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1  | INTRODUC TION

Does the brain activation induced by the robotic passive movement have 
TRR? Focusing on this simple question, the present paper attempts 
to provide an answer to it. The importance and background of this 
question are provided as follows.

The brain plasticity, the ability of the brain system to reorga-
nize its structure and function, is the basic mechanism for restor-
ing motor function in stroke patients (Cramer et al., 2011; Murphy 
& Corbett, 2009; Schaechter, 2004). Recovery of motor function 
by brain plasticity is made by modulating the brain activation 
through the manipulation of the external stimuli (Kaplan, 1988). 
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Abstract
Introduction: The basic paradigm of rehabilitation is based on the brain plasticity, and 
for promoting it, test–retest reliability (TRR) of brain activation in which certain area 
of the brain is repeatedly activated is required. In this study, we investigated whether 
the robotic passive movement has the TRR of brain activation. While active training 
has been shown to have TRR, but there still have been arguments over the TRR by 
passive movement.
Methods: In order to test TRR, 10 repetitive sessions and various intervals (1 day, 
3	days,	7	days,	23	days,	15	min,	and	6	hr)	were	applied	to	five	subjects,	which	had	the	
same statistical power as applying two sessions to 50 subjects. In each session, three 
robot speeds (0.25, 0.5, and 0.75 Hz) were applied to provide passive movement 
using	 the	 robot.	The	 fNIRS	signal	 (oxy-Hb)	generated	 in	 the	primary	sensorimotor	
area	(SM1)	was	measured	on	a	total	of	29	channels.	At	this	time,	we	used	activation	
maps and intraclass correlation coefficient (ICC) values to examine the TRR and the 
effect of robot speeds and intervals on TRR.
Results: As	a	result,	activation	maps	showed	prominent	variation	regardless	of	robot	
speeds and interval, and the ICC value (=0.002) showed no TRR of brain activation 
for robotic passive movement.
Conclusion: The brain activation induced by the robotic passive movement alone has 
very poor TRR, suggesting that further enhancement is required to strengthen the 
TRR by complementing active user engagements.
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Such stimuli encompass repeated physical movement training 
for physical rehabilitation, as was reported in the previous works 
(Rossini	 et	 al.,	 2007;	 Takahashi,	 Der-Yeghiaian,	 Le,	 Motiwala,	 &	
Cramer,	2008;	Tardy	et	al.,	2006).	Specifically,	through	the	steady,	
active movement training, the change due to the brain plasticity 
was confirmed by an activation area that had notably expanded 
(Willer, Ramsay, Wise, Friston, & Frackwiak, 1993). From these 
findings, we may infer two insights: First, the activation area is 
likely to serve as an epicenter from which the brain plasticity de-
velops; secondly, its repeated activation by a movement training 
appears crucial to promoting brain plasticity. The success in the 
repeated activation can be evaluated by the test–retest reliability 
(TRR).

The TRR refers to the consistency of measurement in various 
science fields (Weir, 2005). Thus, the TRR is evaluated as subjects 
repeat the experiments over two or more times under the same 
conditions	 (Streiner,	Norman,	&	Cairney,	2015).	 In	 the	neuroimag-
ing field, the TRR of brain activation represents how much likely a 
certain area is repeatedly activated, as has been manifested by the 
research works in the following paragraph.

The TRR is different depending on whether the motor task is 
active or passive. Regarding active movement, many previous stud-
ies	reported	that	there	is	good	TRR	in	brain	activation	(Bhambhani,	
Maikala,	 Farag,	 &	 Rowland,	 2006;	 Durduran	 et	 al.,	 2004;	 Plichta	
et	 al.,	 2007;	 Sato	 et	 al.,	 2006;	 Strangman,	 Goldstein,	 Rauch,	 &	
Stein,	 2006).	 Those	 works	 have	 unanimously	 supported	 the	 exis-
tence of strong TRR in active movements. How about the TRR in the 
passive movement case?

Before	we	discuss	it,	it	appears	necessary	to	explain	why	we	con-
sider the passive case in the first place, now that the active move-
ment	has	already	shown	the	strong	TRR.	An	important	reason	is	that	
those patients with severe symptoms who cannot actively move 
their affected body parts and yet need movement training for recov-
ery	have	to	rely	solely	on	passive	movement	training.	Accordingly,	
we believe the investigation on the passive case still is relevant and 
practical.

The TRR of passive movement has been reported by three re-
search	works	 (Estevez	 et	 al.,	 2014;	 Jaeger	 et	 al.,	 2015;	 Loubinoux	
et	al.,	2001).	All	of	 these	commonly	used	 fMRI,	but	 the	 results	are	
divided.	To	elaborate	Loubinoux	et	al.	 (2001)	examined	the	TRR	of	
passive wrist movement for six subjects between two sessions sep-
arated by one month, and reported large across-sessions variability 
in	 brain	 activation	 (Loubinoux	 et	 al.,	 2001),	 concluding	 essentially	
no TRR.	Jaeger	et	al.	(2015)	investigated	the	TRR	of	passive	stepping	
movements	 for	 16	 subjects	 between	 two	 sessions,	 6	weeks	 apart,	
and showed highly variable TRR—from poor to excellent—across the 
subjects, leading to an inconclusive result. Estevez et al. (2014) exam-
ined the TRR of passive elbow movement for 19 subjects between 
two sessions at intervals of 3–4 weeks and reported TRR of high level 
at the primary sensory-motor cortex, confirming the strong TRR.

Those divided results—one no-TRR, one inconclusive, and 
one strong TRR—are already prompting to conduct a separate 

investigation, even more so after close examination of each of 
the	 aforementioned	 studies.	 Loubinoux	 et	 al.	 (2001)	 used	 the	
paired t test to evaluate the TRR. Using it alone for the TRR 
appears problematic, because it compares the means of a data 
set in one session with another in a different session, neglect-
ing the individual across-session difference, which really has to 
be assessed by the intraclass correlation coefficient (ICC) values 
(Bruton,	 Conway,	 &	 Holgate,	 2000).	 The	 research	 result	 (Zaki,	
Bulgiba,	Nordin,	&	Ismail,	2013)	 is	alarming	that	the	TRR—based	
on some hypothetical data—by the paired t test was contradicted 
by that of the ICC. Furthermore, the paired t test is plagued with 
the traditional problem of statistical power with a low sample 
size	 (Bedard,	Martin,	Krueger,	&	Brazil,	2000).	Besides,	 it	 is	no-
ticeable that the three studies used end-effector type mechanism 
or robots, which are prone to various kinds of motion artifacts. 
For	 instance,	 Jaeger	et	al.	 (2015)	 reported	motion	artifacts	 that	
contaminated	the	data	of	eight	subjects—out	of	16.	The	robot	in	
Estevez et al. (2014), lacking devices to fix wrist, upper arm, and 
shoulder, is very likely to induce their voluntary movements, not 
the targeted elbow motion alone. In addition, the manual traction 
mechanism	in	Loubinoux	et	al.	(2001),	while	trying	to	achieve	ac-
curacy in the period and frequency, is liable to suffer from inac-
curacy and inconsistency.

The examination of the research above has made plain our re-
search direction: the use of an exoskeleton robot along with the 
ICC	measure.	 In	addition,	we	are	going	to	use	an	 fNIRS	 instead	of	
fMRI, considering the direction of our ongoing research: to investi-
gate the additional effect of video games on brain activation, which 
would be extremely difficult to include under the MRI environment. 
Furthermore,	while	the	fNIRS	has	lower	spatial	resolution	than	the	
fMRI	(Boas,	Dale,	&	Franceschini,	2004),	it	is	less	sensitive	to	motion	
artifacts and metallic materials, compared to other functional neu-
roimaging	techniques	(Bae,	Jang,	Seo,	&	Chang,	2017;	Li,	Inoue,	Liu,	
& Sun, 2013; Mihara, Yagura, Hatakenaka, Hattori, & Miyai, 2010).

To this end, we have incorporated an in-house developed exo-
skeletal robot having a capability to consistently provide accurate 
movements under high resistance torque, an important capabil-
ity	 for	 clinical	 rehabilitation	 (Butefisch,	 Hummelsheim,	 Denzler,	 &	
Mauritz,	 1995;	 Kwakkel,	 Kollen,	 &	 Lindeman,	 2004;	 Murphy	 &	
Corbett, 2009; Oujamaa, Relave, Froger, Mottet, & Pelissier, 2009). 
In order to evaluate the TRR, we have employed an ICC, one of 
the most widely used index for reliability in neuroimaging study 
(Bhambhani	et	al.,	2006;	Estevez	et	al.,	2014;	Li,	Zeng,	Lin,	Cazzell,	
&	 Liu,	 2015;	 Plichta	 et	 al.,	 2007;	Wiggins,	 Anderson,	 Kitterick,	 &	
Hartley,	2016).	Hence,	while	this	robot	offered	passive	movements	
to healthy subjects, the brain activation was to be measured by using 
an	 fNIRS	 system,	 from	which	 the	TRR	was	 examined.	 In	 this	 pro-
cess, the robot was made to provide three different velocities (slow, 
moderate, and fast) in order to investigate their effects on the brain 
activation and the TRR, out of our experience from a previous similar 
study that velocity difference matters to brain activation patterns 
(Bae	et	al.,	2017;	Jang	et	al.,	2015).
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2  | METHODS

2.1 | Selection of the number of subjects and 
number of repeated sessions

For the evaluation of the TRR, previous studies set the number 
of sessions first—usually, two—and then tried to include as many 
subjects as possible; in this study, however, we set the number of 
sessions first and then endeavored to involve as few subjects as pos-
sible.	As	a	result,	we	involved	10	repeated	sessions	on	five	subjects,	
which has the same statistical power as two repeated sessions on 50 
subjects (Donner & Eliasziw, 1987). Details of the statistical testing 
method are described below.

We used the power contour of the number of sessions (n) and 
subjects (k) proposed by Donner and Eliasziw (1987) (Donner & 
Eliasziw, 1987). The power contour displays the required numbers of 
n and k based on a certain statistical power where the parameter of 
interest is the ICC. The ICC, an indicator of TRR, has a value between 
0 and 1, and the closer to 1 means the higher reliability (Fleiss, 2011). 
A	more	detailed	description	is	provided	in	Section	2.6.2.

Donner and Eliasziw (1987) calculated n and k for testing null hy-
pothesis (H0: ρ = ρ0) and alternative hypothesis (H1: ρ > ρ0) at a chosen 
level of significance α	and	with	statistical	power	1−β. In other words, by 
setting the values of four parameters (ρ, ρ0, α,	and	1−β), we can get the 
power contour of n and k. More specifically, ρ is the value of ICC that 
experimenters expect and ρ0, the minimum value of ρ, is heuristically 
determined by experimenters according to their judgment (Donner & 

Eliasziw, 1987). The value of ρ was determined according to the evalu-
ation criteria reported in previous studies. Fleiss (2011) presented the 
evaluation criteria for ICC values as follows: poor (below 0.4), fair to 
good	(between	0.4	and	0.75),	and	excellent	(above	0.75),	and	also,	Li	
et al. (2015) suggested similar criteria: poor (below 0.4), fair (between 
0.4	and	0.6),	good	(between	0.6	and	0.75),	and	excellent	(above	0.75)	
(Fleiss,	2011;	Li	et	al.,	2015).	The	value	of	ρ is set to 0.4 as the expected 
ICC value, which is the boundary between poor and fair levels, so we 
can check for the value of TRR. Since there had been no report as 
to ρ0 we could refer to, we had to resort to a conservative value, the 
minimum of ρ, which is 0. Regarding α	and	1−β, we employed a gen-
erally accepted significance level (α = 0.05) and the statistical power 
(1 – β =	0.80)	 (Cohen,	2013).	Based	on	these	three	values	 (ρ = 0.4, 
ρ0 = 0, α = 0.05, and β = 0.20), the power contours can be obtained.

Figure 1 shows a group of power contours of n and k for several 
values of ρ	(0.1,	0.2,	0.4,	0.6,	and	0.8),	with	each	contour	being	deter-
mined by the value of ρ and representing different sets of n and k that 
have the same statistical power (Donner & Eliasziw, 1987). We se-
lected (n = 10, k = 4.31) from the power contour because we were in-
terested in the effect of many sessions and various intervals on TRR. 
Finally, we decided to perform 10 repetitive sessions in five subjects.

2.2 | Subjects

Since there was no previous study on the TRR of brain activation by 
robotic passive hand movement, we decided to test normal people, 

F I G U R E  1   The power contours of the 
number of subjects (k) and the number 
of sessions (n) for ρ =	0,	0.2,	0.4,	0.6,	0.8	
(Donner & Eliasziw, 1987). It shows the 
values of k and n for testing (H0: ρ = ρ0) 
versus (H1: ρ > ρ0) at a chosen level of 
significance α = 0.05 and with statistical 
power	1−β = 0.80
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before a clinical test. Five healthy subjects participated in the experi-
ment without any history of neurological, psychological, and physi-
cal	illnesses	(four	males,	average	age:	21.8,	range	21–23).	All	subjects	
were confirmed to be right-handed by using Edinburg Handedness 
Inventory	 (Oldfield,	 1971).	Before	 the	 experiment,	 all	 subjects	were	
fully informed about the purpose of the research and provided written, 
informed consent. This study was approved by the Institutional Review 
Board	of	Daegu	Gyeongbuk	Institute	of	Science	and	Technology.

2.3 | Robotic passive hand movement

As	was	mentioned,	 the	 robotic	 passive	 hand	movement	was	 se-
lected as an external stimulus to induce brain activation. The se-
lection of the hand part as the target was out of the consideration 
that it is in the hands where the loss of motor function is preva-
lent in stroke patients (Fischer et al., 2007). The finger extension, 
in particular, is easily damaged, making daily activities (e.g., but-
ton-down	 shirt,	 picking	 up	 cups)	 difficult	 (Cauraugh,	 Light,	 Kim,	
Thigpen,	&	Behrman,	2000;	Radomski	&	Latham,	2008).	For	 this	
reason, flexion and extension of four fingers were selected as the 
target movement. This movement was provided for all the subjects 
under the same experimental condition (range of movement, ve-
locity, and the number of repetitions).

That flexion/extension was realized by the kinematic mechanism, 
driven by actuators–sensors under the supervision of the control 
system, each of which is detailed in the following. The simultane-
ous flexion/extension of the four fingers was implemented in one 
degree of freedom motion produced by a four-bar linkage mecha-
nism. This mechanism has been synthesized so that it can accurately 

track a predefined trajectory generated by actual finger movement 
(Chang et al., 2014). Figure 2a,c show the top and left lateral side of 
the hand robot, respectively. The hand robot consists of two parts: 
the hand part and the forearm part (Figure 2c). The former provides 
30	degree	extension	(Figure	2b)	and	−90	degree	flexion	(Figure	2d)	
with the finger attached to the finger holder and with the palm sup-
ported by the hand rest, whereas the forearm was supported by the 
forearm rest (Figure 2c). The actuators/sensors comprise a brushless 
DC motor with an encoder (EC-i 40, Maxon motor, nominal torque 
43.3	mNm),	harmonic	drive	(CSF-11-50,	Sam-ik	THK,	gear	ratio	50:1),	
and force–torque sensor (TRT 100, Transducer Techniques; capacity 
range	11.30	Nm).	The	control	system	consists	of	a	hardware	platform	
and a real-time control system. The hardware platform consists of 
an	 industrial	PC	 (Intel	core	 i3-3240)	and	a	Sensoray	s626	board.	A	
real-time	control	system	consisting	of	Linux	Ubuntu	16.04	LTS	with	
Linux	 kernel	 4.1.18	 and	 Real-Time	 Application	 Interface	 for	 Linux	
(RTAI)	 Ver	 5.0.1	 systems	was	 installed	 on	 this	 hardware	 platform.	
In this environment, the time delay control (TDC) was implemented 
with a sampling time of 0.002 s (Youcef-Toumi & Ito, 1988).

In addition, the TRR was examined at three different velocities 
(slow, 0.25 Hz; moderated, 0.5 Hz; and fast, 0.75 Hz), according 
to previous studies reporting that brain activation became dif-
ferent	 depending	 on	 the	 three	 velocities	 (Bae	 et	 al.,	 2017;	 Jang	
et al., 2015).

2.4 | fNIRS measurement

In	 this	 study,	 brain	 activation	 was	 measured	 by	 an	 fNIRS	 system	
(LABNIRS;	 Shimadzu)	with	 continuous	 near-infrared	 light	 of	 three	

F I G U R E  2   (a) Top view of hand robot; 
it mainly shows the actuation part and 
finger holding part. The clamping screw 
can be used to fix or position the finger 
holder on the length adjustable rail. (b) 
Left	lateral	view	of	finger	extension	
(30	deg).	(c)	Left	lateral	view	of	hand	
robot; hand rest and forearm rest support 
hand	and	forearm,	respectively.	(d)	Left	
lateral	view	of	finger	flexion	(−90	deg)

(a) (b)

(c)

(d)



     |  5 of 13BAE Et Al.

wavelengths	(780,	805,	and	830	nm)	at	a	sampling	rate	of	27	Hz.	After	
measuring	the	optical	density	change	by	using	the	fNIRS	system,	we	
obtained the relative changes in concentration of oxygenated hemo-
globin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) accord-
ing	to	the	modified	Beer–Lambert	law,	and	then,	the	brain	activation	
was	evaluated	(Cope	&	Delpy,	1988;	Delpy	et	al.,	1988).	According	
to many previous findings that the oxy-Hb is the most sensitive to 
task-related hemodynamic changes, we have selected it as an index 
to assess the brain activation (Hoshi, Kobayashi, & Tamura, 2001; 
Strangman,	Culver,	 Thompson,	&	Boas,	 2002;	 Suzuki	 et	 al.,	 2004;	
Wolf et al., 2002).

For the measurement, after the ROI was set in the cerebral cor-
tex, the optode holder cap was placed on the head of the subject, 
and	 then,	 the	NIRS	optodes	were	arranged	 to	 cover	 the	ROI.	The	
primary	sensorimotor	cortex	(SM1;	BA1,	2,	3,	and	4)	of	the	left	hemi-
sphere	was	selected	as	the	ROI	considering	both	Brodmann's	area	
(BA)	and	the	anatomical	locations	of	the	brain	(Martin,	2012;	Mayka,	
Corcos,	Leurgans,	&	Vaillancourt,	2006).

We used the international 10–20 system and the anatomical 
landmark	positions,	such	as	cranial	vertex	(CZ),	left/right	preauricu-
lar	points	(AL/AR),	Nasion,	and	Inion,	in	order	to	position	the	optode	
holder	cap	on	the	head	for	each	subject	(Jasper,	1958).	Specifically,	
first, by using a measuring tape and marking pencil, we measured the 
length	from	the	Nasion	to	Inion	over	the	center	line	(see	Figure	3a)	
of	 the	scalp	and	marked	50%	of	 it	 to	 find	CZ.	Then,	we	measured	
the	length	from	AL	to	AR	and	marked	50%	of	it	and	reconfirm	the	
position	 of	CZ	 on	 the	 same	point.	 As	 shown	 in	 Figure	 3a,	we	 set	
Cz as a reference point and two perpendicular lines (one connecting 
Nasion/Inion	and	the	other	connecting	the	AL/AR)	as	reference	lines	
to locate the optode holder cap.

In	 order	 to	 cover	 the	 whole	 ROI,	 21	 NIRS	 optodes	 (11	 light	
sources and 10 detectors) were arranged in a double-density (DD) 
arrangement	provided	by	Shimadzu	fNIRS	system,	measuring	brain	
activation in a total 29 channels (Figure 3a,b). In DD arrangement, 

optodes are more densely arranged than the conventional ar-
rangement, for more measurement channels and spatial resolution 
(Ishikawa	et	al.,	2011;	Yamamoto	et	al.,	2002).	Note	that	the	DD	and	
conventional arrangement have the same source–detector (SD) dis-
tance of 3 cm for measuring brain activation, but the distance be-
tween	optodes	is	slightly	different.	As	shown	in	Figure	3a,	21	NIRS	
optodes are arranged in seven by three matrix arrangement. Each of 
the seven rows has three optodes placed 3 cm apart, and each of the 
three	columns	places	seven	optodes	with	1.5	cm	apart.	As	a	result,	a	
total of 29 channels are created in the center only if the source–de-
tector (SD)	distance	is	3	cm	(Figure	3b).	After	placement	of	the	op-
todes, the anatomical landmark positions of the international 10–20 
system and all the 3D coordinates of the optodes were measured 
by using the 3D digitizer of the Fastrak System (TX-2; Polhemus) 
(Okamoto et al., 2004).

2.5 | Test protocol

In this section, we describe the experimental conditions, procedures, 
and instructions for the subjects employed for the evaluation of the 
TRR	of	brain	activation.	As	is	illustrated	in	Figure	4,	we	have	equally	
applied to all the subjects the three experimental conditions: session 
intervals, the three velocities in each session, and the block design for 
each velocity.

As	to	the	session	intervals,	we	set	the	following	intervals:	1	day,	
3	days,	23	days,	7	days,	15	min,	and	6	hr,	as	is	shown	in	Figure	4a.	
Cumulatively, there were four daily sessions after the first ses-
sion, 1 week after it, 1 month, 37 days, and so on. This somewhat 
irregular interval setting needs some explanation. The original in-
tervals had been set as follows: 1 day (four times), 3 days, 23 days, 
1 month (twice), and 3 months; cumulatively, 1 day, 1 week, 1 month, 
2	months,	3	months,	and	6	months,	all	after	the	first	session.	We	had	
chosen these long intervals in order to observe long-term effects 

F I G U R E  3   (a)	The	arrangement	of	NIRS	optodes	from	the	dorsal	view	of	the	brain.	Twenty-one	NIRS	optodes	(11	light	sources	and	10	
detectors) are arranged in a seven by three rectangular arrangement on the left side of the brain. Each of the seven rows has three optodes 
being 3 cm apart, and each column places seven optodes with 1.5 cm apart. Each channel is created in the center between the source and 
detector only if the source–detector (SD) distance is 3 cm. (b) The location of 29 measurement channels
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that rehabilitation generally tends to involve. Since no TRR had been 
observed until 1 month, however, we made a decision to modify the 
remaining	 three	 intervals	 to	 1	week,	 15	min,	 and	 6	 hr.	 Compared	
with the intervals in the previous studies, which were set rather ar-
bitrarily	ranging	from	15	min	(Strangman	et	al.,	2006)	to	6	months	
(Sato	 et	 al.,	 2006)	 (Sato	 et	 al.,	 2006;	 Strangman	 et	 al.,	 2006),	 our	
interval setting fills in-between.

In each session, the robotic movements with three different 
velocities were exerted in random orders to all the patients, while 
the measurement is performed once for each velocity. For we were 
wondering if the velocity difference made any difference in the TRR, 
just	as	it	had	done	in	the	brain	activation	in	the	previous	studies	(Bae	
et	al.,	2017;	Jang	et	al.,	2015).	The	random	orders	were	generated	
by	using	the	random	permutation	function	“randperm”	of	MATLAB	
R2012b (The MathWorks) so that the order of measurement did not 
affect the results (Figure 4a).

These three velocities were exerted, and their corresponding ac-
tivations were measured by using the block design paradigm (Maki 
et al., 1995). Specifically, for each velocity, brain activation was mea-
sured during the triple repetition of a block consisting of a 10-s rest, 
a 20-s task, and a 10-s rest (Figure 4b). Thus, the three velocities 
took nine such blocks for each subject in a session.

The details of the test procedure are chronologically described 
together	with	the	instructions	for	the	subjects.	As	a	subject	entered	
an electromagnetically shielded room with minimal noise and light, 
he or she was ordered to sit down in a rehabilitation chair that can 
hold	the	body	part	as	needed.	After	the	trunk	was	fixed	to	the	chair	

with a strap to prevent the trunk movement, the subject was in-
structed to wear the robot on his or her right hand, together with 
verbal instruction, “please sit as comfortable as possible and relax.” 
After	placing	 the	optode	holder	cap	on	 the	subject's	head	and	 in-
serting the optodes into the cap, the preparation became completed 
for	 the	 measurement.	 A	 few	 instructions	 were	 given	 before	 the	
measurement started, such as “look at the front wall,” and “do not 
voluntarily move the body parts including the right hand during the 
measurement.”

Motion artifacts can easily be generated by the movement of the 
subject (especially head), causing a decoupling of optodes from the 
scalp,	which	affects	the	measured	signal	(Brigadoi	et	al.,	2014;	Cooper	
et	 al.,	 2012).	 Usually,	 motion	 artifacts	 in	 NIRS	 data	 are	 relatively	
easy	to	identify	by	observation	of	the	subject	during	NIRS	recording	
(Cooper et al., 2012). Therefore, in the measurement phase, whether 
the subject made spontaneous body movement was closely moni-
tored by two operators. Further, the irregular nature of the motion 
artifacts was contrasted by the regular movement by the robot, be-
coming	far	easier	to	discern.	After	the	experiments,	we	reconfirmed	
from all the subjects that there had been no voluntary movement.

2.6 | Data analysis

This	Section	describes	the	processing	of	 the	measured	fNIRS	data	
and their statistical analysis for the TRR of brain activation induced 
by robotic passive hand movement.

F I G U R E  4   (a) Schematic representation of experimental protocol; it describes interval, sessions, and three velocities from the top 
line. The order of three velocities is random in each session. (b) Schematic representation of the block design paradigm. During the triple 
repetition of a block consisting of a 10-s rest, a 20-s task, and a 10-s rest, the brain activation was measured for each velocity
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2.6.1 | Analysis for fNIRS

For	 data	 processing	 of	 the	 fNIRS	 signal,	 we	 used	 NIRS-SPM	
(Near	 Infrared	 Spectroscopy-Statistical	 Parametric	 Mapping;	
http://bisp.kaist.ac.kr/NIRS-SPM),	 a	 MATLAB-based	 software	
package	(Ye,	Tak,	Jang,	Jung,	&	Jang,	2009).	The	signal	process-
ing was performed in roughly four stages. In the first stage, spa-
tial registration of 3D coordinates of channels measured by the 
3D digitizer was performed to the standard brain space of the 
Montreal	 Neurological	 Institute	 (Singh,	 Okamoto,	 Dan,	 Jurcak,	
& Dan, 2005). It maps the measured channels to the standard 
brain.

In	the	second	stage,	we	have	preprocessed	the	fNIRS	signal	to	
remove the unwanted noise caused by task-related skin blood flow, 
motion artifact, and physiological oscillations.

First, task-related skin blood flow was removed by applying 
the independent component analysis	 (ICA)	 along	 with	 the	 coeffi-
cient of spatial uniformity (CSU). To elaborate, by using the built-in 
software	 of	 LABNIRS,	 we	 applied	 the	 Molgedev	 and	 Schuster-
ICA	 (Molgedey	&	Schuster,	 1994)	on	 raw	data,	with	 time	delays	
between	0	and	0.74	s	with	 steps	of	0.037	s,	 to	 fNIRS	 signals	of	
29	 channels.	 As	 a	 result,	 we	 obtained	 the	 independent	 oxy-Hb	
components and the mixing matrix, both of which were used to 
calculate the CSU value for each independent oxy-Hb component 
(Kohno et al., 2007). This CSU value determines the task-related 
skin blood flow. Specifically, Kohno et al. (2007) regarded the in-
dependent components with high CSU value as the task-related 
skin	blood	 flow.	As	such	high	CSU	values,	we	set	 the	one	equal	
or higher than 1.5 and removed independent component with 
high	CSU	value	from	the	fNIRS	signal	(Seiyama,	Higaki,	Takeuchi,	
Uehara,	&	Takayama,	2016).

Second, noises due to motion artifacts and physiological oscilla-
tions	were	eliminated	by	appropriate	filters	embedded	in	the	NIRS-
SPM (Ye et al., 2009): Gaussian smoothing with a full width at half 
maximum of 2 s (Worsley & Friston, 1995) as a low-pass filter and 
wavelet-minimum	 description	 length	 detrending	 algorithm	 (Jang	
et al., 2009) as a high-pass filter.

In	the	third	stage,	the	general	linear	model	(GLM),	one	of	the	lin-
ear regression model, was used for statistical analysis to infer the 

brain area that was significantly activated during the robotic passive 
hand	movement	 (Friston	 et	 al.,	 1994).	 The	GLM	 is	 defined	 by	 the	
following Equation 1:

where Y denotes the vector of measured oxy-Hb data in time series. 
X stands for a design matrix that is a convolution of the canonical he-
modynamic response function and block design function, which means 
the expected oxy-Hb response under our block design condition. ε 
represents the vector of measurement error. β denotes the parameter 
vector,	which	corresponds	to	the	regression	coefficient	of	GLM	and	
means the amplitude of the oxy-Hb reaction. Through the least square 
estimation, β is obtained so that ε may be minimized for each channel.

In the fourth stage, we are to infer the significantly activated area 
by obtaining individual t-statistics maps using the β for each subject. 
At	this	time,	individual	t-statistics maps are obtained through a t test 
that tests the null hypothesis that β is 0 (meaning no significant brain 
activation)	 for	each	subject	 (Ye,	Tak,	Jang,	Jung,	&	Jang,	2009).	At	
this time, t statistics of β was used as an index for verifying the sig-
nificance of brain activation at the level of p <	 .05.	The	Lipschitz–
Killing curvature-based Euler characteristic (EC) approach was used 
to control the familywise error rate resulting from multiple statistical 
hypothesis	tests	(Li,	Tak,	&	Ye,	2012).

2.6.2 | Linear mixed effect model and ICC

In this study, we investigated the effect of the variables of interest 
(session intervals, robot velocities, subject, and session) on brain 
activation and TRR through the linear mixed effect model and ICC.

In order to perform statistical analysis on repeated measure-
ment	data,	we	have	selected	a	 linear	mixed	effect	model	 (LMM).	
The	 LMM	was	 particularly	 useful	 to	 our	 study	 for	 the	 following	
reasons: Firstly, we can set up the relationship of the t statistics 
of β to various variables of interest such as subjects, sessions, in-
tervals, and robot velocities. Secondly, we can easily appropriate 
these variables to either the fixed effect or random effect. Finally, 
as a direct outcome of the second reason, assigning the subject to 
the random effect enables us to analyze the within-subject correla-
tion, correlation data from different sessions of the same subject 
(Gelman	&	Hill,	 2006;	 Laird	&	Ware,	1982;	 Littell,	Pendergast,	&	
Natarajan,	2000).

The	LMM	used	in	this	study	can	be	written	as

where yijkl, the dependent variable, is the t statistics of β (see 
Section	2.6.1)	at	the	session	j for channel l of subject i under the con-
dition of velocity k. μ is a grand mean of all yijkl. αk is a vector of fixed 
effect for velocity and xj is a vector of fixed effect for the interval 

(1)Y = X� + �

(2)

y���� = � + �k + �xj + bi + b�� + �����

i = 1,…, 5

j = 1 day, 1 day, 1 day, 1 day, 3 days, 23 days, 7 days, 0.01047 day (=15min), 0.25 day (=6 hr)

k = 0.25 Hz, 0.5 Hz, 0.75 Hz

l = 1,…, 29

bi ∼ N
(

0, �2
subject

)

, b�� ∼ N
(

0, �2
session nested by subject

)

, ����� ∼ N
(

0, �2
error

)

http://bisp.kaist.ac.kr/NIRS-SPM
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between j th session and j+1 th session, and γ is the vector of regres-
sion	coefficients.	The	two	intervals,	15	min	and	6	hr,	were	converted	
to 0.01047 and 0.25 day, respectively, with 1 day being used as its 
standard unit. bi is a vector of random effect for subjects, bij is a vector 
of nested random effect for sessions within a subject, and εijkl is the 
residual error. The random effects bi are independently distributed 
from N

(

0, �2
subject

)

 and bij are independently distributed from 
N
(

0, �2
session

)

.	Also,	εijkl are independently distributed from N
(

0, �2
error

)

.	The	statistical	analysis	of	LMM	was	performed	by	lmer	function	in	
the	 lme4	package	 (Bates,	Maechler,	Bolker,	 and	Walker	2014a)	and	
other	packages	(e.g.,	dplyr,	base,	rJAva,	xlsxjars,	and	stats)	supplied	in	
the	 R	 system	 for	 statistical	 computing	 (Ver.	 3.4.4;	 R	 Development	
Core Team, 2018).

To quantify the TRR of brain activation, we used the ICC. 
Conceptually, the ICC represents the proportion of the total vari-
ance in the measurements which is due to between-subject differ-
ences (Streiner et al., 2015). In this study, the ICC can be defined as 
follows:

In this equation, �2
subject

 means between-subject variance, 
�2
session:subject

 means between-session variance nested by subject, and 
�2
error

 means the variance of residual error. ICC close to 1 represents 
high TRR and occurs when the between-subjects variance is much 
larger	than	the	variance	of	others	(Johnstone	et	al.,	2005).

3  | RESULTS

This Section reports three main results. First is the activation map 
of oxy-Hb, which shows how the brain activation induced by robotic 
passive hand movement changes according to the session and ve-
locity	of	robot.	The	second	is	the	result	of	LMM	statistical	analysis,	
which confirms the effect of the variables (interval, velocity of robot, 

subject, and session) of interest on brain activation and TRR. The 
third is the ICC value for evaluating TRR.

As	a	first	result,	Figure	5	shows	the	activation	map	of	one	sub-
ject, displaying activation areas, if there is any, according to a ses-
sion and velocity. The highlighted area showed significant activation 
at the level of p <	 .05.	An	activation	map	with	no	highlighted	area	
means there is no significantly activated area. Clearly a trend was 
observed that a velocity that induced significant activation of SM1 
in one session could not do so in other sessions. More generally, ses-
sion-to-session variation is prominent in the existence of activation, 
in its intensity, and in its area.

As	a	second	result,	Table	1	summarizes	the	LMM	analysis,	show-
ing the effect of the fixed effect (velocity of the robot (αk) and inter-
val (γ)) on t statistics of β	(see	Section	2.6.1).

The estimate of αk and γ	of	the	LMM,	according	to	Equation	2,	
corresponds to the estimate	of	velocity	and	interval	in	TABLE	1.	The	
T value in this table is used to determine the significance level and 
the relationship between the fixed effect and the t statistics of β. If 
the absolute T value	is	greater	than	1.96,	the	fixed	effect	is	consid-
ered statistically significant at the significance level of 5% (Gelman & 
Hill,	2006).	With	respect	to	the	effect	of	velocity,	the	t statistics of β 
is significantly smaller at 0.5 Hz than 0.25 Hz and 0.75 Hz. However, 
the effect of interval on the t statistics of β was not significant.

As	the	third	result,	an	ICC	value	of	0.002	was	obtained.	To	cal-
culate the ICC value, the variance of random effects (subject (bi), 
session nested by subject (bij), and residual error (εijkl)) were used 
(Table 2). The ICC value of 0.002 means poor TRR according to the 
guide interpretation of ICC described above.

4  | DISCUSSION AND CONCLUSION

We began this study with the question: “Does the brain activation 
induced by the robotic passive movement have TRR?” The answer 
is negative. Poor TRR was confirmed, based on the activation map 

(3)ICC = �2
subject

∕�2
subject

+�2
session:subject

+�2
error

F I G U R E  5  Activation	maps	of	one	subject	according	to	velocity	and	session.	The	intervals	between	2	consecutive	sessions	are	shown	in	
the top row. The highlighted area showed significant activation at the level of p < .05
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and ICC value. In other words, repeated activation of an area is not 
achievable with the passive robotic movement, and brain plasticity 
cannot be expected. This result is in contrast to those of active hand 
movements.	 Note	 that	 the	 passive	 movement	 training	 by	 human 
therapists—no clinical study has reported yet—is unlikely to produce 
any better result. For what the subjects passively receive is essen-
tially the same movement, whether from a therapist or from a robot; 
though the former tends to lack the accuracy and consistency, the 
latter possesses in generating the movement.

Three studies examined the TRR of passive movement and re-
ported	divided	results;	Loubinoux	et	al.	 (2001)	 reported	poor	TRR	
(Loubinoux	 et	 al.,	 2001),	 while	 another	 (Estevez	 et	 al.,	 2014)	 ob-
served TRR of high level at the SM1 area, the ROI; and still, another 
(Jaeger	et	al.,	2015)	showed	inconclusive	results,	with	some	subjects	
showing good TRR and others showing poor TRR. Obviously, these 
divided results are directly attributable to substantially variable 
brain activations, which in turn could be explained as the outcome 
of flawed tests coming from the motion artifacts or the misleading 
interpretation lacking the ICC, mentioned in Introduction. The fact 
that those tests using fMRI with the highest spatial resolution could 
have generated such different results is noteworthy, underlining the 
importance of controlling experimental attributes.

Compared to the previous studies, the ICC value we have ob-
tained is 0.002, an order of about 1/100 times smaller, which could 
be viewed as a more definitive	 result	 (Estevez	 et	 al.,	 2014;	 Jaeger	
et	 al.,	 2015).	 Nevertheless,	what	 it	means	 to	 have	 that	 ICC	 value	
generated by a low-resolution-tester	like	fNIRS	is	open	to	questions,	
prompting further investigation. Our study, too, has observed a high 
level of across-session variability in brain activation. The variability 

may be ascribed to the weakness of the stimulus, the characteris-
tics shared by any passive movement. It could also have come from 
the familiarity	with	the	fNIRS	environment,	diminishing	the	attention	
and	 affecting	 brain	 activation	 (Loubinoux	 et	 al.,	 2001).	 The	 famil-
iarity factor could have been severe in our experiments, since a 10 
times repetition of the same passive movements was conducted by 
the participants.

What causes then the difference between the passive movement 
and the active one in the TRR? The main difference, we believe, lies 
in the presence of active user engagement in the active movements 
(Blank,	 French,	 Pehlivan,	 &	 O'Malley,	 2014;	 Weiller	 et	 al.,	 1996),	
which explains the recent emphasis on its importance and its en-
hancement	(Blank	et	al.,	2014;	Krebs,	Volpe,	&	Hogan,	2009).	User	
engagement is defined as effortful striving toward task goals and 
is known to be affected by mental effort, motivation, and affective 
status (Fairclough, Gilleade, Ewing, & Roberts, 2013). Previous stud-
ies proved the effect of user engagement to active movement train-
ing (Ferraro et al., 2003; Krebs et al., 2009). The active engagement 
theory has been further supported by a study reports that it induces 
in a rat model the neural plasticity in motor learning (Warraich & 
Kleim, 2010). However, the user engagement in passive movement 
thought to be low because it is achieved involuntarily by the thera-
pist or robot. In addition, disengagement can also occur if the subject 
becomes easily bored and indifferent to simple repetitive passive 
movement	(O'Brien	&	Toms,	2008).	Considering	these	encouraging	
results and the still existing need for passive movement training for 
some patients, one may consider to take a course that attempts a 
passive training involving the active engagement.

What is necessary to induce TRR in passive movement? Two 
such approaches have already been underway. The one is to provide 
visual, auditory, or tactile cues that encourage active engagement 
during	passive	hand	movement	(Blank	et	al.,	2014).	The	other	is	to	
apply motor imagery practice which refers to imagining without 
physical movement to learn or improve motor ability (Denis, 1985). 
The previous study reported that physical therapy combined with 
motor imagery practice for stroke patients improves motor func-
tion	and	ability	(Page,	2000).	Song,	Oh,	Jeong,	Kim,	and	Kim	(2018)	
developed a brain–computer interface system that detects move-
ment intention through motor imagery and provides robotic passive 
movement (Song et al., 2018). Hopefully, we like to be able to see 
more progress in robotic passive movement protocols enhanced 
with active engagement that target the TRR, and ultimately brain 
plasticity.

Unlike the previous studies, we decided the number of sessions 
(n = 10) first before the number of subjects (k = 5), by using the power 
contour based on the statistical power (Donner & Eliasziw, 1987). 
Table 3 shows that all of the previous studies involved two sessions, 
whereas	the	number	of	subjects	varied	from	two	to	25	(Bhambhani	
et	 al.,	 2006;	 Durduran	 et	 al.,	 2004;	 Plichta	 et	 al.,	 2007;	 Sato	
et	al.,	2006;	Strangman	et	al.,	2006).	 In	comparison,	our	combina-
tion, n = 10 and k = 5, has a statistical power equivalent to n = 2 and 
k = 50 in the previous studies. Even if the method by Donner and 
Eliasziw (1987) is a statistical approach that is mathematically true 

TA B L E  1  Summary	of	LMM	results	examining	t statistics of β in 
relation to the fixed effects (velocity and interval)

Fixed effects Estimate Standard error
T 
value

Velocity

α0.25 Hz (intercept) −0.075 0.117 −0.641

α0.5 Hz −0.304 0.107 −2.833

α0.75 Hz 0.072 0.107 0.669

Interval

γ 0.019 0.010 1.864

TA B L E  2  Summary	of	LMM	of	random	effects.	ICC	was	
calculated by using the variance of each effect

Random effects Variance
Standard 
deviation

Session nested by subject

bij �2
session:subject

: 0.149 0.387

Subject

bi �2
subject

: 0.013 0.115

Residual error

εijkl �2
error
:	7.506 2.740
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and universally applicable, it is still necessary to conduct a cross-
check in the future to confirm if the same result is obtained with this 
combination (n = 2 and k = 50). If it is confirmed the implication may 
be very significant in many experimental studies including the one 
on the TRR of brain activation, offering useful and convenient alter-
natives between the number of sessions and the number of subjects.

Although	the	main	topic	of	this	study	was	to	examine	the	TRR,	
some additional understanding has been obtained as to how the 
brain activation is related to robot velocity and session interval, 
respectively. More specifically, the significance of brain activation 
being represented by t statistics of β as displayed in Table 1, its com-
parison exhibits the respective effect of velocity and interval on the 
activation.	As	to	the	velocity,	0.5	Hz	has	a	significantly	lower	activa-
tion than that of other velocities, enabling us to deduce that there 
exists	no	linear	relationship	between	velocity	and	activation.	As	to	
the interval, it has no significant relationship with brain activation. 
From these two points, one may draw a conclusion that both the 
velocity difference and interval are not critical for brain activation in 
the case of passive movement.
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