, because as mentioned above, the

boundary conditions of the system may not be at equilibrium.

Using this approach, we relate the concepts of energy and

entropy dissipation discussed by Ge and Qian [21] to the

framework presented here.

Figure 7. The tricarboxylic acid cycle of E. coli used in the simulations. Each intermediate in black is allowed to vary in concentration during
the simulation, while each cofactor, CO2, and Acetyl CoA in grey are held constant.
doi:10.1371/journal.pone.0103582.g007
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If the expected number of A particles in the most probable state

is nA
�, then the mean free energy per particle difference between

the most probable state and state K is,

{DA�K
RT

~
1

Navo

log
Ntotal

�!

Ntotal(K)!
P

m

species j

nj(K)!

nj
�!

0
@

1
A

z
1

Navo

Xm

species j

nj
�{nj(K)

� 	
log qj

The first summation is the instantaneous configurational

entropy difference due to a fluctuation, while the second

summation is the instantaneous heat production/dissipation due

to a fluctuation. The total free energy of the system can be

rewritten as the sum of the free energy of the thermodynamically

most probable state and the difference in free energy between the

most probable state and any other state due to, for instance, a

fluctuation,

A(K)~A�zDAK�

or,

{A(K)=RT~
1

Navo

X
species j

log
N�total !

nj
�!

� �
z

1

Navo

X
species j

nj
� log qj

z
1

Navo

X
species j

log
Ntotal(K)!

N�total !

nj
�!

nj(K)!

� �

z
1

Navo

X
species j

nj(K){n�
� 	

log qj

(18)

The first two summations are the configurational entropy

production and heat production due to non-equilibrium stable-

state conditions, respectively, while the last two summations are

the configurational entropy and heat dissipation/absorption due to

a spontaneous fluctuation – a single change of state - away from

the thermodynamically most stable state.

Excess Free Energy, Entropy and Heat
As mentioned above, it may be that some states are highly

probable when reactions are sampled based on Boltzmann

likelihoods but inaccessible kinetically. Using �nnj to signify the

average value of species j due the dynamics of the system and f�nng to

indicate that all species are at their dynamical average values. Then

the free difference between the average state that is accessible

kinetically and the thermodynamically most probable state is,

{DAf�nng,�
�
RT~

1

Navo

X
species j

log
�NNtotal !

N�total !

nj
�!

�nnj !

� �

z
1

Navo

X
species j

�nnj{n�
� 	

log qj

~
DSf�nng,�

R
{

D�EEf�nng,�
RT

ð19Þ

In a system in which there are no kinetic bottlenecks so that the

kinetic and Boltzmann average states coincide, this free energy

difference is 0. When the respective average states do not coincide,

then Equation 19 represents the excess free energy production, the

change in configurational entropy and heat dissipation/produc-

tion that may be present in a non-equilibrium system, depending

on whether the reactions occur on similar timescales.

Since the thermodynamically most probable path through a set

of reactions is the also the path with the highest change in state

entropy, the excess state entropy always positive – the system is

moving away from the thermodynamically most probable state -

and consequently always results in a decrease in the state entropy

of the system. In other words, sampling according to Boltzmann

likelihoods will always result in greater dissipation of state entropy

than sampling according to kinetic likelihoods.

Implementation and Simulation Procedure
The methods discussed above were implemented in a stochastic

simulation using a Markov model. Changes of state in a stochastic

simulation are based on probabilities rather than the likelihoods

used in Equation 8. The relationship between probability LKJ and

likelihood LKJ is

LKJ~
LKJPstates

I

LIJ

:

The sum over states I includes state J because there is a

probability that there is no change in the state. In a Markov model

the probability Pr(J) of state J at step szds is then,

Pr(J Dszds)~Pr(J Ds)zdPr(J,ds)

~Pr(J Ds)z
X

states K

Pr K Dsð ÞLJK (ds){Pr J Dsð ÞLKJ (ds):

At each step ds in the simulation, the counts of all species are

updated according to the reaction that is chosen, which results in a

new state. Consequently, new likelihoods and probabilities are

determined based on the new configuration, and the process is

repeated.

The molecular partition functions used in the likelihoods are

calculated from standard free energies of formation of each

molecular species. The partition functions are related to the

chemical potential through the relationship [17],

m0
j ~{RT log

qj

n0
j

where n0
j is the number of particles of species j present at

equilibrium. In the simulation, the total number of particles is

allowed to vary using the statistical ensemble T , V , m0
j (grand

canonical), where T is the temperature and V is the volume. In

this ensemble, the simulation will adjust the number of particles for

each chemical species in attempt to match the Boltzmann

probability distribution for that species, subject to the boundary

conditions of the non-equilibrium system.

The standard free energies are adjusted for ionic strength of the

solvent using the Debye-Hückel Equation and for pH for ionizable

species. In the results reported below, standard free energies of

formation were obtained from the Equilibrator web server [22]

ð18Þ
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and consisted of standard free energy values from both experiment

[23,24] and group contribution methods. Care was taken to ensure

that standard free energy values were used consistently –

experimental values were compared to only experimental values

and group contribution values were compared only to other group

contribution values.

Results

Application to the Tricarboxylic Acid Cycle
To demonstrate the ability of state-based simulations to

elucidate physical insights and principles in biochemical systems,

the tricarboxylic acid cycle (TCA cycle) from Escherichia coli was

simulated. The TCA cycle is possibly the most fundamental

pathway in organisms [25]. Many variations exist in which the

cycle is used to dissipate material and energy, store material and

energy, and provide metabolic precursors for biosynthetic

processes. The TCA cycle of E. coli (shown in Figure 7),

Saccharomyces cerevisiae and mammals are very similar in

structure, and hence are familiar to most researchers.

The E. coli TCA cycle takes as input acetyl-CoA, which is

derived from pyruvate during glycolysis. After one turn of the

cycle, the two carbons of the acetyl group are oxidized to two

carbon dioxide molecules, with the energy derived from the

oxidation being used to form one ATP from one ADP, three

NADH from three NAD+, and the reduction of one electron

carrier, typically a quinone. The overall reaction of the cycle is,

Acetyl-CoAzADPz3NADzzPizQz2H2O

'CoAzATPz3NADHz2CO2zQH2,

where Q and QH2 represent an oxidized and reduced electron

carrier, respectively.

To demonstrate the thermodynamic concepts discussed above,

simulations were carried out using the metabolite levels reported

by Bennett, et al., [26] for exponential growth of E. coli under high

levels of glucose. All cofactor levels were held fixed during the

simulation including ATP, ADP, orthophosphate, NAD+, NADH,

CoA, Q and QH2, as well as the starting material, acetyl-CoA, and

the final product, CO2. The levels of the reaction intermediates

Figure 8. Energy (DE), entropy ({TDS) and free energy (DA) profiles for traversing the TCA cycle shown in Figure 7 using the data
on metabolite levels from Bennett et al. Each reaction is labeled by the reaction product.
doi:10.1371/journal.pone.0103582.g008
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(citrate, isocitrate, 2-oxoglutarate, succinyl CoA, succinate, fuma-

rate, malate and oxoaloacetate) were allowed to vary. The species

that are fixed and variable are summarized in Figure 7.

The levels of the reaction intermediates are expected to change

significantly from those reported by Bennett since a model of the

TCA cycle in isolation is not representative of the full capability of

E. coli metabolism. Consequently, the simulation was allowed to

run for 100M steps, allowing the state entropy (Equation 14) to

reach a stable value.

The free energy profile for traversing the TCA cycle is shown in

Figure 8, along with the profile of the configurational entropy and

the energy. Several general trends are apparent in the profile.

First, as expected from the discussion above there is an energy-

entropy compensation throughout the cycle. Each decrease in

energy is associated with a decrease in configurational entropy

(increase in {TDS) and vice versa. Also, as expected from the

discussion above, the entropy change for going around the cycle is

close to zero. The residual entropy for traversing the cycle is 2

2.36 kJ/mol, which is the entropy needed to bring the cofactors

back to their original values after one turn of the cycle, after which

the system would be precisely at a steady state. Consequently, the

free energy decrease differs from the decrease in energy by

2.36 kJ/mol, also. The overall free energy change is 242.99 kJ/

mol, consistent with operation of the cycle in the oxidative

direction.

The free energy change for each reaction is nearly the same, in

agreement with Equations 12 and 13. The free energies for the

reactions for the conversion of oxaloacetate to citrate (27.92 kJ/

mol) and 2-oxoglutarate to succinyl CoA (210.24 kJ/mol), differ

somewhat from the mean of the other reactions (24.12+/20.16)

due to the constraints imposed by the cofactor concentrations –

that is, the boundary conditions of the simulation. Specifically,

even when the reactants for these reactions, oxaloacetate and 2-

oxoglutarate, are at the lowest possible concentration levels for

which a free energy can be determined - one molecule per cell -

the reaction free energies are relatively large because of the ratios

of the cofactor reactant-product pairs [acetyl-CoA]/[CoA] and

([NAD][CoA])/([NADH][CO2]), respectively. The resulting

steady-state levels of the metabolites are shown in Figure 9.

Changes in Cofactor Levels alter Concentrations of
Metabolites

Alteration of the cofactor levels results in changes in the

concentrations of the cycle intermediates. Also, shown in Figure 9

are the concentration levels of the eight reaction intermediates

when the ratio of NAD+:NADH decreases by 10- and 100-fold

from the values reported by Bennett, et al. Since three of the

reactions in the TCA cycle use NAD+ as a reactant and NADH as

a product, a reasonable expectation would be that a decrease in

the NAD+:NADH ratio decreases the thermodynamic driving

Figure 9. Predicted metabolite levels for each reaction intermediate shown in Figure 7 under conditions in which the NAD+:NADH
ratio is 31 (Bennett et al. [26]), or decreased by either 0.1-fold or 0.01-fold. The compounds with the lowest mean concentrations have the
highest variability. The coefficients of variation for 1000 simulation steps are (from high to low): oxaloacetate, 1.60e–02; 2-oxoglutarate, 1.66e–02;
succinate, 1.10e–05; fumarate, 2.30e–05; isocitrate, 5.15e–06; malate, 5.20e–06; citrate, 2.73e–07; succinyl-CoA, 5.81e–08.
doi:10.1371/journal.pone.0103582.g009
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force for the forward reaction and results in an increase in the

other reactants of the respective reactions as well.

This is indeed the case. The sequential isocitrate dehydrogenase

and 2-oxoglutarate dehydrogenase reactions both use NAD+ as a

reactant and NADH as a product and for this purpose can be

considered as a single reaction in which citrate is transformed to 2-

oxoglutarate, using 2 NAD+ and producing 2 NADH. When the

NAD+ concentration is lowered by 0.1- and 0.01-fold relative to

NADH, the level of citrate increases by 2- and 3-fold, respectively,

while the intermediate isocitrate increases by 4.5 and 12-fold,

respectively.

Likewise, the malate dehydrogenase reaction converting malate

to oxaloacetate also uses NAD+ as a reactant and produces NADH

as a product. Decreasing the NAD+:NADH ratio by 0.1- and 0.01-

fold results in an increase in the reactant malate by 4- and 10-fold,

respectively. The results here are in line with chemical intuition.

However, because the reactions are coupled, the affects of

changing cofactor concentrations are not always predictable. In

general, the results depend heavily on whether each reaction is

more or less equally likely, as in this case, or whether one or a few

reactions are further away from equilibrium than the others. In

fact, increasing the overall driving force on a pathway does not

guarantee a proportional increase in flux through the pathway. In

other scenarios for the TCA cycle, decreasing the ATP concen-

tration by 10-fold has a more significant affect on flux than

decreasing the CO2 concentrations by an equal amount, even

though the latter lowers the free energy of the pathway by twice as

much. Because flux is an emergent property of the entire pathway,

such affects are hard to predict without a simulation.

The use of simulations based on states and prediction of

metabolite levels can clearly be a game changer for modeling

applications in synthetic biology. Several efforts in over-producing

target chemicals have focused on redirecting carbon flow, by

knock-out of key genes in alternative pathways for example, but

altering the thermodynamics of the target pathway – either by

changing the redox state or other means – will likely prove to be

more fruitful and, ultimately, necessary.

Discussion

Unfortunately, it’s not currently possible to obtain all the

necessary rate constants to model a system with specific time

dependence. Besides the fact that each ortholog of an enzyme will

have different rate constants, the challenge of obtaining accurate

rate constants is much harder than one might imagine. Kinetic

parameters vary significantly with solution conditions – pH, ionic

strength, dielectric, etc. While thermodynamic parameters also

vary with solution conditions, the variation is significantly more

predictable using modern computational chemistry methods

[27,28]. In fact, useful estimates of standard free energies of

reaction can be obtained en mass for large scale modeling from

resources such as the Thermodynamics of Enzyme-Catalyzed

Reactions Database at NIST [23], the Biochemical Reactions

Thermodynamics Database [29], and the eQuilibrator web server

[22]. Given the variability of kinetic parameters due to physical

influences and differences in rates between orthologs, it is

debatable whether achieving a full-scale kinetic simulation is a

reachable goal. Currently, flux-based models are the best that one

could do for modeling large-scale processes in metabolism. Flux-

based approaches are not based on law of mass action, so

prediction of energy requirements and metabolite levels is difficult

without assumptions regarding the relationship between flux and

free energy changes. In this light, the development of metabolic

models based on statistical thermodynamics simulations is a

reasonable alternative.

Whether the use of statistical thermodynamics based on the

standard chemical potential for simulating metabolism is an

appropriate modeling choice depends on the question that one is

trying to address. The assumption inherent in the use of the

standard chemical potential is that each change of state occurs

with a frequency proportional to the thermodynamic driving force

for the respective reaction. A similar assumption is used in

transition state theory – that the reactant species and the transition

state species are distributed according to a Boltzmann distribution.

This assumption is turned into a rate law in the latter case by

multiplying the Boltzmann likelihood by the frequency of a bond

vibration – the universal frequency factor. In the case of modeling

metabolism, one does not necessarily need to model the time

dependence of each reaction explicitly to gain insight into many

emergent properties of entire pathways.

The use of simulations based on statistical thermodynamics is

fundamentally a numerical search for a thermodynamically

optimal path from reactants to products. In comparison to

experimental measurement of absolute metabolite values or a

precise kinetic simulation, the metabolite distributions will likely

differ. However, these differences should be significantly less when

evaluating relative changes in metabolite levels, and the principles

and insight learned from the modeling exercise should nevertheless

be the same. Moreover, the difference between experimentally

measured metabolite levels and metabolite levels predicted from a

simulation, whether based in kinetic rate laws or thermodynamics,

will predominately depend on enzyme regulation, of which both

simulation technologies are capable of including. Even if the

system is not a high fidelity model of the time-dependence, the

principles will be the same.

If one were to assume that the simulation represented an

underlying kinetic model, then one would need to include in

Equation 8 a coefficient to alleviate the assumption that each

reaction occurs with a frequency proportional to the thermody-

namic driving force on the reaction. Otherwise, the model will

characterize a thermodynamically optimal process, rather than a

specific system. However, this assumption may not be unreason-

able for modeling metabolism. Biological systems are mutable and

natural selection will favor those organisms that most effectively

consume free energy [30–33], and the system in which each

reaction occurs in proportion to the thermodynamic driving force

on the reaction will be at the lowest absolute free energy. As

suggested elsewhere, it is likely that the emergence of biological

function does not depend on the precise values of the catalytic

rates [34].
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