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Ferroptosis, a new iron- and reactive oxygen species–dependent form of regulated cell
death, has attracted much attention in the therapy of various types of tumors. With the
development of nanomaterials, more andmore evidence shows the potential of ferroptosis
combined with nanomaterials for cancer therapy. Recently, there has been much effort to
develop ferroptosis-inducing nanomedicine, specially combined with the conventional or
emerging therapy. Therefore, it is necessary to outline the previous work on ferroptosis-
inducing nanomedicine and clarify directions for improvement and application to cancer
therapy in the future. In this review, we will comprehensively focus on the strategies of
cancer therapy based on ferroptosis-inducing nanomedicine currently, elaborate on the
design ideas of synthesis, analyze the advantages and limitations, and finally look forward
to the future perspective on the emerging field.
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1 INTRODUCTION

Cancer is a public health problem worldwide, which cannot be ignored currently, with the incidence
gradually increasing year by year. As one of the deadliest diseases in the world, its prevalence has been
more than 10 million mortalities annually (Siegel et al., 2021). Current cancer conventional treatments
include surgery, radiotherapy, and chemotherapy which have various shortcomings affecting the
effective treatment (Johnstone et al., 2002; Esposito et al., 2019; Poon et al., 2021). With the deep
understanding of precision medicine recently, targeted therapy and immunotherapy have great
progress in cancer treatment (Pham et al., 2018; Adams et al., 2019; Chen et al., 2020a; Rana and
Bhatnagar, 2021). However, due to off-target effect, potential toxicity, and drug delivery barriers, these
emerging treatment methods fell short of expectation and do not have wide clinical applications.

Ferroptosis, as a form of iron-dependent regulatory cell death, has played an important role in
tumor suppression and treatment (Xu et al., 2021a). Targeting ferroptosis has become a promising
tumor treatment strategy. In 2001, a unique regulated cell death form by the oxidative stress of nerve
cells had been found (Tan et al., 2001). It was first put forward to the conception of ferroptosis by
Stockwell in 2012 (Dixon et al., 2012). Different from existing forms of cell death such as apoptosis,
autophagy, necrosis, and pyrolysis, the process of ferroptosis mainly includes the iron-dependent
Fenton reaction and lipid peroxidation–producing ROS (reactive oxygen species) (Lu et al., 2018;
Hassannia et al., 2019; Mou et al., 2019). On the one hand, the iron (III) in the ferritin complex can
enter the cell through the glycoprotein transferrin and its carrier protein transferrin receptor (Xu
et al., 2021b). Imported iron is reduced and dissociated from the complex to form iron (II). Increased
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iron promotes the Fenton reaction between iron and hydrogen
peroxide (H2O2), which in turn generates ROS (Liu et al., 2021a;
Vitalakumar et al., 2021; Xie and Guo, 2021). On the other hand,
the polyunsaturated fatty acid (PUFA-LPs-OH) in the cell
membrane can be oxidized by ROS and lipoxygenase to form
lipid peroxidation (PUFA-LPs-OOH), which generates toxic
lipid-free radicals resulting in cell death (Xie et al., 2016). The
toxic PUFA-LPs-OOH can be reduced to nontoxic PUFA-LPs-
OH by glutathione peroxidase 4 (GPX4). On the contrary,
glutathione (GSH) can be oxidized to oxidized GSH (GSSG).
Therefore, GPX4 is the key regulator for ferroptosis (Seiler et al.,
2008; Seibt et al., 2019; Song et al., 2020). The synthesis of GSH in
the cell requires the cystine (Cys)/glutamic acid (Glu) transport
system with different directions to transfer Cys into the cell. In
this process, system Xc-, including SLC7A11 and SLC3A2, plays
an important role (Hong et al., 2021; Liang and Sun, 2021; Ma
et al., 2021; Ortiz-Rodriguez et al., 2021). Therefore, according to
the mechanism of ferroptosis mentioned above, regulation of the
Fenton reaction and the inhibiting activity of the GPX4 enzyme
are the two most effective strategies for inducing ferroptosis in
tumor cells.

With the regulation mechanisms and signaling pathways of
ferroptosis clarified, ferroptosis has attracted increasing attention
in cancer therapy over the years (Xu et al., 2019; Nguyen et al.,
2020; Xu et al., 2021c). Some small molecule ferroptosis inducers
have the potential to become drugs on the treatment of cancer
(Xu et al., 2021b). These drugs mainly include system Xc-
inhibitors (erastins, sulfasalazine, and sorafenib) and GPX4
inhibitors (RSL3 and altretamine), inducing GPX4 degradation
(FIN56) and GSH depletion (buthionine sulfoximine and DPI2)
(Lachaier et al., 2014; Yang et al., 2014;Woo et al., 2015; Mai et al.,
2017; Gaschler et al., 2018; Wang et al., 2019; Wang et al., 2021a;
Cheng et al., 2021; Zhuang et al., 2021). Although some of them
have been clinically approved, most of them are in the research
stage due to poor solubility, non-specific distribution, and
unpredictable side effects. Notably, the rapid development of
nanotechnology provides more possibilities for the application of
ferroptosis in tumor treatment (Asghari et al., 2019; He et al.,
2019; Matos et al., 2019). Because of its unique structure and
properties, as carriers, nanomaterials are not only made up for the
limitation of traditional drugs but also have introduced new
specific features to produce synergy with small molecule drugs,
such as generation of ROS or depletion of GSH. Moreover, the
nanomaterials even can be the responder as energy synergy
therapy.

Due to the potential of ferroptosis in cancer therapy and
advantages of nanotechnology in application in the medical field,
there are many opportunities and challenges for combination
between target ferroptosis and nanotechnology for cancer therapy
(Liang et al., 2019). Therefore, it is necessary to summarize the
latest work and progress in ferroptosis-inducing nanomedicine
for cancer therapy. Meanwhile, the diversity of the biological
system and the complexity of clinical application give both
challenges and opportunities for further development of
ferroptosis-inducing nanomedicine for cancer therapy.
Therefore, it is timely to elaborate on the latest advances in
this field. According to the mechanism of ferroptosis, from

accelerating the Fenton reaction, inhibiting the activity of
GPX4, exogenous delivery of lipid peroxides, and combination
with conventional therapy, this progress report focused on recent
advances of the construction of ferroptosis-inducing
nanomedicine and application in cancer therapy.

2 EMERGING NANOMEDICINE-INDUCING
FERROPTOSIS FOR CANCER THERAPY
2.1 Inducing Ferroptosis by Accelerating the
Fenton Reaction
The Fenton reaction was first described by H. J. H. Fenton in 1894
(Hirschhorn and Stockwell, 2019), whose reaction equation is
described as follows (Li et al., 2021a; Wang et al., 2021b) (Yang
et al., 2021a):

Fe2+ +H2O2 � Fe3+ + ·OH +HO−

Fe3+ +H2O2 � Fe2+ + ·OOH +H+

In tumor cells, H2O2 released by the mitochondria react with
endogenous Fe2+/3+ to generate highly toxic hydroxyl radicals and
result in tumor cell death via inducing ferroptosis. According to
the mechanism of the Fenton reaction, various ferroptosis-
inducing nanomedicines for cancer therapy have been
developed (Qian et al., 2019). Among them, the design of
high-performance nanocatalysts or directly increasing the
concentration of reactants to accelerate the Fenton reaction is
the most effective strategy.

2.1.1 Accelerating the Fenton Reaction by
High-Performance Nanocatalysts
The Fenton reaction is the most direct way to induce ferroptosis.
As the important factor to accelerate the reaction, several
nanocatalysts based on the Fenton reaction have been
developed for cancer treatment (Meng et al., 2020; Wang
et al., 2020; Wang et al., 2021c; Kim et al., 2021).

Furthermore, Shi et al. synthesized a new type of single-atom
Fe nanocatalyst, in which Fe atoms are isolated in nitrogen-doped
carbon, and PEGylation of the outer layer of the catalyst can
enhance structural stability and effectively nanocatalyze the
Fenton reaction for tumor treatment (Huo et al., 2019). The
single-atom Fe catalyst with high catalytic performance would be
activated by the weak acidic microenvironment of the tumor and
effectively induce the Fenton reaction in the tumor site, which
would generate a large amount of toxic hydroxyl radicals (Tian
et al., 2021). According to the mechanism of the Fenton reaction,
on the one hand, radicals catalyzed by the single-atom Fe
nanocatalyst can induce cell apoptosis, and the accumulation
of lipid peroxides can lead to ferroptosis of tumor cells as well.
The synergistic effect of the catalyst has an impressive tumor
suppression outcome. Meanwhile, its good biodegradability and
biocompatibility show the potential for application in vivo.

Li et al. (2021b) developed tannic acid (TA) and Fe2+ coated on
zeolite imidazole ester skeleton-8 (ZIF-8) self-assembly, which
was used as the carrier to encapsulate artemisinin (ART) (Figure
1). In nanomedicine, ART would catalyze the degradation of
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ferritin via independent autophagy-lysosome pathways, which
could increase the amounts of Fe2+ in cells and induce ferroptosis
(Chen et al., 2020b). As a carrier, ZIF-8 not only had good
biocompatibility but also pH-responsive ability. Drug release
experiments showed that ART was only released in pH � 5.0
after 10 h to indicate its tumor-targeted release performance.
Meanwhile, increased ROS in the cell, accompanied with
decreasing GSH and GPX4, can induce markedly enhanced
ferroptosis. The nanomedicine had been demonstrated a better
ability of human breast cancer model suppression in vitro and in
vivo. The pH-responsive ability of ZIF-8 has already increased the
efficacy of artemisinin; if the targets are being introduced into the
ZIF-8 shell, it is hopeful to achieve clinical application.

2.1.2 Accelerating the Fenton Reaction by Increasing
Concentration of Reactants
Shi et al. synthesized amorphous iron nanoparticles (AFeNPs)
with suitable particle size and surface properties (Zhang et al.,
2016). The AFeNPs can target the mild acidity environment of
the tumor and kill the cancer cell by inducing a Fenton reaction
overproducing H2O2 in the tumor: the ferrous ion released by the
AFeNPs in the tumor, reacting with H2O2 leading to hydroxyl
radical generation. The endogenous hydroxyl radicals generated
by AFeNPs enabled to kill cancer cells specifically (Tang et al.,
2021).

Ji et al. developed the special metal-organic framework (MOF)
consisting of FeAc and BDC-NH2. MOF was coated with HA to

FIGURE 1 | (A) Illustration of preparation of nanoparticles and the application in tumor cells; (B) Releasing curve of ART from TA-Fe/ART@ZIF nanoparticles in vitro
at pH 7.4 and 5.0; (C) Cytotoxicity of ART, TA-Fe/ZIF, and TA-Fe/ART@ZIF; (D) Relative tumor volume after treated with PBS, ART, TA-Fe/ZIF, and TA-Fe/ART@ZIF
nanoparticles; (E) Relative mouse body weight of various groups. (Adapted from Ref. 54 with permission. Copyright © 2021 Nanoscale Research Letters) ART:
artemisinin; TA: tannic acid; ZIF: zeolitic imidazolate framework.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7359653

Wang et al. Recent Progress in Ferroptosis Nanomedicine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


enhance its biostability. With Fe2+ delivered into breast cancer
cells, the Fenton reaction can be triggered and excessive ROS-
inducing cell apoptosis is produced (Xu et al., 2020) (Figure 2).
The nanomedicine with excellent stability and pH-responsive
ability can target tumors due to its acidic microenvironment of
cancer and release Fe2+ to tumor cells. The Fenton reaction was
induced by excessive Fe2+ to inhibit tumor growth due to
ferroptosis. Fe2+-based MOF proved better biocompatibility
and inhibitory effects in in vivo experiments.

Furthermore, increasing the concentration of Fe2+/Fe3+ and
H2O2 at the same time is a more effective strategy to accelerate the

Fenton reaction. Li and Tang et al. synthesized a Fe3+ metal-
organic framework (MOF) based on decorative glucose oxidase
(GOx), which was coated with the cancer cell membrane as a
cascade nanoreactor for synergistic ferroptosis-starvation
anticancer therapy (Wan et al., 2020) (Figure 3). Specifically,
NMIL-100, a kind of iron-based MOF, was used as the source of
iron to induce ferroptosis and a carrier to load GOx.
Furthermore, NMIL-100@GOx was coated by the tumor cell
membrane to obtain a nanoreactor. In tumor cells, glucose can be
catalyzed by GOx to produce excessive H2O2 for cancer treatment
based on ferroptosis, and the glucose reduction caused by GOx, as

FIGURE 2 | (A) Illustration of the synthesis process and mechanism of nanoparticles for tumor therapy. BDC-NH2: 2-aminoterephthalic acid; DMF: N,
N-dimethylformamide; MOF: metal-organic framework; HA: hyaluronic acid; (B)Graphs show ROS levels of 4T1 cells after treated with the MOF and HA@MOF for 48 h;
untreated 4T1 cells were set as control. A quantitative flow cytometry result was also demonstrated. Scale bar � 100 μm; (C) Quantitative result of 4T1 cell apoptosis
after differently treated; (D) Plasma Fe2+ concentrations of SD rats injected with MOF and HA@MOF within 12 h (Adapted from Ref. 58 with permission. Copyright
© 2020 Journal of Materials Chemistry B).
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starvation therapy for tumors, can have a synergistic effect to
further inhibit tumors. In mechanism, a large amount of GSH
reduced Fe3+ from the nanoreactor to cause the collapse of the
MOF structure and release Fe2+ at the tumor site. Then, H2O2

generated by the oxidation of glucose catalyzed by GOx reacted
with Fe2+ to produce hydroxyl radicals to promote ferroptosis-
inducing cancer treatment. The nanoreactor loading necessary
reactants for the Fenton reaction exhibited a better ability of
tumor suppression in vivo.

2.2 Inducing Ferroptosis by Suppressing the
Activity of GPX4
GPX4 (Glutathione peroxidase 4) is the key regulator in
ferroptosis. Its inhibitor can promote ferroptosis directly. At
the same time, the regulation of GSH, as a substrate of GPX4,
is another important approach in ferroptosis (Wu et al., 2021).

2.2.1 Suppressing Function of System Xc-

Besides focusing on the Fenton reaction, a research by Xu et al.
tried to increase concentration of iron and suppress the
function of system Xc-simultaneously (Liu et al., 2021b)
(Figure 4). In this study, sorafenib (sor)-loaded Fe-metal
organic framework nanoparticles were conjugated with the
iRGD peptide to form the multifunctional nanocomposite,
MIL-101(Fe)@sor. This nanoparticle can not only effectively
induce tumor ferroptosis but also enhance the nanodrug
tumor-targeting and penetration abilities. Liver tumors
could be eliminated after MIL-101(Fe)@sor nanoparticle
treatment, with a significantly prolonged survival period of
tumor xenograft mice.

2.2.2 Depletion of GSH
In addition to research studies focusing on the block transport
system Xc−, Xu et al. developed nanoparticles (FaPEG-
MnMSN@SFB) inducing ferroptosis by both suppressing
function of system Xc− and depletion of GSH (Tang et al.,
2020) (Figure 5). MnMSN@SFB was synthesized with
MnMSN and sorafenib (SFB) by the optimized one-pot
Stober’s method. The surface of MnMSN was modified
with the FaPEG chain to achieve better stability in
circulation and delivery processes. On the one hand, the
manganese–oxygen bond (‒Mn‒O‒) in MnMSN leaded to
consumption of GSH in the cell. On the other hand, SFB, as an
inhibitor of the Xc− transport system could inhibit the
synthesis of GSH. Therefore, the nanoparticles exhibited
efficient antitumor activity under dual roles. Moreover,
apoptosis could be induced by disruption of redox balance
producing the synergy effect with ROS-dependent ferroptosis
to tumor cells.

3 EMERGING NANOMEDICINE BASED ON
FERROPTOSIS AND CONVENTIONAL OR
EMERGING TUMOR THERAPY
Currently, although emerging tumor treatment methods have
made some progress, the effect of them is still difficult to be
satisfied in the clinical treatment (Lai et al., 2021; Mo et al., 2021;
Ou et al., 2021;Wang and Bai, 2021). Ferroptosis has the potential
ability to make the synergy effect with conventional or emerging
tumor therapy which brings more spark in the treatment of
different tumors (Xue et al., 2020).

FIGURE 3 | (A) Illustration of the synthesis process and mechanism of nanoparticles for tumor therapy; (B) Fluorescence intensity of ER-H2O2 in the NMIL-100@
GOx@C solution at different time after addition of glucose; (C) ESR analysis of •OH production using DMPO as the spin trapping agent; (D) Picture of tumors dissected
on the 14th day after different treatments (a: PBS, b: NMIL-100@C, c: SiO2−GOx@C, d: NMIL-100@GOx, e: NMIL-100@GOx@C); (E) Average tumor weights in different
treatment groups.(Adapted from Ref. 59 with permission. Copyright © 2020 ACS Nano) GOx: glucose oxidase.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7359655

Wang et al. Recent Progress in Ferroptosis Nanomedicine

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


3.1 Combination of Ferroptosis With
Chemotherapy
Chemotherapy is a conventional tumor treatment method. Due to
lack of specificity for tumor cells, it brings cytotoxicity to any cells.
Besides, drug resistance makes its therapeutic effect limited (Ji et al.,
2016; Patil et al., 2016). Li et al. designed a nanolongan delivery
system. The oxidized starch-based gel nanoparticle was coated by the
upconversion nanoparticle (UCNP) and doxorubicin (Dox) (query).
The carboxyl groups on oxidized starch polymers were coordinated
with Fe3+ and further decorated with polyethyleneimine (PEI) and
2,3-dimethylmaleic anhydride (DMMA) (Bao et al., 2019) (Figure 6).
The negatively charged surface of nanolongan due to DMMA could
achieve long circulation after intravenous injection and specially
targeted tumor delivery via the EPR effect. After the nanolongan
reached the tumor site with a weak acidic microenvironment, the
negatively charged surface of nanolongan could be converted with a
positive charge due to exfoliation of DMMA, which facilitated its

internalization of cancer cells and escape of lysosomes due to the
proton-sponge effect. With further near-infrared (NIR) light
irradiation, Fe3+ can be converted to Fe2+ by UCNP in the cancer
cell, which further promoted the Fenton reaction to induce
ferroptosis-generating synergy effect with apoptosis due to Dox.

3.2 Combination of Ferroptosis With
Immunotherapy
Tumor immunotherapy is an emerging tumor therapy method by
regulating the tumor microenvironment to enhance the antitumor
immunity. It provides a new idea for tumor treatment, but its
effectiveness and safety need to be further studied (Fang et al., 2021;
George et al., 2021). Studies have shown that immunotherapy-
activated T cells can enhance ferroptosis-specific lipid peroxidation
in tumor cells, and in turn, increased ferroptosis contributes to the
antitumor efficacy of immunotherapy. Therefore, combination of
ferroptosis with immunotherapy has been a new strategy for design

FIGURE 4 | (A) Illustration of the synthesis process and mechanism of nanoparticles for liver cancer therapy; (B) SEM and (C) TEM images of MIL-101(Fe) NPs (scale bar:
100 nm); (D) EDS spectrum ofMIL-101(Fe) NPs; (E,F)MDA andGSH levels in HepG2 cells after different treatments; (G)WBanalysis of theGPX4 expression in HepG2 cells after
different treatments. 1–5: control, MIL-101(Fe), sorafenib, MIL-101(Fe)@sor, andMIL-101(Fe)@sor + iRGD groups, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.(Adapted from
Ref. 61 with permission. Copyright © 2021 International Journal of Nanomedicine) Sor: sorafenib.
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FIGURE 5 | Illustration of the synthesis process and mechanism of nanoparticles for tumor therapy; (B) TEM images of MnMSN and (C) FaPEG-MnMSN; (D)
Element mappings of FaPEG-MnMSN; (E) Iron contents in HepG2 cells after treated with free SFB, MnMSN@SFB and FaPEG-MnMSN@SFB at the concentration of
20 μg/ml; (F) **p < 0.01 vs. Blank group. ##p < 0.01 vs. cells treated with FaPEG-MnMSN@SFB. ▲▲p < 0.01 vs. cells treated with MnMSN@SFB. GPx4 activity of
HepG2 cells after treated with free SFB, MnMSN@SFB and FaPEG-MnMSN@SFB for different concentrations. (Adapted fromRef. 62 with permission. Copyright ©
2020 Theranostics) CTAB: cetyltrimethylammonium bromide; TEOS: tetraethyl orthosilicate; SFB: sorafenib tosylate.

FIGURE 6 | Schematic illustration of nanolongan; (B)CCK-8 cytotoxicity analysis of 4T1 andMCF-7 cells treated with different formulations after 24 h of incubation;
(C) In vivo imaging of biodistribution of GU and DGU in the tumor-bearing mouse model. (Adapted from Ref. 70 with permission. Copyright © 2019 ACS Nano) UCNP:
upconversion nanoparticle; Dox: doxorubicin; PEI: polyethylenimine; DMMA: 2,3-dimethylmaleic anhydride.
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of nanomedicine (Jiang et al., 2020; Yang et al., 2021b; Liang et al.,
2021). In Yao et al.’s research, a nanoactivator (DAR) was
constituted by doxorubicin (DOX) (query), tannic-acid (TA),

and IR820. During the process of synthesis of DAR, DOX, as a
chemotherapeutic drug, interacts with TA, as a disproportionation
activator, to form intermediate products (DA) at the first step.

FIGURE 7 | (A) Assembly and reassembly processes of DAR; (B) The tumor delivery, tumor cell uptake and intracellular transition, lysosome escape, and laser-
promoted drug release processes of DAR. LYS and ER were abbreviations of lysosome and endoplasmic reticulum, respectively; (C) Infrared thermographic images of
mice injected with saline; IR820 and DARwere tested at 5 min after laser irradiation; (D)Relative concentration of ROS, LPO, and FPN of MCF7 cultured in different drugs
or agents (n � 3); (E) GSH levels of MCF7 cells treated with different formulations (n � 3). *p < 0.05 vs. control; **p < 0.01 vs. control; #p < 0.05 vs. DAR + laser.
(Adapted from Ref. 77 with permission. Copyright © 2021 Journal of Controlled release).

FIGURE 8 | (A) Illustration of the synthesis process and mechanism of nanoparticles for tumor therapy; (B) LPO, ROS, and 5 NADP+/NADPH content of HT1080
cells treated with ferric chloride (Fe(III), 10 μM), 6 (Fe(II), 25 μM), PEI/p53, Fe(II)-MON-p53, and Fe(III)-MON-p53; (C) Viability of 7 HT1080 cells, SCC-7 cells, 4T1 cells,
and COS7 cells after treatment with PEI/p53, 8 MON-p53, erastin, and erastin + Fe(III); (D) Survival curves of mice receiving injections of Era at a dose of 5 mg/kg, 3
MONP at a dose of 5 mg/kg, and a DNAdose of 0.375 mg/kg (n � 7 for all groups) in 4 HT1080 tumor-bearingmice; (E)HT1080 tumor volume curves of mice at the
first 25 days (Adapted from Ref. 81 with permission. Copyright © 2017 Nano Letters) MON: metal organic network.
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Then, DA made the interaction with IR820, as a photothermal
therapy agent, to form DAR finally through π–π and electronic
interactions (Xiong et al., 2021) (Figure 7). After the nanoactivator
is injected into the cell through endocytosis, with the IR820
responding to the laser, DAR can be reassembled quickly to
realize the escape of lysosomes and promote the rapid release of
endogenous Fe2+ due to the acidic microenvironment of
lysosomes. The released Fe2+ accelerated the Fenton reaction to
promote ferroptosis and the accumulation of ROS. Excessive ROS
further induced the immune response induced by DOX to kill
tumor cells. In contrast, immunotherapy would activate the
infiltration of CD8+ T cells in tumor cells, and ferroptosis
through IFN-γ–related pathways was promoted. The
nanoactivator reflected a very significant tumor killing ability
through the synergistic effect of immunotherapy and ferroptosis.

A biomimetic magnetosome was prepared by Xie et al.,
composed of Fe3O4 magnetic nanoclusters (NCs), pre-
engineered leukocyte membranes, TGF-β inhibitor (Ti), and
PD-1 antibody (Pa) (Zhang et al., 2019). Specially, the NC was
coated by leukocyte membranes pre-engineered with azide
(N3) with modified Ti and Pa to form Pa-M/Ti-NCs. After
intravenous injection, the Fe3O4 magnetic nanoclusters break
through the biological barrier and are accumulated to the
tumor. The Pa and Ti on the surface of Pa-M/Ti-NCs
would increase the amounts of CD4+ T/Treg cells, CD8+

T/Treg cells, and rate of producing M1/M2 to induce
immunogenicity of macrophages. In addition, M1
polarization due to immune response increased the amount
of H2O2. With the release of ions, it promoted the Fenton
reaction with H2O2 and induced ferroptosis of tumor cells.

3.3 Combination of Ferroptosis With Gene
Therapy
Tumor gene therapy mainly targets tumor suppressor genes,
immunostimulatory genes, and anti-angiogenic factors. Among
them, adenovirus carrying p53 has the fastest development in
clinical research. However, the specific mechanism, long-term
efficacy, and adverse effects of gene therapy are still unclear (Chen
et al., 2001; Zhang et al., 2011). In Zhang et al.’s research, breast
cancer cells were eradicated by the metal organic network
encapsulated with the p53 plasmid (MON-p53) via the
ferroptosis/apoptosis hybrid pathway (Zheng et al., 2017)
(Figure 8). As we know, p53 is a tumor suppressor, so a
“bystander effect” was mediated by MON-p53 to further
sensitize cancer cells toward the MON-p53 inducing
ferroptosis and gene therapy. MON-p53 treatment has two
effects, which both suppressed the tumor growth and
prolonged the lifespan of tumor-bearing mice; it was found in
an anticancer experiment.

3.4 Combination of Ferroptosis With
Ultrasound Therapy
Ultrasound can pass through the body and focus on deep tumor
tissues. High-intensity ultrasound can kill tumors by high temperature.
The combination of ultrasound therapy and nanotechnology can be a
switch for nanomedicine to achieve precise drug release (Wang et al.,
2017; Zhu et al., 2018). A nanomedicine with low-dose ultrasound
responding was designed in Hao et al.’s research through combining
DOX with the nanoplatform, subsequently incorporating

FIGURE 9 | (A) Illustration of the synthesis process and mechanism of nanoparticles for tumor therapy; (B) Fluorescence images of Saos-2 cells after different
treatments. The cellular GSH level was indicated by Thiol-Tracker Violet. Cells in fresh culture media were used as the control group; (C) In vitro cytotoxicity of DOX, FHHP +
US, and DFHHP + US against Saos-2 cells after the pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) or apoptosis inhibitor Ac-DEVD-CHO (Apo). (Adapted from
Ref. 84 with permission. Copyright © 2020 Biomaterials).
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n-heneicosane and polyethylene glycol chains (Fu et al., 2021) (Figure
9). Due to solid–liquid phase change, n-heneicosane could respond to
mild high temperatures caused by ultrasound generating ultrasound-
responsive cargo. Nanoparticles extravasate into the osteosarcoma
tumor through the enhanced permeability and retention (EPR)
effect of the tumor. On the one hand, the sensitivity of the
apoptosis mediated by DOX of tumors can be caused by
ultrasound-responsive DFHHP nanomedicine (DOX-Fe(VI)@HMS-
HE-PEG, abbreviated as DFHHP) via alleviating the hypoxic tumor
microenvironment by tumor reoxygenation. On the other hand,
exogenous iron and systemic GPX4 could cause inactivation-
efficient ferroptotic cell death. The US-activatable nanomedicine
overcame chemoresistance and suppressed tumor growths by
inducing collaborative apoptosis and ferroptosis of hypoxic
osteosarcoma in vitro and in vivo.

3.5 Combination of Ferroptosis With
Photodynamic Therapy
Photodynamic therapy uses lasers of specific wavelengths to activate
photosensitizers selectively retained in tumor tissues to selectively kill
tumor cells (Patrice, 1991; Blasi et al., 2018). Zhao et al. provided a
new treatment strategy for triple-negative breast cancer (TNBC) with
azobenzene combretastatin A4 (Azo-CA4) (Zhu et al., 2020). Near-
infrared light was converted to UV light by upconverting
nanocarriers (UCNPs) to activate Azo-CA4, which being
physically encapsulated in the lipid (LP) bilayer and was loaded in
UCNPs. After irradiation, the viability of TNBC cells was significantly
reduced by UCNP@LP (Azo-CA4) nanocarriers through both
apoptosis and ferroptosis. On the one hand, microtubule
breakdown and cell cycle arrest at the G2/M phase was induced
by photoisomerization of Azo-CA4. On the other hand, the UV
light–induced reduction of Fe3+ to Fe2+ caused ferroptosis, which
facilitated the peroxidation of lipids. The tumor growth of xenograft
mice was significantly suppressed by UCNP@LP (Azo-CA4).

A novel theranostic nanoplatform was developed in Zheng
et al.’s research for tumor chemodynamic–photothermal therapy
and 3D imaging diagnosis (Hu et al., 2020). By the synthesis of
Prussian blue cubes (PB) and in situ reduction of iron platinum
nanoparticles (FePt-NPs) in a facile way and coating with targeting
ligands (hyaluronic acid) and NH2-PEG, the nanoplatform was
successfully fabricated. The nanoplatform has two functions: it
decomposes endogenous H2O2 into ROS, which is highly cytotoxic
to tumor cells and produces a multifunctional theranostic agent for
multimodal imaging and therapies. Moreover, the specific tumor-
targeting ability to the nanoplatform was given by HA, with
excellent biocompatibility and biological degradability, due to
binding with CD44 and CD168. The tumor growth of xenograft
mice was effectively suppressed by intravenous injection of the
nanoplatform, indicating that tumor growth efficaciously inhibited
the nanoplatform, with relatively high biosafety.

4 CONCLUSION AND PROSPECTIVE

Cancer is a public health problem worldwide, whose incidence of
tumor increases year by year. At present, traditional treatment of

tumor is usually combined with chemotherapy, radiotherapy, and
other methods. However, there are large side effects, easy to
produce drug resistance, and other problems during the process
of treatment. Therefore, in recent years, gene therapy,
immunotherapy, and other emerging treatment methods have
been widely studied. However, the biosecurity, specific
mechanisms, and long-term therapeutic effects of these
emerging treatments need to be further studied. Ferroptosis is
a new form of regulated cell death that is defined in 2012. In
recent years, a large amount of research has focused on the
mechanisms of ferroptosis. Based on these mechanisms,
especially for the Fenton reaction and suppressing activity of
GPX4, ferroptosis has provided a new idea for cancer therapy.
However, tumor cells can adapt to the microenvironment
through metabolic change; some small molecules, such as the
ferroptosis inducers, that merely increase the concentration of
ROS in tumor cells or inhibit the activity of GPX4 cannot achieve
strong and lasting antitumor effects. In a way, the small molecules
lack tumor specificity, and they are easier to be eliminated during
blood circulation.

With the development of nanomaterial technology, ferroptosis-
inducing nanomedicines have attracted more attention. Therefore,
it is timely to outline the latest advances in ferroptosis-inducing
nanomedicines. The combination inducing ferroptosis with
nanotechnology enhances the stability, biosecurity, targeting,
and controlled release of drugs in the body. Specifically, the
advantages of ferroptosis-inducing nanomedicines include three
aspects. First, the nanomaterials with a regulated size can facilitate
passive targeting to the tumor microenvironment (EPR effect). By
modifying the nanoparticles with specific antibodies against the
tumor surface, the active targeting of nanomedicine to tumors can
also be achieved. Second, the large hydrodynamic size of
nanomaterials can reduce the renal clearance and prolong the
half-life in the blood. Moreover, ferroptosis-inducing
nanomedicines combined with other therapies, such as
chemotherapy, gene therapy, ultrasound therapy, and
photodynamic therapy, can achieve more effective treatments
with the synergy effect. To a certain extent, ROS produced by
ferroptosis can regulate the tumor microenvironment and further
induce cell apoptosis, enhance ability to kill tumor cells of
nanomedicine, or even reverse tumor resistance. In addition, a
large number of studies have also shown that autophagy is indeed
induced by the ferroptosis inducer, and autophagy can enhance
ferroptosis in cancer cells by degradation of ferritin (Hou et al.,
2016; Torii et al., 2016; Park and Chung, 2019). Chen et al.
constructed trehalose-loaded mSiO2@MnOx-mPEG (TreMMM)
nanoparticles, its combination of GSH consumption-induced
ferroptosis and trehalose-induced autophagy by nanomedicine
design, providing a new strategy for the design of ferroptosis-
inducing nanomedicines (Yang et al., 2021c). Besides, several other
key molecules in the NRF2 pathway or RAS/MAPK pathway are
related to ferroptosis, which provides an opportunity to find out
various targets to design nanomedicines (Yagoda et al., 2007; Roh
et al., 2017; Wang et al., 2021d).

Although ferroptosis-inducing nanomedicines have been
developed rapidly, the potential clinical application remains to
be further investigated. On the one hand, most of the current
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research focuses on cells or animal models; there might be a
difference between the human body and the models used in most
research, such as cells and animals. It is questionable that whether
ferroptosis-inducing nanomedicines have effective treatments in
the human body. On the other hand, whether ferroptosis-
inducing nanomedicines have potential toxic and side effects
that should be further investigated. Moreover, existing research of
ferroptosis-inducing nanomedicines is mainly a benefit to breast
cancer and liver cancer. This may be due to the high incidence of
these tumors, which is suitable as the model for tumor therapy.
Meanwhile, different tumors have different sensitivities to the
ferroptosis-inducing nanomedicines because of their adaptability
to ROS. Therefore, it is necessary to further investigate the
mechanisms of tumor resistance. Importantly, the research on
the mechanism of gene therapy and immunotherapy, as emerging
treatment methods, is not thorough enough. Whether the
combination with inducing ferroptosis will cause other side
effects remains to be further studied. In summary, although
ferroptosis-inducing nanomedicines have achieved the positive
antitumor effect on the research, the treatment of tumors based
on ferroptosis is in the initial stage. In the future, many issues
need to be clarified in combination of biochemistry, oncology,
and material technology to design the effective and safe cancer
therapy strategies based on ferroptosis.
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