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We report the results of a numerical and theoretical
study of buckling in elastic columns containing
a line of holes. Buckling is a common failure
mode of elastic columns under compression, found
over scales ranging from metres in buildings and
aircraft to tens of nanometers in DNA. This failure
usually occurs through lateral buckling, described
for slender columns by Euler’s theory. When the
column is perforated with a regular line of holes,
a new buckling mode arises, in which adjacent
holes collapse in orthogonal directions. In this
paper, we firstly elucidate how this alternate hole
buckling mode coexists and interacts with classical
Euler buckling modes, using finite-element numerical
calculations with bifurcation tracking. We show how
the preferred buckling mode is selected by the
geometry, and discuss the roles of localized (hole-
scale) and global (column-scale) buckling. Secondly,
we develop a novel predictive model for the
buckling of columns perforated with large holes.
This model is derived without arbitrary fitting
parameters, and quantitatively predicts the critical
strain for buckling. We extend the model to sheets
perforated with a regular array of circular holes and
use it to provide quantitative predictions of their
buckling.
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1. Introduction
Buckling instabilities of elastic structures subjected to deforming forces are found on all scales [1]
ranging from large-scale applications such as aircraft to the engineering of DNA [2]. An everyday
example can be realized using a plastic coffee stirrer, which deflects laterally if compressed
with sufficient force between the forefinger and thumb. As in this example, failure due to
compression is typically through a global buckling instability with a wavelength comparable to
the length of the structure. Non-uniformities in internal structure introduce localized (short-wave)
buckling instabilities that can compete and interact with the global (long-wave) buckling. For
example, when under compression the long-wave mode transitions to wrinkling in multilayered
composites made of thin interfacial layers embedded in a softer matrix [3]. This short-wavelength
buckling behaviour can also be exploited in the design of novel mechanical metamaterials that
contain periodic arrays of holes [4]. If an elastic sheet is perforated with a two-dimensional square
array of circular holes, the sheet can exhibit pattern switching upon compression that internalizes
the buckling: the circular holes deform into ellipses with adjacent holes elongated in orthogonal
directions [5,6]. The resulting material properties of the sheet, including negative Poisson’s ratio
[7], have been applied to design of photonic [8,9] and phononic [10] cellular devices and have even
been used in soft robotics [11]. Similar pattern switching also occurs in a column containing a line
of equally spaced holes first studied by Pihler-Puzović et al. [12], in which the traditional lateral
buckling of a column under compression can be preceded by an instability of the micro-structure
between the holes (figure 1).

Here, we focus on in-plane (two-dimensional) buckling of a holey column (figure 1a) as an
exemplar system to elucidate the mechanisms underlying the pattern switching in perforated
elastic solids. As the column is compressed, it initially reduces in length, but preserves its vertical
and horizontal reflection symmetries until it reaches a critical strain at which it buckles. We
find from numerical calculations that the first unstable mode of in-plane buckling (the mode
occurring at the smallest strain) is always one of two modes, which we term the alternating
mode and the Euler mode (figure 1b), although other modes of buckling, including second- and
higher-order Euler modes, bifurcate from the unbuckled compression branch at higher strains.
In the alternating mode, the column remains straight under loading and the holes contained
within the structure arrange in series of ellipses for which each major axes is orthogonal to its
neighbour. The Euler mode is a classic sideways buckling, but, as we shall show, it can act in
two qualitatively distinct ways. The Euler mode can act as a global mode, where the critical strain
and other properties of the mode are dependent on the dimensions of the whole column. It can,
alternatively, act as a localized buckling mode in which, although deformation occurs throughout
the length of the column, the critical strain is independent of column length and depends only on
the geometry of the holes.

Pihler-Puzović et al. [12] considered a fixed hole size and spacing relative to the column width,
identified the buckling modes that occur in two- and three-hole columns, and quantified the
transition between the alternating and Euler modes as the length of the column increased. They
found good agreement between their finite-element numerical calculations and experiments on
holey columns made of the hyperelastic material extra hard Sid AD Special (Feguramed GmbH).

In this paper, we use the validated numerical model from Pihler-Puzović et al. [12] to
investigate, in detail, the effects of hole size, number and spacing on the pattern formation. We
show that the presence of holes in a column introduces localized bucking. This localized buckling
occurs not only in the alternating mode but also in the Euler mode, which can be qualitatively
altered by the presence of holes. To analyse this localized buckling, we study two-hole columns
with periodic boundary conditions, which are unstable only to the localized buckling modes
under compression. In addition, we develop a new analytical model for the localized buckling
of holey columns when the holes are large and separated by relatively thin ligaments of elastic
material. In these columns, the deformation occurs almost entirely through buckling of the
ligaments, with thicker regions of the column remaining nearly rigid. This allows the buckling of
the column as a whole to be understood through the deformation occurring in the ligaments. The



3

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170477

...................................................

h
D

W
N

 h
ol

es

(b)(a)

(c)

Figure 1. (a) Sketch of the undeformed configuration of a holey column, indicating the geometry of the ‘unit cells’ and a typical
finite-element mesh. (b) Illustration of the Euler mode (centre) and alternating mode (right) of a deformed two-hole column.
Each buckled state occurs through a pitchfork bifurcation, which breaks a reflection symmetry of the uncompressed column.
(c) The alternating mode with an odd number of holes, which does not break a reflection symmetry. In (b),(c), the shading
indicates the distribution of strain energy in the deformed state (as defined in [12]), fromblack (low strain) to yellow (maximum
strain for that column). (Online version in colour.)

asymptotic predictions from this model have no arbitrary or fitted parameters and compare very
favourably with numerical solutions for a surprisingly wide range of hole sizes. Consequently,
predictions of the asymptotic behaviour of the system provide insights into the observed pattern
formation. In particular, we find that the transition between localized Euler and alternating mode
buckling is controlled by the bending stiffness of the two types of ligament in the column: (i)
those (initially horizontal) separating the holes and (ii) those (initially vertical) between the hole
and the outer edge of the column. We extend the algebraic model to predict the critical stress
and strain for deformation of a two-dimensional cellular sheet, which can be viewed as an array
of connected holey columns. Good quantitative agreement between these algebraic predictions
and numerical finite-element calculations of a cellular sheet provide a simple predictive model of
buckling in sheets with square arrays of holes, indicating that the underlying behaviour is also
controlled by the ligaments between holes.

The paper is organized as follows: in §2, we use numerical solutions of a plane-strain, finite-
element model to study the global and localized buckling of many different holey columns. We
briefly revisit the formulation of the problem and the numerical methods from Pihler-Puzović
et al. [12] in §2a. In §2b, we demonstrate how the Euler mode of buckling is qualitatively altered
by the presence of holes, and discuss how the column length and hole geometry result in several
different regimes of behaviour that are observed within this mode. In §2c, we show how these
geometrical parameters influence buckling in the alternating mode, and in §2d, we describe the
ranges of column geometries for which each different mode is the first to become unstable. In §2e,
we discuss the secondary bifurcations in the finite-length holey column. Our asymptotic model
for a localized buckling column is introduced in §3, and is applied to the alternating mode in
§3a and to the Euler mode in §3b. Finally, in §4, we extend the asymptotic model to the two-
dimensional cellular sheet. The conclusions are presented in §5.

2. Parametric study of Euler and alternating-hole modes

(a) Numerical model for a finite-length column
We parametrize holey columns of finite length by the number of holes N ≥ 2 and the geometry
of a repeated ‘unit cell’, described by a width W, height h and hole diameter D (figure 1a). The
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geometry is, therefore, characterized by three non-dimensional parameters: N, D/W and h/W. As
in [12], we investigate the behaviour of the column under compression by solving the equations
for an incompressible neo-Hookean1 hyperelastic material within this geometry, using the C++
finite-element library oomph-lib [13]. In our numerical code, these equations are formulated
using the principle of virtual displacements, with fields discretized within a single finite element
using quadratic interpolation for positions and linear interpolation of the solid pressure, which
is continuous over element boundaries. We treat the problem as two-dimensional with no out-of-
plane buckling and, assuming that the compression is quasi-static, solve for equilibrium states.
We also assume that loading by gravity is insignificant.

As the deformations studied here are not large enough to cause contact or self-intersection
of the column, we apply zero-stress boundary conditions to the column side walls and the
boundaries of the holes. We consider two cases for the boundary conditions at the top and bottom
of the column. For columns of finite length, ‘clamped’ boundary conditions are applied, i.e. the
top and bottom of the column are constrained to allow no horizontal deformation, and a uniform
vertical deformation is prescribed to emulate compression. We also model columns without these
boundaries, by applying periodic boundary conditions that match the deformation and stress at
the top and bottom edges of a column with two holes. In this case, the distance between the upper
and lower boundaries of the periodic domain is varied to apply compression. These periodic
columns are not influenced by the presence of upper and lower boundaries, and so they provide
a straightforward way of studying localized buckling modes.

We quantify the compression by recording the engineering strain, ε = �y/(Nh), where Nh is
the total length of the uncompressed column and �y is the amount by which the entire column
is compressed vertically. For small strains, and before buckling occurs, the engineering strain
varies linearly with engineering stress, defined as the ratio of the total applied compressive
force F to column width W, Eeffε = F/W. The proportionality constant Eeff is the effective
Young’s modulus. The critical buckling strain, εcr, is defined as the value of engineering strain
at which buckling occurs; the corresponding stress is termed the critical stress. The buckling
is a local bifurcation, and therefore occurs at a change in the sign of the real part of the
most unstable eigenvalue. We use numerical continuation to solve for both the equilibrium
configuration and the stability eigensystem [14], at successively higher compressive strains.
A bifurcation tracking procedure is used to determine the compression at which this bifurcation
occurs. The domain is discretized for finite element analysis using a mesh that preserves the
symmetries of the undeformed configuration, namely the horizontal and vertical reflection
symmetries of the column, and the permutation symmetry among the unit cells (figure 1a).
This choice of mesh facilitates accurate identification of the symmetry-breaking bifurcations.
Uniform refinement of the mesh has been used to verify the convergence of the numerical results
presented here.

Recall that an ideal undeformed holey column has both horizontal and vertical symmetries.
The Euler buckling of a holey column is concurrent with the breaking of the horizontal symmetry
(figure 1b, centre), and occurs through a pitchfork bifurcation. If the column has an even number
of holes, buckling in the alternating mode breaks the vertical symmetry, through a pitchfork
bifurcation (figure 1b, right). If the column has an odd number of holes (figure 1c) the alternating
mode buckling does not break the vertical symmetry, and instead occurs via a transcritical
bifurcation with two non-conjugate branches that meet in a limit point [12]. We restrict our study
to columns with an even number of holes, in which both the Euler mode and the alternating mode
are symmetry breaking, each occurring through a supercritical pitchfork bifurcation that breaks a
different symmetry. Naturally, the loads at which each of these two bifurcations occurs vary with
column length N and the geometrical parameters h/W and D/W, and the bifurcations may swap
their order of occurrence. We now study the behaviour of each mode in turn.

1Note that the critical strains for onset are sufficiently small that material nonlinearities have a minimal effect. The
phenomenon appears to be entirely strain-driven and the use of different constitutive laws alters the critical stress, but the
critical strains do not change significantly [12].
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(b) Euler buckling of perforated columns
The lateral buckling of long slender columns without holes is described by Euler’s theory, which
predicts that the critical strain for buckling scales as the inverse square of the column length [15].
The Euler buckling of sufficiently long columns with a line of holes is qualitatively similar to
that of solid columns, with the critical strain for buckling scaling as the inverse square of the
column length (or number of holes), εcr ∼ 1/(Nh)2 (figure 2a–c). We call this a global buckling
regime, because the critical buckling strain is dependent on the column length, and buckling
occurs over the length of the whole column, and not at the lengthscale of the unit cells (figure 2d,
column i).

Counterintuitively, the critical buckling strain for long columns can be increased beyond the
Euler prediction by the addition of holes to the column. This is shown in figure 2c, where the
critical buckling strain for columns with holes has been normalized with respect to the critical
strain predicted by Euler’s theory for a solid column of the same dimensions, and plotted against
non-dimensional hole size D/W. Particularly, for large N, the numerical predictions collapse over
a range of hole sizes, supporting the scaling εcr ∼ 1/(Nh)2, and show a trend of increasing critical
strain with increasing hole size. The cause of the increase of critical buckling strain with hole
diameter is that enlarging a hole not only decreases the critical buckling stress, but also decreases
the effective Young’s modulus of the column. This decrease in Young’s modulus can increase the
critical buckling strain of a long column perforated with large holes by a factor of two, relative
to the critical buckling strain of a solid column of the same length and width (figure 2c). For
small holes (D/W � 1), the critical buckling strain approaches the prediction from Euler’s theory
for a solid column, and, during the initial compression phase prior to bifurcation, the stress is
concentrated near the holes.

It is evident from figure 2c that the collapse of critical buckling strains on a 1/(Nh)2 scaling no
longer holds when the hole size D/W is large. Geometrical constraints mean that the diameter
of the holes D must be smaller than both the column width W and the distance between hole
centres h. As the hole diameter approaches this limit, two distinct behaviours are observed in the
Euler mode, depending on whether the distance between hole centres is smaller or larger than
the column width.

In the first case, when the distance between hole centres is smaller than the column width
(h < W), large holes result in very thin ligaments of elastic material between adjacent holes, in
which the strain energy is concentrated. These thin ligaments allow the column to shear with
minimal resistance (figure 2d, column ii). Consequently, as the hole diameter approaches the
distance between hole centres, the critical buckling strain decreases rapidly (figure 2c). This
reduction in critical buckling strain occurs for a wide range of hole sizes in short columns (N � 8),
but is significant in long columns only as the diameter of holes approaches their spacing (D
approaches h).

In the second case, when the distance between hole centres is larger than the column width
(h > W), large holes instead result in very thin ligaments of elastic material separating the edges
of the column from the holes, with relatively thicker regions of material between adjacent
holes. In contrast with the behaviour when h < W, the critical buckling strain of such columns
is nearly independent of the number of holes (figure 2b), and decreases with increasing hole
size. The buckling of the whole column in this regime results from the individual buckling of
the thin ligaments at the edges of the column (figure 2d, column iii). We refer to this as the
‘sliding’ regime of the Euler mode, as the thicker regions of the column separating the holes
do not deform or rotate significantly, but instead slide left or right. An increase in the hole
diameter D reduces the thickness of the ligaments at the edges of the column and causes a
corresponding decrease in the critical buckling strain (figure 2b). The buckling of the ligaments
at the edges of the column in this sliding regime is in contrast with the global regime of
buckling (εcr ∼ 1/(Nh)2) observed for long columns, in which the ligaments at the edges of the
column are compressed or stretched by the bending of the column, but do not individually
buckle.
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Figure 2. (a) Critical buckling strains (εcr) for the Euler mode, plotted against the number of holes in the column N for several
hole sizes, for h/W = 0.88. These results are typical of columns in which the distance between hole centres is less than the
column width (h/W < 1). Symbols indicate numerical computations, with solid lines added to visualize the trends. The black
line indicatesnumerical results froma solid column (i.e.D= 0) of lengthNh. (b) Critical buckling strains as in (a), but for columns
where the distance between hole centres is larger than the column width (h/W = 1.1). Calculations of εcr in the localized
buckling regime from two-hole periodic columns are shown with dashed lines. (c) Critical buckling strains normalized with
respect to the critical strain predicted by Euler theory for a solid column of the samewidth and overall height. Results are shown
for h/W = 0.88, though the qualitative features are insensitive to h/W. The dashed line shows the functional form suggested
by [12]. (d) Post-buckling states of columns with eight holes after buckling in the Euler mode, with shading indicating local
strain energy, increasing fromblack to yellow,where yellow indicates themaximum local strain energy for each column. Roman
numerals identify the bifurcations that led to these states in subfigures (a–c). Column iv is a periodic columnwith period of two
holes, with the same unit cell geometry and strain as column iii; the periodic extension to eight holes is shown with reduced
opacity. (Online version in colour.)

As the critical buckling strain for the column in the sliding regime is independent of the
number of holes in the column, it depends only on the localized geometry of these thin ligaments.
In the sliding regime, the deformation of each ligament is isolated from the deformation in
adjoining ligaments by the thicker region of material between holes. This means the ligaments
at the edges of the column buckle to the left or to the right almost independently of one another.
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Figure 3. (a) Critical buckling strains (εcr) for the alternating mode, plotted against column length (N, number of holes) for
several hole sizes. Symbols indicate numerical computations, with solid lines added to visualize the trends. (b) (i) Post-buckling
state of a columnwithN = 8,D/W = 0.8311 after buckling in the alternatingmode,with shading indicating local strain energy,
increasing from black to yellow. (ii) A two-hole periodic column with the same unit cell geometry and strain as column i; the
periodic extension to eight holes is shown with reduced opacity. (Online version in colour.)

A consequence of this is that the critical buckling strain in this sliding regime is in quantitative
agreement with the buckling strain in a two-hole periodic column with the same unit cell
geometry (dashed lines in figure 2b), in which the ligaments buckle alternately left and right
(figure 2d, column iv). A related consequence of this isolation of the buckling in adjacent holes is
that the critical buckling strains for second- and higher-order Euler modes in the sliding regime
are only slightly larger than that of the first Euler mode. This ‘clustering’ of many successive Euler
modes around a single critical strain in the sliding regime explains why the two-hole periodic
column is a good predictor of the critical strain of the first Euler mode (figure 2d, column iii),
despite the fact that when extended periodically to N holes it is closest in appearance to the Euler
mode of order (N − 1) (figure 2d, column iv).

The addition of a line of holes to an elastic column, therefore, significantly alters its Euler
buckling behaviour. The main influence of the holes is the new sliding regime of buckling, which
is a localized buckling mode that depends on the properties of the holes and not the column
length. Importantly, this sliding regime is not a separate mode of instability, but is a new regime
of behaviour of the existing Euler buckling mode, induced by the presence of holes. There is
consequently a continuous transition between the localized behaviour of the sliding regime and
the classical Euler buckling regimes, as illustrated in figure 2b.

(c) Alternating mode buckling
The critical buckling strain for the alternating mode is qualitatively different from the Euler
mode, in that it tends to be a constant for long columns (figure 3a), rather than scaling as
1/N2. The critical buckling strain for long columns is in good agreement with that of a two-
hole periodic column buckling in the alternating mode, indicated by dashed lines in figure 3a.
As with the sliding regime of the Euler mode, this is a localized buckling mode, characterized by
independence of the critical strain on N, and agreement between predictions from finite-length
and periodic columns. The post-bucking states, illustrated in figure 3b, indicate that buckling of
both the ligaments separating holes and the ligaments on the column edge occurs in this localized
mode. The critical buckling strain for the alternating mode decreases with increasing hole size
D/W, the opposite trend from that of long columns in the Euler buckling mode.

In the alternating mode, the critical strain in short columns is larger than that in long columns.
This increase in strain is caused by boundary effects from the clamped boundary conditions; these
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Figure 4. Critical strains for the Euler and alternating modes compared, for h/W = 0.88 and hole sizes (a) D/W = 0.8043
and (b) D/W = 0.8311, as in figures 2a and 3a. For columns with a number of holes N between c1 and c2, the alternating mode
becomes unstable at a lower strain than the Eulermode, and is thus themode thatwould be observed experimentally. The Euler
mode occurs at a lower strain when N < c1 or N > c2. Lines between the discrete points are added to guide the eye. (Online
version in colour.)

boundary conditions prevent bending of the ligaments at the top and bottom of the column, and
so prevent the alternating mode in finite columns from being exactly periodic. This behaviour can
be seen in figure 3b, where the buckling of the finite-length column (column i) is close to periodic
(column ii) everywhere except near the top and bottom boundaries.

(d) Exchange of stability between Euler and alternating modes
The number of holes N and the geometrical parameters h/W and D/W determine which of the two
modes, Euler or alternating, occurs at the onset of the instability from the unbuckled compression
branch.

The critical strain at which buckling occurs in the Euler mode and the critical strain at which
buckling occurs in the alternating mode are compared in figure 4 as functions of the number of
holes in the column N. At large N, the εcr ∼ 1/N2 behaviour of the Euler mode and εcr ∼ const.
behaviour of the alternating mode means that sufficiently long columns will always buckle first
in the Euler mode. For short columns, the frustration of the alternating mode by the clamped
boundary conditions (leading to increased εcr) has the same result; sufficiently short columns
also buckle in the Euler mode. For the shortest column with an even number of holes, N = 2, we
have found no column geometry where the alternating mode bifurcation (figure 1b right) occurs
at a lower strain than the Euler mode (figure 1b centre). However, at intermediate column lengths,
the first buckling instability of the column can be in the alternating mode.

The first mode to become unstable is illustrated for such a column of intermediate length (N =
6 holes) in figure 5, as a function of both hole size D/W and hole spacing h/W. Each point on
the figure corresponds to a numerical computation of solutions along the unbuckled compression
branch, in which the critical strains at which the Euler and alternating bifurcations occur are
recorded. Crosses show the region in parameter space where the Euler mode bifurcation occurs
at a lower strain than the alternating mode bifurcation, and dots the region where the alternating
mode occurs at a lower strain. The solid black line separating these two regions indicates the
column geometries for which the two bifurcations occur at the same strain, and is obtained by
plotting the zero contour of the difference between the critical strains for the Euler and alternating
bifurcations. The alternating mode occurs at a lower strain than the Euler mode in regions of this
geometric parameter space where the ligaments are relatively thin both at the side walls of the
column and between the holes. In other regions, the Euler mode occurs at a lower strain.

Comparison of figure 2a and 2b suggests that an increase in h/W promotes the localized sliding
regime of the Euler mode. This is supported by the results in figure 5, in which the colours of the
crosses indicate the ratio between critical strains of the second to first Euler mode bifurcations; as
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Figure 5. Numerical calculation of the first-occurring mode for a column with N = 6 holes, as a function of the geometrical
parameters of non-dimensional hole size and hole spacing. All solutions lie below the dashed line, which indicates the largest
possible hole size D/W. The solid black line indicates parameters in which the alternating and Euler-type modes occur at the
same critical strain. This line divides the parameter space into a regions in which the alternating mode (dots) or Euler mode
(stars) occur at the smallest strain. The ratio of critical strains for the onset of the first and second Euler bucklingmode εcr2/εcr1
is indicated by the colour of the stars. The dotted black line is an asymptotic prediction for the boundary between alternating
and Euler mode in the localized/sliding regime (3.23). The three solutions illustrated are post-buckling solutions on the primary
branch originating from the first bifurcation to occur at each of the highlighted points. (Online version in colour.)

noted previously, these occur at very similar strains in the localized sliding regime. For a given
hole size D, figure 5 indicates that the alternating mode is preferred for a limited range of hole
spacings h/W. For holes spaced more widely than this range, the ligaments separating holes
are thick, and a localized Euler mode in the sliding regime is preferred, where these ligaments
separating holes do not deform significantly. For holes spaced more closely than this range, the
ligaments at the edge of the column are thick compared to those separating holes, and a global
Euler buckling mode is preferred, in which the thicker ligaments adjoining the edge of the column
do not buckle, except over the length of the whole column.

Our simulations suggest that as the column length increases, the region of the alternating
mode in the phase space of the unit cell geometry (dots in figure 5) shrinks and ultimately
disappears at around N = 16 holes. In a sufficiently long column, the first bifurcation to occur
during compression, therefore, always corresponds to the Euler mode. However, the alternating
mode may still play a role in the subsequent deformation, due to the presence of secondary
bifurcations.

(e) Secondary bifurcations
Our study, so far, has explored states arising at the primary bifurcation that occurs at the smallest
strain on the unbuckled compression branch. We now study the secondary bifurcations that occur
on the first branch to bifurcate from the unbuckled compression branch, either the alternating
mode or the first Euler mode.
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Figure 6. (a) Eigenmode of a secondary bifurcation in an eight-cell-long holey column made from cells with aspect ratio
h/W = 0.88 and hole size D/W = 0.7525. Shading indicates strain energy as in figure 1. (b) Critical buckling strains εcr
plotted against cell height for eight-cell-long holey columnswith D/W = 0.7525, for Euler mode (E), alternatingmode (A) and
secondary bifurcations (AE and EA, arising on the primary alternatingmode and the primary Eulermode branches, respectively).
The lines between the discrete points are added to guide the eye andmark bifurcations that occur on stable branches (solid lines)
and on unstable branches (dashed lines). (c) Schematic bifurcation diagrams for two different scenarios separated by the critical
aspect ratio (h/W ≡ r0 = 0.89426).When h/W > r0 (ii), E and EAmodes are stable. (i)When h/W < r0, the A andAEmodes
are stable and E is unstable. (ii) When h/W > r0, the E and EAmodes are stable, whereas A becomes unstable. (Online version
in colour.)

In both cases, the primary bifurcation at the onset of the instability is supercritical. The
continued compression of the column, therefore, initially results in stable solutions with a single
broken symmetry that have bifurcated from the unbuckled compression branch. On these already
bifurcated solution branches, we find that secondary bifurcations can exist, of the type first
described by Bauer et al. [16]. These secondary bifurcations result in solutions with a second
broken symmetry; in the example shown in figure 6a, a column with eight holes exhibits both the
lateral buckling and the alternating mode, with both horizontal and vertical symmetries broken.

We examine the behaviour of secondary bifurcations in the neighbourhood of a point in
the geometric parameter space at which the Euler and alternating modes bifurcate from the
unbuckled compression branch at the same critical strain. Choosing N = 8 and D/W = 0.7525,
this point occurs at h/W = r0 ≈ 0.89426, and is marked by the vertical dashed line in figure 6b
that separates the two regions of parameter space, in which either the Euler mode (h/W > r0) or
the alternating mode (h/W < r0) occurs at the lowest strain on the trivial branch. By exploring
the secondary bifurcations, we investigate the nature of the stability exchange between the two
modes.

In numerical calculations, we impose increasing applied strain until we reach the first
bifurcation to occur on the unbuckled compression branch, at which point we perturb the
numerical solution with the eigenvector associated with the bifurcation. This bifurcation is
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supercritical, so by increasing the applied strain further we find solutions on the bifurcated branch
until the secondary bifurcation is located. The critical strains of both the primary and secondary
bifurcations are shown in figure 6b. For h/W < r0, the alternating mode bifurcation (A) occurs at
the lowest strain, and the solutions with broken top–bottom symmetry that originate from this
bifurcation are subject to the secondary bifurcation (AE) where the solutions also buckle laterally,
breaking the left–right symmetry (figure 6c). For h/W > r0, order of the bifurcations is reversed:
here the Euler mode bifurcation (E) occurs at the lowest strain, and the laterally buckled solutions
that originate from this bifurcation subsequently become unstable to an alternating mode
(breaking the top–bottom symmetry) at the secondary bifurcation (EA). At h/W = r0, the Euler
and alternating mode primary bifurcations occur at the same strain, and all the bifurcation points,
both primary (A and E) and secondary (AE and EA), then coalesce to meet at the same critical
strain, forming a multiple primary bifurcation point on the unbuckled compression branch. This
feature has been identified and explained by previous studies on secondary bifurcations [16,17].
The coalescence of critical strains of the primary and secondary bifurcations gives insight into
the behaviour of columns when they are compressed beyond the initial instability; for columns
with geometry where the alternating and Euler modes occur at nearly the same critical strain (i.e.
those close to the black line in figure 5), only a small additional compression is required for both
top–bottom and left–right symmetries of the column to be broken.

3. Theoretical modelling of localized buckling modes
Motivated by the existence of localized buckling modes and their importance in the overall
behaviour of the column, we develop a theoretical model for the stress at the onset of bifurcation
in a short section of column with two holes and with periodic boundary conditions imposed
on the top and bottom edges (figure 7a). These periodic columns with a period of two holes
exhibit instability to both the alternating mode (figure 3b, column ii) and to the localized sliding
regime of the Euler mode (figure 2d, column iv). Furthermore, as we have shown, the critical
buckling strains of the periodic columns are in quantitative agreement with the appropriate
localized buckling regime of non-periodic columns of finite length: localized Euler buckling in
short columns with hole spacing larger than the width (figure 2b), and alternating mode buckling
in long columns (figure 3a). The theory presented in this section is, thus, applicable both to
periodic columns and to the localized buckling regimes of non-periodic columns, where the
buckling properties are independent of the column length.

When the holes in the column are similar in diameter to the column width or hole spacing,
the deformation is localized, occurring through bending of the resulting thin regions of elastic
material, or ligaments, highlighted in figure 7b. The thicker uncoloured parts of the structure
remain comparatively rigid. By exploiting the large aspect ratio of the ligaments, and the
comparative rigidity of other parts of the structure, we can obtain algebraic expressions for the
critical buckling force for each mode. There are two types of ligament present in the system; those
separating two holes, which we denote s, and those adjoining the side wall of the column, which
we denote w (figure 7b). The minimum width of these ligaments is

as = h − D and aw = 1
2 (W − D), (3.1)

respectively, and we develop the model in the asymptotic limit where as � D and aw � D.
The width of the ligament separating two adjacent holes ws (figure 7a) is given as a function of

the coordinate along its length x� by

ws = 2
( as

2
+ R −

√
R2 − x�2

)
= as

(
1 + x�2

Ras
+ · · ·

)
, (3.2)

where R = D/2 is the radius of the hole. As expected from the geometry in figure 7a, ws takes a
minimum value as when x� = 0. Similarly the width ww of a ligament adjacent to the edge of the
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Figure 7. (a) Definitions of the width of columnW, hole spacing h, minimum thickness of side-walls aw and minimum width
of gap between holes as in a two-hole periodic unit cell. (b) Thin ligaments adjoining the column edge (shaded red) are labelled
w, and ligaments separating two holes (shaded blue) are labelled s. (Online version in colour.)

column, this time dependent on the coordinate y�, is

ww = aw

(
1 + y�2

2Raw
+ · · ·

)
. (3.3)

When a ligament is of a similar thickness to its thinnest point (ws = O(as)), we find from (3.2) that
the ligament has lengthscale x� = O(

√
Ras) � O(as), implying that the ligament is much longer

than it is wide. We can, therefore, model the ligaments as thin Euler–Bernoulli beams of non-
uniform width, with the width of the two types of ligament given by (3.2) and (3.3).

(a) Alternating mode
Motivated by the results of finite-element computations, which indicate that when as, aw � R,
the strain energy is concentrated almost entirely in the thin ligaments, we assume that a column
buckling in the alternating mode can be modelled as a system of rigid sections, formed from thick
regions of elastic material, that are connected by the thin, flexible ligaments. Each ligament acts
as a hinge with a torsion spring (figure 8a).

We start by calculating the stiffness of these torsion springs from the ligament geometry, using
Euler–Bernoulli beam theory. The equation for small deformations of an Euler–Bernoulli beam
[15] is

d2

dx2

(
EI

d2φ

dx2

)
= 0, (3.4)

where E is Young’s modulus of the material, x is the distance along the beam, φ is the
perpendicular displacement of the beam,

I =
∫w/2

−w/2
y2 dy = w3

12
(3.5)
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Figure8. Sketches of the asymptoticmodels for (a) the alternatingmode and (b) the Eulermode in the localized sliding regime,
for a two-hole periodic column. Finite-element calculations of post-buckling states, in light grey, are overlaid with sketches
indicating the deformation of the thin ligaments and the parts of the structure that we assume are rigid when the holes are
large. (a) The torsion spring model for the alternating mode bifurcation. The springs illustrated (arising from fourw ligaments
and two s ligaments) are those in a single instance of the two-hole periodic cell. The applied force F is exerted at the centre of
each rotating T-shaped element (marked by a black-filled circle). Each torsion spring is bent by an angle θ . (b) The Euler mode
bifurcation in a two-hole periodic unit cell, in the localized sliding regime. The thin s regions separating the holes do not deform
in thismode, but buckling occurs in the four thinw regions adjacent to the edges of each periodic cell. (Online version in colour.)

is the second moment of the cross-sectional area of the beam, and w(x) is the width of the beam,
given for the two types of ligament by (3.2) and (3.3). Integrating (3.4) twice gives

EI
d2φ

dx2 = M, (3.6)

where M is the bending moment. As the length of each ligament is much smaller than the column
width or hole spacing, the moment M is constant (to leading order) along the length of the
ligament. We consider a ligament with a general parabolic width profile

w = a

(
1 + x2

x2
0

)
, (3.7)

where the constants a and x0 parametrize the beam geometry in either type of ligament (see (3.2),
(3.3)). Using (3.7) in (3.5) reduces (3.6) to

d2φ

dx2 = 12
Ea3

M

(1 + x2/x2
0)3

. (3.8)

Integrating again and seeking a symmetric solution with dφ/dx = 0 at x = 0, we obtain

dφ

dx
= 3Mx0

2Ea3

(
X(5 + 3X2)
(1 + X2)2 + 3 tan−1 X

)
, (3.9)

where X = x/x0. We note that

lim
x→±∞

dφ

dx
= ±9π

4
Mx0

Ea3 , (3.10)
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namely that the beam becomes straight at large |x|. For small deflections of the beam, we may,
therefore, define a bending angle for the entire beam, as

θ = lim
x→∞

dφ

dx
− lim

x→−∞
dφ

dx
. (3.11)

From (3.10), the moment exerted by the beam can be written as

M = κθ , (3.12)

where torsion coefficient κ is

κ = 2Ea3

9πx0
. (3.13)

Setting a = as and x0 = √
Ras for the s ligaments (3.2), and a = aw and x0 = √

2Raw for the w
ligaments (3.3), we obtain the expressions for torsion coefficient of the spring formed by these
ligaments as

κs = 2
9π

E

(
a5

s
R

)1/2

and κw =
√

2
9π

E

(
a5

w
R

)1/2

, (3.14)

respectively. With these coefficients evaluated, we can now use (3.12) to relate the angle by which
each ligament is bent, θ , to the moment it exerts M.

A single periodic unit of our model of the holey column consists of four w ligaments and two
s ligaments (figure 8a). When this periodic unit is compressed by a force F and each of these
ligaments is bent by an angle θ , the height of the periodic unit is reduced from 2h to 2h cos(θ/2).
The potential energy of this unit is, therefore,

V = (2κs + 4κw)
1
2
θ2 + 2h

[
cos

(
θ

2

)
− 1

]
F (3.15)

and the equilibria lie at the stationary points of this energy, where

∂V
∂θ

= (2κs + 4κw)θ − hF sin
(

θ

2

)
= 0. (3.16)

The change in stability of the equilibrium branch at θ = 0, a bifurcation, occurs at a critical force,

F = 1
h

(4κs + 8κw) = 8
9π

E
a5/2

s + √
2a5/2

w

h
√

R
. (3.17)

To validate this prediction, we compare it to the critical force at the bifurcation obtained from
finite-element numerical calculations of a two-hole column with periodic boundary conditions
applied to the top and bottom of the column. The compression of the system is controlled by
altering the vertical offset between periodic units in the deformed configuration, and the force
F measured by integrating the traction over the upper boundary. For these computations, an
unstructured triangle mesh was used to discretize the domain, with elements concentrated in
the thin ligaments. Our theoretical prediction (3.17) closely matches the numerical calculations,
particularly as the hole diameter approaches the width of the column (figure 9a).

(b) Localized Euler buckling
Euler buckling of the two-hole periodic system occurs in the localized sliding regime. In this
mode, only the w ligaments adjoining the edges of the column undergo deformation, whereas
the s ligaments separating holes are undeformed (figure 8b). Here, we derive the critical force
required for this Euler mode to be realized.
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Figure 9. The force at the onset of (a) the alternatingmode, and (b) the Euler mode in the localized sliding regime, for periodic
columns with a square unit cell, h= W. Asymptotic predictions (black curves), equations (3.17) and (3.22) are compared with
finite-element numerical calculations (red crosses). Insets: the samedata plotted on log–log axes in termsof a non-dimensional
ligament thickness as/W, illustrating that for thin ligaments, the force scales as the ligament thickness to the power 5/2 for
the alternating mode (3.17) and power 2 for the Euler mode (3.22). (Online version in colour.)

The buckling analysis for this problem is very similar to that for classical Euler buckling (e.g.
[18]). Each w ligament supports half the compression force F, and so from (3.6) we have

EI
d2φ

dx2 = −F
2
φ, (3.18)

where the moment is the product of the force F/2 and the perpendicular distance φ. Evaluating I
using the geometrical parameters corresponding to the w ligaments (3.3), as in (3.8), gives

[1 + X2]3 d2φ

dX2 = −12RF

Ea2
w

φ, (3.19)

where X = x/
√

2Raw. In the sliding regime of the Euler mode, the thicker regions of the beam
between ligaments do not rotate, and so the boundary conditions are ‘clamped’, but able to slide
in a direction perpendicular to the load,

dφ

dX
→ 0 as X → ±∞. (3.20)

Seeking non-zero solutions to the Sturm–Liouville boundary value problem (3.19)–(3.20), we
obtain a discrete spectrum of eigenmodes, and find numerically the smallest eigenvalue,

12RF

Ea2
w

= 5.668 . . . , (3.21)

which corresponds to an odd mode (φ(X) = −φ(−X)). The critical force for bifurcation is then

F ≈ 0.472
Ea2

w
R

. (3.22)

The theoretical expression (3.22) agrees extremely well with the results obtained from finite-
element calculations, even when aw/R is relatively large (figure 9b). As the thin s ligaments
separating adjacent holes do not deform in this mode, the critical stress (3.22) is independent
of as, and the calculation of this critical stress does not require that as/R � 1.

Comparing our theoretical predictions for the forces for the onset of the alternating and Euler
modes, (3.17) and (3.22), we find that the alternating mode bifurcation occurs at a lower force than
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Figure 10. The scatter points indicate finite-element calculations of the first buckling mode: solid circles denote parameters
where the alternating bifurcation occurred at a lower critical force compared to the Euler mode, and stars denote the opposite.
The theoretically predicted boundary between these regimes (3.23) is plotted in thick black line; grey lines are contours of the
critical for in each mode, from (3.17) and (3.22). (Online version in colour.)

the Euler bifurcation when [(
as

aw

)5/2
+

√
2

] √
Raw

h
< 1.67. (3.23)

As illustrated in figure 8, this inequality expresses the conditions under which bending of four w
ligaments and two s ligaments (in the alternating mode) occurs at a lower critical strain than
buckling of the four w ligaments (in the Euler mode). This prediction is in agreement with
numerical calculations of the critical buckling of periodic columns, particularly when aw, as � 1
(figure 10). The criterion (3.23), plotted as a dotted line in figure 5, is also in general agreement
with numerical calculations of finite-length columns in the region of parameter space where both
alternating and Euler modes are localized and so are well predicted by the results from periodic
columns.

4. Asymptotic model for the onset of bifurcation in a two-dimensional cellular
sheet

The asymptotic theory for bifurcation presented in the previous section extends naturally to two-
dimensional cellular solids perforated by a square lattice of circular voids, where the geometry
is described by a single non-dimensional parameter, a/h, representing the minimum distance
between holes divided by the spacing between hole centres (figure 11). When compressed
uniaxially, such two-dimensional cellular materials exhibit an alternating-mode bifurcation at
a critical strain [5,7], similar to the bifurcation we have demonstrated in columns. Changing
the pattern of holes in the solid, for example to a triangular lattice, leads to a range of
related instabilities [19], which can be exploited in the fabrication of metamaterials with
desired mechanical properties [4]. As before, we consider only two-dimensional buckling modes,
neglecting out-of-plane buckling, which may occur in sufficiently thin plates (e.g. [20]).

The onset of the buckling instability in cellular sheets has been studied numerically, under
general in-plane loading in the case where a/h = 1/2 [21], and under uniaxial compression for
more general a/h [7]. Here, we derive algebraically how the critical force Fcr and strain εcr vary
with the hole size a/h, under uniaxial compression of the solid, when the holes are relatively large
compared with the elastic regions separating them (a/h � 1).
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(a)
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Figure 11. (a) Sketch of a single periodic unit of the two-dimensional perforated sheetwith a/h= 0.1. The red regions indicate
the thin regions that undergo compression prior to the onset of the bifurcation. (b) Configuration of the same perforated sheet
after buckling, obtained fromfinite-element computation. Theperiodic unit of initial size 1 × 1 has been compressed to aheight
of 0.953 and its width has reduced (due to the auxetic behaviour of the sheet) to 0.977. (Online version in colour.)

Our model for alternating-mode buckling in elastic cellular sheets perforated with large holes
is similar to that in holey columns (figure 8a), in that we assume that the thin ligaments bend,
while thicker regions of the structure rotate without significant deformation. This approach
is supported by the concentration of the strain energy within the ligaments in numerical
calculations. Furthermore, the approach predicts that Poisson’s ratio of the cellular sheet
approaches −1 for large holes, which is consistent with numerical calculations [7].

Defining the hole radius as R = (h − a)/2, we find from (3.13) that the bending strength of a
single ligament is

κ = 2
9π

E

(
a5

R

)1/2

. (4.1)

A single periodic cell of two-by-two holes contains eight such ligaments, so the potential energy
of a single periodic cell of this system with an applied compression force F is

V = 8 · 1
2
κθ2 + 2hF

[
cos

(
θ

2

)
− 1

]
. (4.2)

As before, the equilibria lie at the stationary points of the energy,

∂V
∂θ

= 8κθ − hF sin
(

θ

2

)
= 0 (4.3)

and a bifurcation on the solution branch θ = 0 thus occurs at at a critical force Fcr, where

Fcr

E
= 16κ

h
= 32

9πh

(
a5

R

)1/2

. (4.4)

In addition to this critical force, the symmetry of the two-dimensional lattice also allows us to
calculate easily the critical strain at bifurcation. We do this by evaluating the effective Young’s
modulus of the cellular solid under small loads, before the bifurcation occurs. The solid can be
divided into two regions: a region of length and width O(h) (shaded grey in figure 11a), and
a region corresponding to thin ligaments that are parallel to the direction of compression, of
length O((aR)1/2) and width O(a) (shaded red in figure 11). The linear deformations resulting
from applying a force to these regions scale2 as the length of the region (in the direction of applied

2We note that a similar argument cannot be applied to the holey column, as the w ligaments have a straight edge on one
side and a curved hole boundary on the other, and so are curved in their rest state. During the compression before the
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Figure 12. (a) Critical strain εcr and (b) non-dimensional critical force Fcr/(Eh) at the bifurcation of a two-dimensional cellular
sheet, obtained from asymptotic theory (solid line) and numerical simulation (crosses). (Online version in colour.)

stress) over its width. The deformation in the two regions of the holey sheet, therefore, scales as
h/h = O(1) for the thick (grey shaded) regions and as O((R/a)1/2) � 1 for the thin (red shaded)
parts. These scalings suggest that, for small deformation when a/h � 1, the thick regions may
be considered rigid and the deformation of the whole periodic unit predominantly results from
compression of the thin ligaments that are parallel to the applied strain.

Each periodic repeating unit of the solid consists of four such ligaments, each of which
supports a force F/2. When compressed under a force F/2, the length change of a single column
of the two-dimensional lattice is

�l = F
2E

∫∞

−∞
1

a[1 + (x/
√

Ra)2]
dx (4.5)

= πF
2E

(
R
a

)1/2
. (4.6)

The total compression of the repeating periodic unit is given by 2�l, and so the relative strain is

εcr = 2�l
2h

= π

2Eh

(
R
a

)1/2
F. (4.7)

This relationship between εcr and F, which holds immediately prior to a bifurcation, allows us to
convert the critical force for the bifurcation (4.4) into a critical strain,

εcr = 16
9

( a
h

)2
. (4.8)

The asymptotic calculations for the critical force (4.4) and strain (4.8) are in good agreement
with numerical computations of the compression of a neo-Hookean material for thin-walled
two-dimensional lattices (figure 12). In these computations, we simulate a single periodic unit
of four holes, with periodic boundary conditions applied on both the upper/lower and left/right
boundaries. As with the periodic columns, the amount of compression is imposed by specifying
the periodic offset in the vertical direction. At the left and right periodic boundaries, we leave
the horizontal periodic offset undetermined, and instead specify that the integral of the stress
over the sides of the periodic unit is zero. The periodic cell is, therefore, free to expand or

first bifurcation, these ligaments, therefore, bend outwards and compress, which complicates the evaluation of the effective
Young’s modulus.
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contract horizontally as it is compressed (figure 11b). For a/h = 1/10 (as illustrated in figure 11), the
asymptotic prediction of the critical stress (4.4) is within 5% of the value obtained from numerical
computations, with closer agreement at smaller values of a/h. Our asymptotic prediction from
(4.8) of εcr = 0.03 for a/h = 0.13 is also in good agreement with the change in stress–strain
behaviour observed in the periodic numerical calculations of Mullin et al. [5], and is similar to
their experimental measurement of εcr = 0.04 for a sheet with 10 × 10 holes.

5. Conclusion
We have used a previously validated plane-strain, finite-element model [12] to investigate the in-
plane buckling behaviour of a holey column under uniaxial compression, focusing on how this
behaviour varies with the column geometry; specifically the number, size and spacing of the holes.
Insight into the detailed mechanics of buckling is provided by a new asymptotic theory, which
quantitatively predicts the critical stress at which a column with large holes buckles, without
arbitrary or fitted parameters.

We find that for all columns, the first buckling mode to occur as strain is increased, i.e. the
mode with smallest critical strain, is always either (i) a Euler mode, in which the column buckles
in a direction perpendicular to the applied compression; or (ii) an alternating mode, in which
adjacent holes are deformed into ellipses with orthogonal major axes, but the column remains
straight overall.

The alternating mode is generally the first mode to become unstable under compression in
columns of moderate length (≈4–16 holes) if the holes are relatively large, diameter greater
than ≈75% of both the column width and hole spacing. For other column geometries, the Euler
mode is the first mode to become unstable either via global buckling on the scale of the column
(favoured in long columns or columns with small holes) or localized buckling on the scale of a
hole (favoured when the ligaments adjoining the column edge are thinner than those separating
holes). We have also studied the exchange of stability between the two modes by exploring the
secondary bifurcations in the system.

Both Euler and alternating modes exhibit regimes of localized buckling, in which the buckling
of the whole column occurs through buckling of thin ligaments around each hole, and at a critical
strain that is nearly independent of the column length. This localized buckling of ligaments is
captured by our asymptotic model, which provides an accurate quantitative description of the
buckling when the holes are large. The model illustrates how the different types of buckling
arise through deformation of the ligaments. The alternating mode involves bending of both
those ligaments separating holes and those adjoining the column edges; this explains why the
first buckling mode observed is the alternating mode only when both types of ligament are
thin. By contrast, the Euler mode in its localized ‘sliding’ form involves buckling only of the
ligaments adjoining the column edges, whereas in its global form the Euler mode involves
the compression or extension, but not buckling, of these ligaments. The buckling behaviour of
the column, and its dependence on the column geometry, can be understood and predicted from
ligament deformations, as we demonstrate quantitatively for localized buckling in the alternating
and Euler modes, equation (3.23). One reason for the success of the theory is that the buckling is
strain-dominated and occurs at such small strains that material nonlinearities, and hence details
of the constitutive law do not play a prominent role.

As shown in §4, these asymptotic ideas can be extended successfully to other elastic structures.
Further extensions, for example, to more general grid structures [22], could allow this type of
modelling to be used as a predictive tool for buckling in a wider range of perforated structures
and metamaterials [4]. Such structures may be unstable to out-of-plane buckling modes [20], in
addition to the in-plane modes we describe.

We find that, counterintuitively, the critical strain of Euler buckling in a column can be
significantly increased by the presence of holes in a column. One avenue for future investigation
is a more detailed study and experimental validation of this potentially useful phenomenon.
Although the compressed column bifurcates first from the unbuckled compression branch only
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through the Euler or the alternating modes, we have shown that other bifurcations can occur at
only slightly greater strains, notably higher-order Euler modes of buckling in the sliding regime.
This invites the possibility of custom tuning of buckling states, through the addition of small
geometrical changes or other imperfections in the system, or through dynamical effects. Most
studies of buckling in cellular structures, to date, have considered only quasi-static compression
of samples, but the dynamical compression is still largely unexplored, and could be of more
practical relevance in large structures. A step in this direction was taken by Box et al. [23], who
studied buckling in elastic and plastic cellular materials under dynamic compression, showing a
considerable difference in the response of the latter depending on the rate of compression. This
type of dynamic compression could, therefore, be explored with the aim of accessing modes other
than the first Euler mode or the alternating mode in the holey column.
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