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1  | INTRODUC TION

Does the brain activation induced by the robotic passive movement have 
TRR? Focusing on this simple question, the present paper attempts 
to provide an answer to it. The importance and background of this 
question are provided as follows.

The brain plasticity, the ability of the brain system to reorga-
nize its structure and function, is the basic mechanism for restor-
ing motor function in stroke patients (Cramer et al., 2011; Murphy 
& Corbett, 2009; Schaechter, 2004). Recovery of motor function 
by brain plasticity is made by modulating the brain activation 
through the manipulation of the external stimuli (Kaplan,  1988). 
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Abstract
Introduction: The basic paradigm of rehabilitation is based on the brain plasticity, and 
for promoting it, test–retest reliability (TRR) of brain activation in which certain area 
of the brain is repeatedly activated is required. In this study, we investigated whether 
the robotic passive movement has the TRR of brain activation. While active training 
has been shown to have TRR, but there still have been arguments over the TRR by 
passive movement.
Methods: In order to test TRR, 10 repetitive sessions and various intervals (1 day, 
3 days, 7 days, 23 days, 15 min, and 6 hr) were applied to five subjects, which had the 
same statistical power as applying two sessions to 50 subjects. In each session, three 
robot speeds (0.25, 0.5, and 0.75  Hz) were applied to provide passive movement 
using the robot. The fNIRS signal (oxy-Hb) generated in the primary sensorimotor 
area (SM1) was measured on a total of 29 channels. At this time, we used activation 
maps and intraclass correlation coefficient (ICC) values to examine the TRR and the 
effect of robot speeds and intervals on TRR.
Results: As a result, activation maps showed prominent variation regardless of robot 
speeds and interval, and the ICC value (=0.002) showed no TRR of brain activation 
for robotic passive movement.
Conclusion: The brain activation induced by the robotic passive movement alone has 
very poor TRR, suggesting that further enhancement is required to strengthen the 
TRR by complementing active user engagements.
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Such stimuli encompass repeated physical movement training 
for physical rehabilitation, as was reported in the previous works 
(Rossini et  al.,  2007; Takahashi, Der-Yeghiaian, Le, Motiwala, & 
Cramer, 2008; Tardy et al., 2006). Specifically, through the steady, 
active movement training, the change due to the brain plasticity 
was confirmed by an activation area that had notably expanded 
(Willer, Ramsay, Wise, Friston, & Frackwiak,  1993). From these 
findings, we may infer two insights: First, the activation area is 
likely to serve as an epicenter from which the brain plasticity de-
velops; secondly, its repeated activation by a movement training 
appears crucial to promoting brain plasticity. The success in the 
repeated activation can be evaluated by the test–retest reliability 
(TRR).

The TRR refers to the consistency of measurement in various 
science fields (Weir, 2005). Thus, the TRR is evaluated as subjects 
repeat the experiments over two or more times under the same 
conditions (Streiner, Norman, & Cairney, 2015). In the neuroimag-
ing field, the TRR of brain activation represents how much likely a 
certain area is repeatedly activated, as has been manifested by the 
research works in the following paragraph.

The TRR is different depending on whether the motor task is 
active or passive. Regarding active movement, many previous stud-
ies reported that there is good TRR in brain activation (Bhambhani, 
Maikala, Farag, & Rowland,  2006; Durduran et  al.,  2004; Plichta 
et  al.,  2007; Sato et  al.,  2006; Strangman, Goldstein, Rauch, & 
Stein,  2006). Those works have unanimously supported the exis-
tence of strong TRR in active movements. How about the TRR in the 
passive movement case?

Before we discuss it, it appears necessary to explain why we con-
sider the passive case in the first place, now that the active move-
ment has already shown the strong TRR. An important reason is that 
those patients with severe symptoms who cannot actively move 
their affected body parts and yet need movement training for recov-
ery have to rely solely on passive movement training. Accordingly, 
we believe the investigation on the passive case still is relevant and 
practical.

The TRR of passive movement has been reported by three re-
search works (Estevez et  al.,  2014; Jaeger et  al.,  2015; Loubinoux 
et al., 2001). All of these commonly used fMRI, but the results are 
divided. To elaborate Loubinoux et al.  (2001) examined the TRR of 
passive wrist movement for six subjects between two sessions sep-
arated by one month, and reported large across-sessions variability 
in brain activation (Loubinoux et  al.,  2001), concluding essentially 
no TRR. Jaeger et al. (2015) investigated the TRR of passive stepping 
movements for 16 subjects between two sessions, 6 weeks apart, 
and showed highly variable TRR—from poor to excellent—across the 
subjects, leading to an inconclusive result. Estevez et al. (2014) exam-
ined the TRR of passive elbow movement for 19 subjects between 
two sessions at intervals of 3–4 weeks and reported TRR of high level 
at the primary sensory-motor cortex, confirming the strong TRR.

Those divided results—one no-TRR, one inconclusive, and 
one strong TRR—are already prompting to conduct a separate 

investigation, even more so after close examination of each of 
the aforementioned studies. Loubinoux et  al.  (2001) used the 
paired t test to evaluate the TRR. Using it alone for the TRR 
appears problematic, because it compares the means of a data 
set in one session with another in a different session, neglect-
ing the individual across-session difference, which really has to 
be assessed by the intraclass correlation coefficient (ICC) values 
(Bruton, Conway, & Holgate,  2000). The research result (Zaki, 
Bulgiba, Nordin, & Ismail, 2013) is alarming that the TRR—based 
on some hypothetical data—by the paired t test was contradicted 
by that of the ICC. Furthermore, the paired t test is plagued with 
the traditional problem of statistical power with a low sample 
size (Bedard, Martin, Krueger, & Brazil, 2000). Besides, it is no-
ticeable that the three studies used end-effector type mechanism 
or robots, which are prone to various kinds of motion artifacts. 
For instance, Jaeger et al.  (2015) reported motion artifacts that 
contaminated the data of eight subjects—out of 16. The robot in 
Estevez et al. (2014), lacking devices to fix wrist, upper arm, and 
shoulder, is very likely to induce their voluntary movements, not 
the targeted elbow motion alone. In addition, the manual traction 
mechanism in Loubinoux et al. (2001), while trying to achieve ac-
curacy in the period and frequency, is liable to suffer from inac-
curacy and inconsistency.

The examination of the research above has made plain our re-
search direction: the use of an exoskeleton robot along with the 
ICC measure. In addition, we are going to use an fNIRS instead of 
fMRI, considering the direction of our ongoing research: to investi-
gate the additional effect of video games on brain activation, which 
would be extremely difficult to include under the MRI environment. 
Furthermore, while the fNIRS has lower spatial resolution than the 
fMRI (Boas, Dale, & Franceschini, 2004), it is less sensitive to motion 
artifacts and metallic materials, compared to other functional neu-
roimaging techniques (Bae, Jang, Seo, & Chang, 2017; Li, Inoue, Liu, 
& Sun, 2013; Mihara, Yagura, Hatakenaka, Hattori, & Miyai, 2010).

To this end, we have incorporated an in-house developed exo-
skeletal robot having a capability to consistently provide accurate 
movements under high resistance torque, an important capabil-
ity for clinical rehabilitation (Butefisch, Hummelsheim, Denzler, & 
Mauritz,  1995; Kwakkel, Kollen, & Lindeman,  2004; Murphy & 
Corbett, 2009; Oujamaa, Relave, Froger, Mottet, & Pelissier, 2009). 
In order to evaluate the TRR, we have employed an ICC, one of 
the most widely used index for reliability in neuroimaging study 
(Bhambhani et al., 2006; Estevez et al., 2014; Li, Zeng, Lin, Cazzell, 
& Liu,  2015; Plichta et  al.,  2007; Wiggins, Anderson, Kitterick, & 
Hartley, 2016). Hence, while this robot offered passive movements 
to healthy subjects, the brain activation was to be measured by using 
an fNIRS system, from which the TRR was examined. In this pro-
cess, the robot was made to provide three different velocities (slow, 
moderate, and fast) in order to investigate their effects on the brain 
activation and the TRR, out of our experience from a previous similar 
study that velocity difference matters to brain activation patterns 
(Bae et al., 2017; Jang et al., 2015).
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2  | METHODS

2.1 | Selection of the number of subjects and 
number of repeated sessions

For the evaluation of the TRR, previous studies set the number 
of sessions first—usually, two—and then tried to include as many 
subjects as possible; in this study, however, we set the number of 
sessions first and then endeavored to involve as few subjects as pos-
sible. As a result, we involved 10 repeated sessions on five subjects, 
which has the same statistical power as two repeated sessions on 50 
subjects (Donner & Eliasziw, 1987). Details of the statistical testing 
method are described below.

We used the power contour of the number of sessions (n) and 
subjects (k) proposed by Donner and Eliasziw (1987) (Donner & 
Eliasziw, 1987). The power contour displays the required numbers of 
n and k based on a certain statistical power where the parameter of 
interest is the ICC. The ICC, an indicator of TRR, has a value between 
0 and 1, and the closer to 1 means the higher reliability (Fleiss, 2011). 
A more detailed description is provided in Section 2.6.2.

Donner and Eliasziw (1987) calculated n and k for testing null hy-
pothesis (H0: ρ = ρ0) and alternative hypothesis (H1: ρ > ρ0) at a chosen 
level of significance α and with statistical power 1−β. In other words, by 
setting the values of four parameters (ρ, ρ0, α, and 1−β), we can get the 
power contour of n and k. More specifically, ρ is the value of ICC that 
experimenters expect and ρ0, the minimum value of ρ, is heuristically 
determined by experimenters according to their judgment (Donner & 

Eliasziw, 1987). The value of ρ was determined according to the evalu-
ation criteria reported in previous studies. Fleiss (2011) presented the 
evaluation criteria for ICC values as follows: poor (below 0.4), fair to 
good (between 0.4 and 0.75), and excellent (above 0.75), and also, Li 
et al. (2015) suggested similar criteria: poor (below 0.4), fair (between 
0.4 and 0.6), good (between 0.6 and 0.75), and excellent (above 0.75) 
(Fleiss, 2011; Li et al., 2015). The value of ρ is set to 0.4 as the expected 
ICC value, which is the boundary between poor and fair levels, so we 
can check for the value of TRR. Since there had been no report as 
to ρ0 we could refer to, we had to resort to a conservative value, the 
minimum of ρ, which is 0. Regarding α and 1−β, we employed a gen-
erally accepted significance level (α = 0.05) and the statistical power 
(1 – β = 0.80) (Cohen, 2013). Based on these three values (ρ = 0.4, 
ρ0 = 0, α = 0.05, and β = 0.20), the power contours can be obtained.

Figure 1 shows a group of power contours of n and k for several 
values of ρ (0.1, 0.2, 0.4, 0.6, and 0.8), with each contour being deter-
mined by the value of ρ and representing different sets of n and k that 
have the same statistical power (Donner & Eliasziw, 1987). We se-
lected (n = 10, k = 4.31) from the power contour because we were in-
terested in the effect of many sessions and various intervals on TRR. 
Finally, we decided to perform 10 repetitive sessions in five subjects.

2.2 | Subjects

Since there was no previous study on the TRR of brain activation by 
robotic passive hand movement, we decided to test normal people, 

F I G U R E  1   The power contours of the 
number of subjects (k) and the number 
of sessions (n) for ρ = 0, 0.2, 0.4, 0.6, 0.8 
(Donner & Eliasziw, 1987). It shows the 
values of k and n for testing (H0: ρ = ρ0) 
versus (H1: ρ > ρ0) at a chosen level of 
significance α = 0.05 and with statistical 
power 1−β = 0.80
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before a clinical test. Five healthy subjects participated in the experi-
ment without any history of neurological, psychological, and physi-
cal illnesses (four males, average age: 21.8, range 21–23). All subjects 
were confirmed to be right-handed by using Edinburg Handedness 
Inventory (Oldfield,  1971). Before the experiment, all subjects were 
fully informed about the purpose of the research and provided written, 
informed consent. This study was approved by the Institutional Review 
Board of Daegu Gyeongbuk Institute of Science and Technology.

2.3 | Robotic passive hand movement

As was mentioned, the robotic passive hand movement was se-
lected as an external stimulus to induce brain activation. The se-
lection of the hand part as the target was out of the consideration 
that it is in the hands where the loss of motor function is preva-
lent in stroke patients (Fischer et al., 2007). The finger extension, 
in particular, is easily damaged, making daily activities (e.g., but-
ton-down shirt, picking up cups) difficult (Cauraugh, Light, Kim, 
Thigpen, & Behrman, 2000; Radomski & Latham, 2008). For this 
reason, flexion and extension of four fingers were selected as the 
target movement. This movement was provided for all the subjects 
under the same experimental condition (range of movement, ve-
locity, and the number of repetitions).

That flexion/extension was realized by the kinematic mechanism, 
driven by actuators–sensors under the supervision of the control 
system, each of which is detailed in the following. The simultane-
ous flexion/extension of the four fingers was implemented in one 
degree of freedom motion produced by a four-bar linkage mecha-
nism. This mechanism has been synthesized so that it can accurately 

track a predefined trajectory generated by actual finger movement 
(Chang et al., 2014). Figure 2a,c show the top and left lateral side of 
the hand robot, respectively. The hand robot consists of two parts: 
the hand part and the forearm part (Figure 2c). The former provides 
30 degree extension (Figure 2b) and −90 degree flexion (Figure 2d) 
with the finger attached to the finger holder and with the palm sup-
ported by the hand rest, whereas the forearm was supported by the 
forearm rest (Figure 2c). The actuators/sensors comprise a brushless 
DC motor with an encoder (EC-i 40, Maxon motor, nominal torque 
43.3 mNm), harmonic drive (CSF-11-50, Sam-ik THK, gear ratio 50:1), 
and force–torque sensor (TRT 100, Transducer Techniques; capacity 
range 11.30 Nm). The control system consists of a hardware platform 
and a real-time control system. The hardware platform consists of 
an industrial PC (Intel core i3-3240) and a Sensoray s626 board. A 
real-time control system consisting of Linux Ubuntu 16.04 LTS with 
Linux kernel 4.1.18 and Real-Time Application Interface for Linux 
(RTAI) Ver 5.0.1 systems was installed on this hardware platform. 
In this environment, the time delay control (TDC) was implemented 
with a sampling time of 0.002 s (Youcef-Toumi & Ito, 1988).

In addition, the TRR was examined at three different velocities 
(slow, 0.25 Hz; moderated, 0.5 Hz; and fast, 0.75 Hz), according 
to previous studies reporting that brain activation became dif-
ferent depending on the three velocities (Bae et  al.,  2017; Jang 
et al., 2015).

2.4 | fNIRS measurement

In this study, brain activation was measured by an fNIRS system 
(LABNIRS; Shimadzu) with continuous near-infrared light of three 

F I G U R E  2   (a) Top view of hand robot; 
it mainly shows the actuation part and 
finger holding part. The clamping screw 
can be used to fix or position the finger 
holder on the length adjustable rail. (b) 
Left lateral view of finger extension 
(30 deg). (c) Left lateral view of hand 
robot; hand rest and forearm rest support 
hand and forearm, respectively. (d) Left 
lateral view of finger flexion (−90 deg)

(a) (b)

(c)

(d)
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wavelengths (780, 805, and 830 nm) at a sampling rate of 27 Hz. After 
measuring the optical density change by using the fNIRS system, we 
obtained the relative changes in concentration of oxygenated hemo-
globin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) accord-
ing to the modified Beer–Lambert law, and then, the brain activation 
was evaluated (Cope & Delpy, 1988; Delpy et al., 1988). According 
to many previous findings that the oxy-Hb is the most sensitive to 
task-related hemodynamic changes, we have selected it as an index 
to assess the brain activation (Hoshi, Kobayashi, & Tamura, 2001; 
Strangman, Culver, Thompson, & Boas,  2002; Suzuki et  al.,  2004; 
Wolf et al., 2002).

For the measurement, after the ROI was set in the cerebral cor-
tex, the optode holder cap was placed on the head of the subject, 
and then, the NIRS optodes were arranged to cover the ROI. The 
primary sensorimotor cortex (SM1; BA1, 2, 3, and 4) of the left hemi-
sphere was selected as the ROI considering both Brodmann's area 
(BA) and the anatomical locations of the brain (Martin, 2012; Mayka, 
Corcos, Leurgans, & Vaillancourt, 2006).

We used the international 10–20 system and the anatomical 
landmark positions, such as cranial vertex (CZ), left/right preauricu-
lar points (AL/AR), Nasion, and Inion, in order to position the optode 
holder cap on the head for each subject (Jasper, 1958). Specifically, 
first, by using a measuring tape and marking pencil, we measured the 
length from the Nasion to Inion over the center line (see Figure 3a) 
of the scalp and marked 50% of it to find CZ. Then, we measured 
the length from AL to AR and marked 50% of it and reconfirm the 
position of CZ on the same point. As shown in Figure  3a, we set 
Cz as a reference point and two perpendicular lines (one connecting 
Nasion/Inion and the other connecting the AL/AR) as reference lines 
to locate the optode holder cap.

In order to cover the whole ROI, 21 NIRS optodes (11 light 
sources and 10 detectors) were arranged in a double-density (DD) 
arrangement provided by Shimadzu fNIRS system, measuring brain 
activation in a total 29 channels (Figure 3a,b). In DD arrangement, 

optodes are more densely arranged than the conventional ar-
rangement, for more measurement channels and spatial resolution 
(Ishikawa et al., 2011; Yamamoto et al., 2002). Note that the DD and 
conventional arrangement have the same source–detector (SD) dis-
tance of 3 cm for measuring brain activation, but the distance be-
tween optodes is slightly different. As shown in Figure 3a, 21 NIRS 
optodes are arranged in seven by three matrix arrangement. Each of 
the seven rows has three optodes placed 3 cm apart, and each of the 
three columns places seven optodes with 1.5 cm apart. As a result, a 
total of 29 channels are created in the center only if the source–de-
tector (SD) distance is 3 cm (Figure 3b). After placement of the op-
todes, the anatomical landmark positions of the international 10–20 
system and all the 3D coordinates of the optodes were measured 
by using the 3D digitizer of the Fastrak System (TX-2; Polhemus) 
(Okamoto et al., 2004).

2.5 | Test protocol

In this section, we describe the experimental conditions, procedures, 
and instructions for the subjects employed for the evaluation of the 
TRR of brain activation. As is illustrated in Figure 4, we have equally 
applied to all the subjects the three experimental conditions: session 
intervals, the three velocities in each session, and the block design for 
each velocity.

As to the session intervals, we set the following intervals: 1 day, 
3 days, 23 days, 7 days, 15 min, and 6 hr, as is shown in Figure 4a. 
Cumulatively, there were four daily sessions after the first ses-
sion, 1 week after it, 1 month, 37 days, and so on. This somewhat 
irregular interval setting needs some explanation. The original in-
tervals had been set as follows: 1 day (four times), 3 days, 23 days, 
1 month (twice), and 3 months; cumulatively, 1 day, 1 week, 1 month, 
2 months, 3 months, and 6 months, all after the first session. We had 
chosen these long intervals in order to observe long-term effects 

F I G U R E  3   (a) The arrangement of NIRS optodes from the dorsal view of the brain. Twenty-one NIRS optodes (11 light sources and 10 
detectors) are arranged in a seven by three rectangular arrangement on the left side of the brain. Each of the seven rows has three optodes 
being 3 cm apart, and each column places seven optodes with 1.5 cm apart. Each channel is created in the center between the source and 
detector only if the source–detector (SD) distance is 3 cm. (b) The location of 29 measurement channels
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that rehabilitation generally tends to involve. Since no TRR had been 
observed until 1 month, however, we made a decision to modify the 
remaining three intervals to 1 week, 15 min, and 6  hr. Compared 
with the intervals in the previous studies, which were set rather ar-
bitrarily ranging from 15 min (Strangman et al., 2006) to 6 months 
(Sato et  al.,  2006) (Sato et  al.,  2006; Strangman et  al.,  2006), our 
interval setting fills in-between.

In each session, the robotic movements with three different 
velocities were exerted in random orders to all the patients, while 
the measurement is performed once for each velocity. For we were 
wondering if the velocity difference made any difference in the TRR, 
just as it had done in the brain activation in the previous studies (Bae 
et al., 2017; Jang et al., 2015). The random orders were generated 
by using the random permutation function “randperm” of MATLAB 
R2012b (The MathWorks) so that the order of measurement did not 
affect the results (Figure 4a).

These three velocities were exerted, and their corresponding ac-
tivations were measured by using the block design paradigm (Maki 
et al., 1995). Specifically, for each velocity, brain activation was mea-
sured during the triple repetition of a block consisting of a 10-s rest, 
a 20-s task, and a 10-s rest (Figure 4b). Thus, the three velocities 
took nine such blocks for each subject in a session.

The details of the test procedure are chronologically described 
together with the instructions for the subjects. As a subject entered 
an electromagnetically shielded room with minimal noise and light, 
he or she was ordered to sit down in a rehabilitation chair that can 
hold the body part as needed. After the trunk was fixed to the chair 

with a strap to prevent the trunk movement, the subject was in-
structed to wear the robot on his or her right hand, together with 
verbal instruction, “please sit as comfortable as possible and relax.” 
After placing the optode holder cap on the subject's head and in-
serting the optodes into the cap, the preparation became completed 
for the measurement. A few instructions were given before the 
measurement started, such as “look at the front wall,” and “do not 
voluntarily move the body parts including the right hand during the 
measurement.”

Motion artifacts can easily be generated by the movement of the 
subject (especially head), causing a decoupling of optodes from the 
scalp, which affects the measured signal (Brigadoi et al., 2014; Cooper 
et  al.,  2012). Usually, motion artifacts in NIRS data are relatively 
easy to identify by observation of the subject during NIRS recording 
(Cooper et al., 2012). Therefore, in the measurement phase, whether 
the subject made spontaneous body movement was closely moni-
tored by two operators. Further, the irregular nature of the motion 
artifacts was contrasted by the regular movement by the robot, be-
coming far easier to discern. After the experiments, we reconfirmed 
from all the subjects that there had been no voluntary movement.

2.6 | Data analysis

This Section describes the processing of the measured fNIRS data 
and their statistical analysis for the TRR of brain activation induced 
by robotic passive hand movement.

F I G U R E  4   (a) Schematic representation of experimental protocol; it describes interval, sessions, and three velocities from the top 
line. The order of three velocities is random in each session. (b) Schematic representation of the block design paradigm. During the triple 
repetition of a block consisting of a 10-s rest, a 20-s task, and a 10-s rest, the brain activation was measured for each velocity
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2.6.1 | Analysis for fNIRS

For data processing of the fNIRS signal, we used NIRS-SPM 
(Near Infrared Spectroscopy-Statistical Parametric Mapping; 
http://bisp.kaist.ac.kr/NIRS-SPM), a MATLAB-based software 
package (Ye, Tak, Jang, Jung, & Jang, 2009). The signal process-
ing was performed in roughly four stages. In the first stage, spa-
tial registration of 3D coordinates of channels measured by the 
3D digitizer was performed to the standard brain space of the 
Montreal Neurological Institute (Singh, Okamoto, Dan, Jurcak, 
& Dan, 2005). It maps the measured channels to the standard 
brain.

In the second stage, we have preprocessed the fNIRS signal to 
remove the unwanted noise caused by task-related skin blood flow, 
motion artifact, and physiological oscillations.

First, task-related skin blood flow was removed by applying 
the independent component analysis (ICA) along with the coeffi-
cient of spatial uniformity (CSU). To elaborate, by using the built-in 
software of LABNIRS, we applied the Molgedev and Schuster-
ICA (Molgedey & Schuster,  1994) on raw data, with time delays 
between 0 and 0.74 s with steps of 0.037 s, to fNIRS signals of 
29 channels. As a result, we obtained the independent oxy-Hb 
components and the mixing matrix, both of which were used to 
calculate the CSU value for each independent oxy-Hb component 
(Kohno et al., 2007). This CSU value determines the task-related 
skin blood flow. Specifically, Kohno et al. (2007) regarded the in-
dependent components with high CSU value as the task-related 
skin blood flow. As such high CSU values, we set the one equal 
or higher than 1.5 and removed independent component with 
high CSU value from the fNIRS signal (Seiyama, Higaki, Takeuchi, 
Uehara, & Takayama, 2016).

Second, noises due to motion artifacts and physiological oscilla-
tions were eliminated by appropriate filters embedded in the NIRS-
SPM (Ye et al., 2009): Gaussian smoothing with a full width at half 
maximum of 2 s (Worsley & Friston, 1995) as a low-pass filter and 
wavelet-minimum description length detrending algorithm (Jang 
et al., 2009) as a high-pass filter.

In the third stage, the general linear model (GLM), one of the lin-
ear regression model, was used for statistical analysis to infer the 

brain area that was significantly activated during the robotic passive 
hand movement (Friston et  al.,  1994). The GLM is defined by the 
following Equation 1:

where Y denotes the vector of measured oxy-Hb data in time series. 
X stands for a design matrix that is a convolution of the canonical he-
modynamic response function and block design function, which means 
the expected oxy-Hb response under our block design condition. ε 
represents the vector of measurement error. β denotes the parameter 
vector, which corresponds to the regression coefficient of GLM and 
means the amplitude of the oxy-Hb reaction. Through the least square 
estimation, β is obtained so that ε may be minimized for each channel.

In the fourth stage, we are to infer the significantly activated area 
by obtaining individual t-statistics maps using the β for each subject. 
At this time, individual t-statistics maps are obtained through a t test 
that tests the null hypothesis that β is 0 (meaning no significant brain 
activation) for each subject (Ye, Tak, Jang, Jung, & Jang, 2009). At 
this time, t statistics of β was used as an index for verifying the sig-
nificance of brain activation at the level of p <  .05. The Lipschitz–
Killing curvature-based Euler characteristic (EC) approach was used 
to control the familywise error rate resulting from multiple statistical 
hypothesis tests (Li, Tak, & Ye, 2012).

2.6.2 | Linear mixed effect model and ICC

In this study, we investigated the effect of the variables of interest 
(session intervals, robot velocities, subject, and session) on brain 
activation and TRR through the linear mixed effect model and ICC.

In order to perform statistical analysis on repeated measure-
ment data, we have selected a linear mixed effect model (LMM). 
The LMM was particularly useful to our study for the following 
reasons: Firstly, we can set up the relationship of the t statistics 
of β to various variables of interest such as subjects, sessions, in-
tervals, and robot velocities. Secondly, we can easily appropriate 
these variables to either the fixed effect or random effect. Finally, 
as a direct outcome of the second reason, assigning the subject to 
the random effect enables us to analyze the within-subject correla-
tion, correlation data from different sessions of the same subject 
(Gelman & Hill,  2006; Laird & Ware, 1982; Littell, Pendergast, & 
Natarajan, 2000).

The LMM used in this study can be written as

where yijkl, the dependent variable, is the t statistics of β (see 
Section 2.6.1) at the session j for channel l of subject i under the con-
dition of velocity k. μ is a grand mean of all yijkl. αk is a vector of fixed 
effect for velocity and xj is a vector of fixed effect for the interval 

(1)Y = X� + �

(2)

y���� = � + �k + �xj + bi + b�� + �����

i = 1,…, 5

j = 1 day, 1 day, 1 day, 1 day, 3 days, 23 days, 7 days, 0.01047 day (=15min), 0.25 day (=6 hr)

k = 0.25 Hz, 0.5 Hz, 0.75 Hz

l = 1,…, 29

bi ∼ N
(

0, �2
subject

)

, b�� ∼ N
(

0, �2
session nested by subject

)

, ����� ∼ N
(

0, �2
error

)

http://bisp.kaist.ac.kr/NIRS-SPM
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between j th session and j+1 th session, and γ is the vector of regres-
sion coefficients. The two intervals, 15 min and 6 hr, were converted 
to 0.01047 and 0.25 day, respectively, with 1 day being used as its 
standard unit. bi is a vector of random effect for subjects, bij is a vector 
of nested random effect for sessions within a subject, and εijkl is the 
residual error. The random effects bi are independently distributed 
from N

(

0, �2
subject

)

 and bij are independently distributed from 
N
(

0, �2
session

)

. Also, εijkl are independently distributed from N
(

0, �2
error

)

. The statistical analysis of LMM was performed by lmer function in 
the lme4 package (Bates, Maechler, Bolker, and Walker 2014a) and 
other packages (e.g., dplyr, base, rJAva, xlsxjars, and stats) supplied in 
the R system for statistical computing (Ver. 3.4.4; R Development 
Core Team, 2018).

To quantify the TRR of brain activation, we used the ICC. 
Conceptually, the ICC represents the proportion of the total vari-
ance in the measurements which is due to between-subject differ-
ences (Streiner et al., 2015). In this study, the ICC can be defined as 
follows:

In this equation, �2
subject

 means between-subject variance, 
�2
session:subject

 means between-session variance nested by subject, and 
�2
error

 means the variance of residual error. ICC close to 1 represents 
high TRR and occurs when the between-subjects variance is much 
larger than the variance of others (Johnstone et al., 2005).

3  | RESULTS

This Section reports three main results. First is the activation map 
of oxy-Hb, which shows how the brain activation induced by robotic 
passive hand movement changes according to the session and ve-
locity of robot. The second is the result of LMM statistical analysis, 
which confirms the effect of the variables (interval, velocity of robot, 

subject, and session) of interest on brain activation and TRR. The 
third is the ICC value for evaluating TRR.

As a first result, Figure 5 shows the activation map of one sub-
ject, displaying activation areas, if there is any, according to a ses-
sion and velocity. The highlighted area showed significant activation 
at the level of p <  .05. An activation map with no highlighted area 
means there is no significantly activated area. Clearly a trend was 
observed that a velocity that induced significant activation of SM1 
in one session could not do so in other sessions. More generally, ses-
sion-to-session variation is prominent in the existence of activation, 
in its intensity, and in its area.

As a second result, Table 1 summarizes the LMM analysis, show-
ing the effect of the fixed effect (velocity of the robot (αk) and inter-
val (γ)) on t statistics of β (see Section 2.6.1).

The estimate of αk and γ of the LMM, according to Equation 2, 
corresponds to the estimate of velocity and interval in TABLE 1. The 
T value in this table is used to determine the significance level and 
the relationship between the fixed effect and the t statistics of β. If 
the absolute T value is greater than 1.96, the fixed effect is consid-
ered statistically significant at the significance level of 5% (Gelman & 
Hill, 2006). With respect to the effect of velocity, the t statistics of β 
is significantly smaller at 0.5 Hz than 0.25 Hz and 0.75 Hz. However, 
the effect of interval on the t statistics of β was not significant.

As the third result, an ICC value of 0.002 was obtained. To cal-
culate the ICC value, the variance of random effects (subject (bi), 
session nested by subject (bij), and residual error (εijkl)) were used 
(Table 2). The ICC value of 0.002 means poor TRR according to the 
guide interpretation of ICC described above.

4  | DISCUSSION AND CONCLUSION

We began this study with the question: “Does the brain activation 
induced by the robotic passive movement have TRR?” The answer 
is negative. Poor TRR was confirmed, based on the activation map 

(3)ICC = �2
subject

∕�2
subject

+�2
session:subject

+�2
error

F I G U R E  5  Activation maps of one subject according to velocity and session. The intervals between 2 consecutive sessions are shown in 
the top row. The highlighted area showed significant activation at the level of p < .05
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and ICC value. In other words, repeated activation of an area is not 
achievable with the passive robotic movement, and brain plasticity 
cannot be expected. This result is in contrast to those of active hand 
movements. Note that the passive movement training by human 
therapists—no clinical study has reported yet—is unlikely to produce 
any better result. For what the subjects passively receive is essen-
tially the same movement, whether from a therapist or from a robot; 
though the former tends to lack the accuracy and consistency, the 
latter possesses in generating the movement.

Three studies examined the TRR of passive movement and re-
ported divided results; Loubinoux et al.  (2001) reported poor TRR 
(Loubinoux et  al.,  2001), while another (Estevez et  al.,  2014) ob-
served TRR of high level at the SM1 area, the ROI; and still, another 
(Jaeger et al., 2015) showed inconclusive results, with some subjects 
showing good TRR and others showing poor TRR. Obviously, these 
divided results are directly attributable to substantially variable 
brain activations, which in turn could be explained as the outcome 
of flawed tests coming from the motion artifacts or the misleading 
interpretation lacking the ICC, mentioned in Introduction. The fact 
that those tests using fMRI with the highest spatial resolution could 
have generated such different results is noteworthy, underlining the 
importance of controlling experimental attributes.

Compared to the previous studies, the ICC value we have ob-
tained is 0.002, an order of about 1/100 times smaller, which could 
be viewed as a more definitive result (Estevez et  al.,  2014; Jaeger 
et  al.,  2015). Nevertheless, what it means to have that ICC value 
generated by a low-resolution-tester like fNIRS is open to questions, 
prompting further investigation. Our study, too, has observed a high 
level of across-session variability in brain activation. The variability 

may be ascribed to the weakness of the stimulus, the characteris-
tics shared by any passive movement. It could also have come from 
the familiarity with the fNIRS environment, diminishing the attention 
and affecting brain activation (Loubinoux et  al.,  2001). The famil-
iarity factor could have been severe in our experiments, since a 10 
times repetition of the same passive movements was conducted by 
the participants.

What causes then the difference between the passive movement 
and the active one in the TRR? The main difference, we believe, lies 
in the presence of active user engagement in the active movements 
(Blank, French, Pehlivan, & O'Malley,  2014; Weiller et  al.,  1996), 
which explains the recent emphasis on its importance and its en-
hancement (Blank et al., 2014; Krebs, Volpe, & Hogan, 2009). User 
engagement is defined as effortful striving toward task goals and 
is known to be affected by mental effort, motivation, and affective 
status (Fairclough, Gilleade, Ewing, & Roberts, 2013). Previous stud-
ies proved the effect of user engagement to active movement train-
ing (Ferraro et al., 2003; Krebs et al., 2009). The active engagement 
theory has been further supported by a study reports that it induces 
in a rat model the neural plasticity in motor learning (Warraich & 
Kleim, 2010). However, the user engagement in passive movement 
thought to be low because it is achieved involuntarily by the thera-
pist or robot. In addition, disengagement can also occur if the subject 
becomes easily bored and indifferent to simple repetitive passive 
movement (O'Brien & Toms, 2008). Considering these encouraging 
results and the still existing need for passive movement training for 
some patients, one may consider to take a course that attempts a 
passive training involving the active engagement.

What is necessary to induce TRR in passive movement? Two 
such approaches have already been underway. The one is to provide 
visual, auditory, or tactile cues that encourage active engagement 
during passive hand movement (Blank et al., 2014). The other is to 
apply motor imagery practice which refers to imagining without 
physical movement to learn or improve motor ability (Denis, 1985). 
The previous study reported that physical therapy combined with 
motor imagery practice for stroke patients improves motor func-
tion and ability (Page, 2000). Song, Oh, Jeong, Kim, and Kim (2018) 
developed a brain–computer interface system that detects move-
ment intention through motor imagery and provides robotic passive 
movement (Song et al., 2018). Hopefully, we like to be able to see 
more progress in robotic passive movement protocols enhanced 
with active engagement that target the TRR, and ultimately brain 
plasticity.

Unlike the previous studies, we decided the number of sessions 
(n = 10) first before the number of subjects (k = 5), by using the power 
contour based on the statistical power (Donner & Eliasziw,  1987). 
Table 3 shows that all of the previous studies involved two sessions, 
whereas the number of subjects varied from two to 25 (Bhambhani 
et  al.,  2006; Durduran et  al.,  2004; Plichta et  al.,  2007; Sato 
et al., 2006; Strangman et al., 2006). In comparison, our combina-
tion, n = 10 and k = 5, has a statistical power equivalent to n = 2 and 
k = 50 in the previous studies. Even if the method by Donner and 
Eliasziw (1987) is a statistical approach that is mathematically true 

TA B L E  1  Summary of LMM results examining t statistics of β in 
relation to the fixed effects (velocity and interval)

Fixed effects Estimate Standard error
T 
value

Velocity

α0.25 Hz (intercept) −0.075 0.117 −0.641

α0.5 Hz −0.304 0.107 −2.833

α0.75 Hz 0.072 0.107 0.669

Interval

γ 0.019 0.010 1.864

TA B L E  2  Summary of LMM of random effects. ICC was 
calculated by using the variance of each effect

Random effects Variance
Standard 
deviation

Session nested by subject

bij �2
session:subject

: 0.149 0.387

Subject

bi �2
subject

: 0.013 0.115

Residual error

εijkl �2
error
: 7.506 2.740
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and universally applicable, it is still necessary to conduct a cross-
check in the future to confirm if the same result is obtained with this 
combination (n = 2 and k = 50). If it is confirmed the implication may 
be very significant in many experimental studies including the one 
on the TRR of brain activation, offering useful and convenient alter-
natives between the number of sessions and the number of subjects.

Although the main topic of this study was to examine the TRR, 
some additional understanding has been obtained as to how the 
brain activation is related to robot velocity and session interval, 
respectively. More specifically, the significance of brain activation 
being represented by t statistics of β as displayed in Table 1, its com-
parison exhibits the respective effect of velocity and interval on the 
activation. As to the velocity, 0.5 Hz has a significantly lower activa-
tion than that of other velocities, enabling us to deduce that there 
exists no linear relationship between velocity and activation. As to 
the interval, it has no significant relationship with brain activation. 
From these two points, one may draw a conclusion that both the 
velocity difference and interval are not critical for brain activation in 
the case of passive movement.
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