Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Benzothiazole-oxalic acid (2/1)

Ashraf Ahmad Ali Abdalsalam, ${ }^{\text {a }}$ Mohammad T.M. AI-Dajani, ${ }^{\text {a }}$ Nornisah Mohamed, ${ }^{\text {a }}$ Madhukar Hemamalini ${ }^{\text {b }}$ and Hoong-Kun Fun ${ }^{\mathbf{b}^{*}} \ddagger$

${ }^{\text {a }}$ School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 8 August 2011; accepted 9 August 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.038 ; w R$ factor $=0.114 ;$ data-to-parameter ratio $=28.6$.

The asymmetric unit of the title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}$-$0.5 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$, contains one benzothiazole molecule and half an oxalic acid molecule, the complete molecule being generated by inversion symmetry. The benzothiazole molecule is essentially planar, with a maximum deviation of 0.007 (1) A. In the crystal, the benzothiazole molecules interact with the oxalic acid molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generating $R_{2}^{2}(8)(\times 2)$ and $R_{4}^{4}(10)$ motifs, thereby forming supramolecular ribbons along [101].

Related literature

For background to the biological activity of benzothiazoles, see: Bradshaw et al. (1998); Dögruer et al. (1998); Dash et al. (1980); Cox et al. (1982).

$\cdot 0.5$

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
$V=805.58(10) \AA^{3}$
$M_{r}=180.20$
Monoclinic, $P 2_{1} / c$
$a=4.0231$ (3) A
$b=26.039$ (2) A
$c=8.5605$ (6) \AA
$\beta=116.064$ (3) ${ }^{\circ}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.62 \times 0.40 \times 0.04 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.811, T_{\text {max }}=0.985$

10970 measured reflections 3204 independent reflections 2417 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.114 \quad$ independent and constrained
$S=1.04$ refinement
3204 reflections
112 parameters
$\Delta \rho_{\text {max }}=0.36 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H1O2 $\cdots \mathrm{N} 1$	$0.89(2)$	$1.80(2)$	$2.6663(15)$	$166(2)$
C5-H5A \cdots O1	0.93	2.48	$3.3263(17)$	151
C7-H7A \cdots O $^{\mathrm{i}}$	0.93	2.48	$3.4029(18)$	170

Symmetry code: (i) $-x+3,-y+2,-z+2$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

NM gratefully acknowledges funding from the Malaysian Ministry of Science, Technology and Innovation through the Malaysian Institute of Pharmaceutical and Nutraceutical R\&D Initiative Grant (grant No. 09-05-IFN-MEB 004). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/ PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2778).

References

Bradshaw, T. D., Wrigley, S., Shi, D. F., Schultz, R. J., Paull, K. D. \& Stevens, M. F. (1998). Br. J. Cancer, 77, 745-752.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cox, O., Jackson, H., Vargas, V., Baez, A., Colon, J. I., Gonzaiez, B. C. \& De Leon, M. (1982). J. Med. Chem. 25, 1378-1381.
Dash, B., Patra, M. \& Praharaj, S. (1980). Indian J. Chem. Sect. B, 19, 894-897.
Dögruer, D. S., Unlii, S., Sahin, M. F. \& Ye Silada, E. (1998). Farmaco, 53, 8084.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[^0]
supplementary materials

1,3-Benzothiazole-oxalic acid (2/1)

A. A. A. Abdalsalam, M. T. M. Al-Dajani, N. Mohamed, M. Hemamalini and H.-K. Fun

Comment

Benzothiazoles are used as anti-neoplastic agents and show anti-nociceptive, anti-inflammatory and anti-tumour activities (Bradshaw et al., 1998; Dögruer et al., 1998). Some Schiff bases derived from thiazole and benzothiazoles (Dash et al., 1980) and several derivatives of the styryl-benzothiazoles have also shown biological activity (Cox et al., 1982). In view of the above biological activities associated with the benzothiazole, herein, we present the title compound (I), extracted from the juice of Guava (Psidium guajava).

The asymmetric unit of the title compound, (I), contains one benzothiazole molecule and a half of an oxalic acid molecule (which lies on an inversion centre) as detailed in Fig. 1. The benzothiazole ($\mathrm{N} 1 / \mathrm{S} 1 / \mathrm{C} 1-\mathrm{C} 7$) molecule is essentially planar, with a maximum deviation of 0.007 (1) \AA for atom C6.

In the crystal structure, Fig. 2, the benzothiazole molecules interact with the oxalic acid molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) generating $R^{2}{ }_{2}(8)$ and $R_{4}^{4}(10)$ motifs and forming supramolecular ribbons along the [lll 1001$]$ direction.

Experimental

The juice of Guava (Psidium guajava) was extracted using soxhlet extraction method with methanol as solvent. After 24 hours at room temperature, a precipitate was formed and the filtrate removed. The precipitate was washed by using a mixture ($90-100) \mathrm{ml}$ of n-hexane-ethyl acetate. It was recrystallized by dissolving in methanol. Brown crystals were formed which melted at M.pt 323 K .

Refinement

Atom H 1 O 2 was located from a difference Fourier map and refined with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})[\mathrm{O}-\mathrm{H}=0.89$ (2) \AA]. The remaining H atoms were positioned geometrically $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$] and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figures

Fig. 1. Contents of (I) showing the molecule of benzothiazole and the full molecule of oxalic acid after the application of inversion symmetry (A: $-x+2,-y+2,-z+1$). The atoms are displayed with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

supplementary materials

Fig. 2. Partial crystal packing in (I) with dashed lines representing hydrogen bonding.

1,3-benzothiazole-oxalic acid (2/1)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
$M_{r}=180.20$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=4.0231$ (3) \AA
$b=26.039$ (2) \AA
$c=8.5605(6) \AA$
$\beta=116.064(3)^{\circ}$
$V=805.58(10) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII DUO CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.811, T_{\max }=0.985$
10970 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.114$
$S=1.04$
3204 reflections
$F(000)=372$
$D_{\mathrm{x}}=1.486 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3803 reflections
$\theta=2.8-32.6^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, brown
$0.62 \times 0.40 \times 0.04 \mathrm{~mm}$

3204 independent reflections
2417 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=33.9^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-6 \rightarrow 6$
$k=-40 \rightarrow 40$
$l=-13 \rightarrow 13$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0557 P)^{2}+0.1124 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

112 parameters
0 restraints

$$
\begin{aligned}
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R -factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$1.14317(9)$	$0.875823(14)$	$1.21487(4)$	$0.04461(11)$
N1	$1.0034(3)$	$0.91965(4)$	$0.92292(13)$	$0.0385(2)$
C1	$0.8353(3)$	$0.84567(4)$	$1.02665(14)$	$0.0350(2)$
C2	$0.6466(4)$	$0.79950(5)$	$1.00741(19)$	$0.0448(3)$
H2A	0.6763	0.7800	1.1037	0.054^{*}
C3	$0.4144(4)$	$0.78360(5)$	$0.8411(2)$	$0.0493(3)$
H3A	0.2881	0.7527	0.8252	0.059^{*}
C4	$0.3652(4)$	$0.81302(5)$	$0.69656(18)$	$0.0468(3)$
H4A	0.2035	0.8017	0.5861	0.056^{*}
C5	$0.5516(4)$	$0.85854(5)$	$0.71444(15)$	$0.0412(3)$
H5A	0.5187	0.8780	0.6176	0.049^{*}
C6	$0.7919(3)$	$0.87487(4)$	$0.88198(14)$	$0.0329(2)$
C7	$1.1947(4)$	$0.92418(5)$	$1.09000(16)$	$0.0408(3)$
H7A	1.3510	0.9520	1.1395	0.049^{*}
O1	$0.7128(3)$	$0.94803(4)$	$0.47893(12)$	$0.0584(3)$
O2	$1.1410(3)$	$0.98494(4)$	$0.71853(11)$	$0.0468(2)$
H1O2	$1.064(6)$	$0.9617(8)$	$0.771(3)$	0.070^{*}
C8	$0.9467(3)$	$0.97976(4)$	$0.55062(14)$	$0.0363(2)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.04724(18)$	$0.0555(2)$	$0.02518(14)$	$-0.00784(13)$	$0.01050(12)$	$0.00106(11)$
N1	$0.0444(5)$	$0.0389(5)$	$0.0286(4)$	$-0.0058(4)$	$0.0128(4)$	$-0.0010(3)$
C1	$0.0333(5)$	$0.0404(5)$	$0.0298(5)$	$0.0001(4)$	$0.0123(4)$	$0.0004(4)$
C2	$0.0428(6)$	$0.0456(6)$	$0.0446(6)$	$-0.0034(5)$	$0.0179(5)$	$0.0069(5)$
C3	$0.0464(7)$	$0.0420(6)$	$0.0565(8)$	$-0.0098(5)$	$0.0199(6)$	$-0.0064(6)$
C4	$0.0442(6)$	$0.0515(7)$	$0.0390(6)$	$-0.0080(5)$	$0.0131(5)$	$-0.0136(5)$
C5	$0.0447(6)$	$0.0465(6)$	$0.0281(5)$	$-0.0032(5)$	$0.0121(5)$	$-0.0042(4)$
C6	$0.0349(5)$	$0.0351(5)$	$0.0275(5)$	$-0.0006(4)$	$0.0126(4)$	$-0.0019(4)$

C7	$0.0442(6)$	$0.0426(6)$	$0.0315(5)$	$-0.0082(5)$	$0.0129(5)$	$-0.0038(4)$
O1	$0.0705(7)$	$0.0600(6)$	$0.0318(4)$	$-0.0320(5)$	$0.0108(4)$	$-0.0010(4)$
O2	$0.0557(5)$	$0.0486(5)$	$0.0255(4)$	$-0.0169(4)$	$0.0081(4)$	$0.0029(3)$
C8	$0.0400(5)$	$0.0365(5)$	$0.0265(5)$	$-0.0049(4)$	$0.0092(4)$	$0.0009(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 7$	$1.7222(13)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7300(12)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.2979(15)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.3944(14)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3926(17)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.3972(15)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.379(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.394(2)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1$	$89.19(6)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$110.72(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$121.04(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$129.19(10)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$109.76(8)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.92(12)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	121.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	121.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.26(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.16(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.4
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$179.27(13)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$-0.42(9)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(2)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.91(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.39(15)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$179.30(12)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	
Sy	

$\mathrm{C} 4-\mathrm{C} 5$	$1.3748(19)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.3979(15)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 8$	$1.1989(14)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.3068(13)$
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	$0.89(2)$
$\mathrm{C} 8-\mathrm{C} 8$	$1.540(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$118.30(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.9
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.9
$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{C} 1$	$114.05(10)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$125.65(10)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.30(11)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	$116.28(9)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	121.9
$\mathrm{~S} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	121.9
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2$	$108.3(15)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$	$126.13(11)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 8$	i
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 8$	i
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$122.24(12)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$111.63(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	
$\mathrm{~S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.17(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$0.55(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.12(18)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	$-179.16(9)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1$	$179.48(12)$
	$-0.85(19)$
	$0.22(15)$

Symmetry codes: (i) $-x+2,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{~N} 1$	$0.89(2)$	$1.80(2)$	$2.6663(15)$	$166(2)$
$\mathrm{C} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 1$	0.93	2.48	$3.3263(17)$	151
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.93	2.48	$3.4029(18)$	170

sup-4

Symmetry codes: (ii) $-x+3,-y+2,-z+2$.

Fig. 1

Fig. 2

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.

