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Abstract

Biopsy remains the gold-standard measure for staging liver disease, both to inform prognosis and to assess the
response to a given treatment. Semiquantitative scores such as the Ishak fibrosis score are used for evaluation.
These scores are utilised in clinical trials, with the US Food and Drug Administration mandating particular scores
as inclusion criteria for participants and using the change in score as evidence of treatment efficacy. There is an
urgent need for improved, quantitative assessment of liver biopsies to detect small incremental changes in liver
architecture over the course of a clinical trial. Artificial intelligence (Al) methods have been proposed as a way to
increase the amount of information extracted from a biopsy and to potentially remove bias introduced by manual
scoring. We have trained and evaluated an Al tool for measuring the amount of scarring in sections of picrosirius
red-stained liver. The Al methodology was compared with both manual scoring and widely available colour space
thresholding. Four sequential sections from each case were stained on two separate occasions by two indepen-
dent clinical laboratories using routine protocols to study the effect of inter- and intra-laboratory staining
variation on these tools. Finally, we compared these methods to second harmonic generation (SHG) imaging, a
stain-free quantitative measure of collagen. Although Al methods provided a modest improvement over simpler
computer-assisted measures, staining variation both within and between laboratories had a dramatic effect on
quantitation, with manual assignment of scar proportion being the most consistent. Manual assessment also
most strongly correlated with collagen measured by SHG. In conclusion, results suggest that computational mea-
sures of liver scarring from stained sections are compromised by inter- and intra-laboratory staining. Stain-free
quantitative measurement using SHG avoids staining-related variation and may prove more accurate in detecting

small changes in scarring that may occur in therapeutic trials.
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Introduction

Histological assessment of liver scarring is a pivotal
endpoint for determining efficacy of potential anti-
fibrotic therapies in clinical development. Conven-
tional scoring systems encompass broad architectural
distribution of fibrosis rather than reflecting only the
amount of scar deposition [1] and rely on subjective
interpretation by a trained pathologist. Therefore, sub-
tle but potentially clinically significant improvements

in histology that may predict endpoints such as portal
hypertension and liver function may not be reliably
captured.

Picrosirius red (PSR) staining is established as the
most reliable method for visualising fibrosis in a liver
biopsy, shows concordance with other measures of
collagen deposition [2], and may show less staining
variation than observed in trichrome staining or immu-
nohistochemistry [1]. As measuring the intensity of a
single colour on a slide is an extremely simple metric,
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it lends itself to computerised measurement that removes
intra- and inter-observer variation introduced by a pathol-
ogist score [3,4]. This has led to the development of sev-
eral computer-aided methodologies, with varying degrees
of success [5,6]. These tools are often described as auto-
mated morphometry or collagen proportionate area
(CPA) measurement and generally rely on tinctorial
staining (Verhoeff’s Van Gieson or PSR) to stain elastin
and/or collagen fibres. Digital scans of these stained
slides are then made and, by using a colour space thresh-
old based on the hue, saturation, and brightness (HSB), a
quantitative assessment of collagen or elastin over the
entire section can be made. Such methods have been used
to demonstrate differences between groups in transla-
tional or clinical research studies where staining can be
undertaken in a tightly controlled, single/minimal batch
manner by a single laboratory [5,7].

The relative ease and declining cost of both acquir-
ing and storing whole-slide images mean that there is
now a significant amount of histological data available
that can be mined by machine learning algorithms. As
opposed to CPA and associated techniques, machine
learning enables the characterisation of ‘sub-visual’
features of a slide — information that would not be
consciously captured by a pathologist or simple com-
putational methods [8,9]. Machine learning methods
can both be applied as a more sophisticated form of
segmentation whereby an algorithm can be taught to
distinguish features of a slide rather than using simple
thresholds based on colour [10,11], or be used to cor-
relate complex histopathological features with clinical
outcomes [12].

In addition to artificial intelligence (AI) methods,
stain-free second harmonic generation (SHG) and two-
photon excited fluorescence (TPEF) microscopy have
been proposed as tools to enable a more accurate and
objective assessment of a liver biopsy that is not
influenced by staining quality [13]. SHG light is only
generated by non-centrosymmetric molecules such as
collagen, therefore by exposing a tissue specimen to a
laser and measuring the polarised light produced, an
assessment of the amount and distribution of collagen
can be made. SHG can be used in conjunction with
TPEF microscopy, enabling visualisation of back-
ground liver tissue at the same time as collagen [14].
Currently unaffordable for routine diagnostic use,
SHG/TPEF imaging can provide an accurate stain-free
quantitative measurement of fibrosis on a biopsy [15].

In this exploratory study, we have compared the
performance of an Al methodology with simple
thresholding and manual assessment in quantifying
scar proportion in PSR-stained sections of liver, along-
side a stain-free method of scar quantification. For
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widespread application in large clinical trials or routine
clinical practice, the ideal method of scar quantitation
from stained sections must be robust to staining varia-
tion both between and within laboratories where
sections must be stained daily rather than as study-
specific batches. We have used sequential sections
from the same blocks, stained on two separate occasions
at two independent National Health Service (NHS) clini-
cal pathology laboratories. In the absence of a ‘ground-
truth’, the performance of different methods of scar
quantitation has been evaluated by the consistency of
derived metrics of scar amount across the set of sequen-
tial stained sections, testing both inter- and intra-
laboratory effects, i.e. an optimal method would produce
the same ‘result’ from each of the four sections from
the same block stained on two separate occasions in two
independent NHS laboratories. Finally, the stain-based
measurement methods of scar quantification were com-
pared to stain-free SHG/TPEF imaging, which gives a
similar readout of the amount of collagen on a slide but
is not subject to bias relating to either laboratory proto-
cols or stain interpretation. Specifically, the measure-
ment of fibrosis-related parameters in liver tissue by
SHG is highly reproducible when the test-retest perfor-
mance has been evaluated [16].

The prevailing orthodoxy is that machine learning
methods will provide a significant performance
improvement over both simple colour space methods
and human measurement, but we demonstrate signifi-
cant challenges that must be overcome if AI methods
are to be applied to histopathology in large multi-
centre studies and clinical practice.

Materials and methods

Human tissue acquisition and staining

Anonymised unstained formalin-fixed paraffin-embedded
sections from 20 cirrhotic explant livers (four cases each
with alcoholic liver disease, non-alcoholic fatty liver dis-
ease, chronic hepatitis C virus infection, primary sclerosing
cholangitis, and primary biliary cholangitis as the stated
primary aetiology) were provided after approval by the
Lothian NRS Human Annotated Bioresource with permis-
sion granted under authority from the East of Scotland
Research Ethics Service REC 1, reference 15/ES/0094.
From each block, initial five adjacent 5 pm sections
were cut for staining in Nottingham and Edinburgh. A
single section from each case was PSR stained
according to standard local protocols within two CPA
UK-accredited NHS pathology laboratories — Notting-
ham University Hospitals NHS Trust Queen’s Medical
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Centre Pathology Department and NHS Lothian
Department of Laboratory Medicine at the Royal
Infirmary of Edinburgh (see Supplementary materials
and methods). To assess intra-laboratory variation,
staining on each case was repeated at both laborato-
ries 6 months later using another section of the initial
set from the same block, generating four stained sets
of slides in total. Finally, further sections were cut
from the same blocks and stained in Nottingham,
where the standard staining protocol was unchanged,
within 1 week to further evaluate intra-laboratory
staining variation; the standard protocol for PSR
staining in Edinburgh had changed after the two
rounds of staining, so an additional round of staining
was not undertaken.

Image acquisition and processing

Stained sections were scanned using identical Nano-
Zoomer scanners (Hamamatsu Photonics, Shizuoka,
Japan) at x20 magnification. The raw scanned .ndpi
whole-slide images were split by ndpisplit [17] into
x5 magnification 1,000 x 1,000 pixel tiles in TIFF
format. As the scans contained the entire slide,
including areas not containing tissue, simple
thresholding was used to isolate the tissue from each
tile and discard empty space and debris contained in
each scan. The script used to isolate tissue is
included in supplementary material, File S1. Over-
view images at x1.25 were exported from the raw .
ndpi file and are available from the University of
Nottingham Research Data Repository (https://rdmc.
nottingham.ac.uk/handle/internal/9133).

Manual scoring

All livers were cirrhotic, so the application of tradi-
tional ordinal scores of architecture provided no
inter-case  discrimination. Instead, whole-slide
images of each section were stripped of all identi-
fiers and randomly numbered. Four participants
(two qualified pathologists and two non-clinical
researchers) provided their assessment of the per-
centage of tissue on each slide that was PSR posi-
tive, scoring each batch of 20 slides with a
‘washout’ period of at least 1 day in between differ-
ent, randomly ordered batches.

HSB colour space scar quantification

Each background cleaned tile was classified by two
separate HSB colour space thresholds to calculate the
number of pixels representing total tissue and the num-
ber of PSR-positive pixels. The threshold values to
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determine PSR-positive pixels were derived by
selecting positive pixels within a representative tile
and then testing on representative tiles from all cases,
adjusting and iterating by-eye until the most consistent
thresholding was achieved. A single set of threshold
values was applied to tiles from all stained image sets.

Classifier development in WEKA

Following pre-processing described above, the Waikato
Environment for Knowledge Analysis (WEKA) [18], an
open-source Java-based tool available as a plugin within
Fiji [19], was used to build a PSR classifier. Tiles were ran-
domly selected from the data set and used to train the clas-
sifier. Classes were defined as ‘Space’ (empty space
surrounding extracted portions of tissue), ‘Lumen’, ‘PSR
positive’, and ‘Tissue’. Areas of each tile were selected
using a graphics tablet and manually defined as one of the
four classes. WEKA was set up to use mean, minimum,
maximum, median, and variance as training features for
the selected pixels. The balance classes setting was used to
account for differences in the amount of training data used
for each of the four classes. Once the areas of each tile were
defined, these training data were used by WEKA to extrap-
olate across the entire tile, giving an image segmented into
four colours based on the defined classes. Training was
then repeated on each tile until it was segmented into the
four classes accurately, as judged by a pathologist. Train-
ing was then continued using at least one tile from each of
the 20 slides in the study. Following training, a script was
used to apply the classifier to every tile in the study and
count the number of pixels in each class. This script is
included in supplementary material, File S2. PSR positiv-
ity was defined as the number of PSR-positive pixels
divided by total PSR-positive pixels + tissue + lumen
and expressed as a percentage.

Individual WEKA classifiers (WEKA_i) specific to
each single set of images were trained by using only
tiles from that stained image set. For combination
WEKA classifiers (WEKA_c1 and c2), classifiers were
trained using tiles drawn from all stained image sets.

SHG/TPEF imaging

SHG/TPEF imaging was carried out by Histoindex Pte
Ltd (Singapore) using an unstained section from each
of the 20 cases, at x20 magnification. The raw SHG
percentage (a measure of the amount of collagen) and
gFibrosis, a score taking into account both the amount
and distribution of collagen [20], were correlated with
the other stain-based scoring methods.

J Pathol Clin Res 2021; 7: 471481
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Statistical comparisons between methods

The combination of metrics from four stained sections
of the initial set from each case, Edinburgh 1 and
2 (E1 and E2) and Nottingham 1 and 2 (N1 and N2)
from three different measurement approaches resulted
in six pairs of observations used to compare the differ-
ent methods (Figure 1). Scores derived from the
unstained set (SHG/TPEF) were correlated with scores
from each measurement method on the El-stained set.
Spearman correlation coefficients were calculated for
each pair of observations. Metrics from the freshly recut
sections stained in Nottingham (rN3) were compared
with those derived from N1 and N2 alone. Scores for
each section using each of the measurement methods
are included in supplementary material, File S3.

Results

Inter- and intra-laboratory staining variation
significantly reduces consistent PSR quantification
using computational methods

Slides were stained at two centres (January 2018),
followed by staining of a second set 6 months later at

A
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both centres (July 2018), using the next sections from
each FFPE block that were cut at the same time at the
start of the study to allow evaluation of intra-
laboratory staining variation in a routine, real-world
clinical laboratory context. We observed substantial
qualitative differences in the PSR colour and intensity
in each batch stained, even when comparing slides sta-
ined at the same centre (Figure 2).

Measurement of scar proportion using a single
HSB colour space threshold applied to all stain-
ing sets (E1, E2, N1, and N2) showed large differ-
ences between derived values of PSR percentage
for each given case. The Spearman’s rank correla-
tion of values was poor both for inter-laboratory
(p = 0.26) and intra-laboratory (p = 0.19) stain pairs
(Figure 3A).

A WEKA classifier was trained using training data
from and applied to each individual set of PSR-stained
slides (E1, E2, N1, and N2) in isolation (WEKA_1i).
The classifiers trained on and then applied to each indi-
vidual set of stained slides (WEKA_i) produced no
increase in consistency compared with the simple col-
our space thresholding method. Spearman’s correlation
coefficients were similarly low for both intra-
(p = 0.24) and inter-laboratory stain sets (Figure 3B).
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Figure 1. Outline of the study design. (A) Twenty explants were PSR stained at two different laboratories (Edinburgh and Nottingham), with
each laboratory staining in two batches of 6 months apart, giving four sets of 20 slides each (E1, E2, N1, and N2). The stained slides were
then scored using three different methods (human, HSB, and WEKA). A fifth set of slides were sectioned and left unstained for SHG/TPEF
imaging. (B) Each stained set of slides gives six measurement pairs that can be compared to assess inter- and intra-laboratory variation
with each scoring method. A single set of stained slides (E1) was used as the comparator with the stain-free SHG/TPEF set.
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image is coloured as collagen in green/yellow and parenchyma in red.

A second unified WEKA classifier was trained with
images from both sites (WEKA_c1) and applied to all
cases. Unified training marginally increased the consis-
tency of the classifier, with slightly increased Spearman’s
correlation coefficients for both intra- (p = 0.31) and
inter-laboratory (p = 0.29) stain sets (Figure 3C).

To explore the potential of using further training to
iteratively improve classifier accuracy, sections that
produced especially divergent results (inter-laboratory
pairs displaying over 2x divergence in scoring) were
used to further train an improved combined classifier
(WEKA_c2). This targeted training led to further
improvements in classifier consistency across all
images, and increased Spearman’s correlation coeffi-
cient for both intra- (p = 0.53) and inter-laboratory
(p = 0.37) stain sets (Figure 3D).

By comparing the derived scar proportion (PSR-
positive percentage of tissue) using each classifier
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applied to each set of stained images (E1, E2, NI,
and N2), it is evident that both inter- and intra- lab-
oratory staining differences have a significant
impact on classification (Figures 2 and 3). Most
importantly, the change in colour of the PSR stain
led to a significant reduction in the number of pixels
classified as PSR positive by certain classifiers
(Figure 2). Some of this was corrected with further
training (Figure 2, WEKA_c2). This staining varia-
tion also led to significant misclassification of
non-PSR-positive tissue, in particular, the incorrect
classification of liver tissue as vessel lumen
(Figure 2, Nottingham stain 2).

To explore whether the duration between block
sectioning and staining could account for some of
the intra-laboratory staining variation, a freshly cut
set of sections from the same blocks were stained in
Nottingham (rN3), where the PSR staining protocol

J Pathol Clin Res 2021; 7: 471481
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gists [hu1 and hu2] and two non-clinical researchers [hu3 and hu4]).

remained unchanged, in February 2021. The derived
scar proportion using the WEKA_c2 classifier from
rN3 most closely correlated with the derived values

from N1, suggesting that the duration of time
between section preparation and staining was
responsible for a proportion of the intra-laboratory
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variation in PSR staining (see supplementary mate-
rial, Figure S1).

Human assessment of scar proportion is
significantly more consistent than computational
methods

Although the current gold standard is ordinal scoring
of architecture by a pathologist, the scales are crude.
For example, all cases in this study were cirrhotic and
so would be assigned the same score in any system
used. Computational analysis is purported to out-
perform a human observer in determining the absolute
amount of a feature of interest, such as the percentage
of tissue that is PSR positive, and so such estimates by
an observer are rarely used.

However, we tested whether such confidence in
computational methods, or more correctly scepticism
about the performance of human observers, was
valid. Four observers, two consultant pathologists and
two research scientists, were asked to give an estimate
of the percentage of the tissue that was PSR positive
from randomly ordered low-power thumbnail images of
each stain set (E1, E2, N1, and N2), repeating the pro-
cess on renumbered image sets at least 24 h later. No
prior training for the task was provided.

© 2021 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
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Against all expectations, there was much greater
consistency of given scar proportion across the stain
sets for each observer alone compared with any com-
putational method (Figures 4 and 5), regardless of
whether the scorer was a pathologist (hul and hu2) or
non-clinical researcher (hu3 and hu4). This indicates
that an observer is much more able to compensate for
variations in staining than any computational method.

Comparison of computational methods on stained
sections with SHG/TPEF imaging

Having assessed an Al-based method against existing
methods of stain-based measurement, we then com-
pared these methods to commercially available, stain-
free SHG/TPEF imaging (Figures 1 and 2). HSB
colour space thresholding, the most consistent Al
classifier (WEKA_c2), and the most consistent human
scorer (hul) for readouts on the El set, based on
median correlation between all stain pairs, were used
as comparators with SHG. Scores were compared
against both the raw SHG value (expressed as a per-
centage of the total amount of tissue scanned) and the
gFibrosis score, which adjusts the SHG percentage
based on its distribution across the scanned section.
In both instances, human scoring gave the strongest
correlation with SHG/TPEF quantification (Figure 6).

J Pathol Clin Res 2021; 7: 471-481
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Discussion

In 2015, a report commissioned by the UK government’s
Minister for Digital and Culture outlined potential bene-
fits and opportunities of Al and machine learning tools,
including how these could be applied to health care [21].
In 2019, £250 m was invested in a National Artificial
Intelligence Lab, to be based within NHSX [22]. Thus,
there is a clear drive among both politicians and the larg-
est technology companies in the world to apply Al
methods wherever possible in medicine.

In the research setting, large, multi-centre trials using
liver fibrosis as a primary efficacy endpoint currently rely
on ordinal scores such as the non-alcoholic fatty liver dis-
ease (NAFLD) activity score or Ishak fibrosis stage.
Even when best practices are followed (central review by
more than one pathologist, central staining if practical,
and consistency in biopsy technique) [23], there is poten-
tially a significant amount of information lost through the
use of these ordinal scoring systems. Ideally, computa-
tional methods including those using Al would provide a
way to both extract information from liver biopsies that
is not represented by ordinal scoring, whilst also remov-
ing the subjectivity inherent to the process of scoring.

However, there are several challenges that machine
learning-based tools need to overcome if they are to
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be utilised in a clinical or research setting, including,
but not limited to, a reliance on retrospective rather
than prospective studies, the lack of standardisation to
enable comparison between different Al tools, and the
‘Al-chasm’, a term defining the gulf between reported
accuracy measurements of a given machine learning
tool during development and its actual diagnostic effi-
cacy when used in the field [24]. The Al-chasm prob-
lem was illustrated by a Google-developed tool for
detecting diabetic retinopathy using scanned images of
retinas, which displayed high accuracy during training
but was significantly affected by inter-site variation
when applied in a live setting [25]. A systematic
review of Al tools published in 2019 highlighted that
few studies make direct comparisons between a tool
and healthcare professionals, and even fewer use exter-
nal validation. In studies where external validation
was compared to internal validation, internal
validation was shown to overestimate the effectiveness
of Al compared to healthcare professionals [26]. Using
readily accessible, open-source machine learning tools
to measure a simple histological feature, we have dem-
onstrated that staining variation both within and
between laboratories will pose significant challenges if
these tools are to be applied even in the tightly con-
trolled environment of multi-centre studies.

J Pathol Clin Res 2021; 7: 471481
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As there is a lack of an established gold standard for
measuring the amount of scarring in a liver biopsy, we
have used consistency of the derived scar proportion
across the four sets of stained sections as the metric to
assess the performance of each method. Methods that
are more robust to staining variation will produce
more consistent values and give a tighter correlation
between stain pairs.

Our study demonstrates that a trained Al-based
method does increase consistency compared with sim-
ple colour space thresholding, an increase in perfor-
mance that is enhanced by further training. As
expected, this increase in consistency was higher
between intra-laboratory stain pairs, with protocol and
environmental differences between laboratories more
likely to produce significant changes in staining com-
pared to reagent changes within a single laboratory.
However, there was still considerable residual incon-
sistency in the calculated scar proportion and human
observers were easily able to outperform these
methods, despite the task putatively favouring compu-
tational methods. As observed for the computer-based
scoring methods, the human scores also showed a
slightly higher consistency between intra-laboratory
pairs compared to inter-laboratory pairs (Figure 4).

The age of a histological section is known to affect a
variety of stains [27], therefore staining was repeated in
the Nottingham laboratory on a freshly cut set of sec-
tions (rN3) ensuring 1 week between sectioning and
staining. Classifying with the most consistent Al classi-
fier (WEKA_c2) produced significant correlations
between both the newly stained set tN3 and N1 and N2
stains, with a closer correlation observed between
N1 sections and the rN3 set (see supplementary mate-
rial, Figure S1). As the time between sectioning and
staining was greater in N2 compared to N1 sections,
this indicates that section age may contribute to intra-
laboratory variation if a standard interval between sec-
tioning and staining is not used. The other sources of
intra-laboratory staining variation can only be specu-
lated upon, but may include inter-operator differences
in the application of hand-staining protocols, the age of
reagents, and seasonal and diurnal variation in the labo-
ratory air and water temperatures.

We present this not to suggest that by-eye estimations
of scarring should be used but to highlight that staining
variation is an inevitable factor in real-world laborato-
ries. Whilst iterative training will undoubtedly increase
the consistency of methods used to assess scarring in
stained sections and more sophisticated tools are in
development to effectively allow ‘normalisation’
between multiple staining sites to attempt to account for
the variation introduced [28,29], stain-free methods that
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are not affected by such variation should be considered.
Existing quality control efforts in histopathology focus
on maintaining consistency particularly with regard to
immunohistochemistry, where there is a greater varia-
tion in staining protocols and reagents compared to tinc-
torial staining. This study indicates that similar efforts
(protocol standardisation, the use of tissue controls, and
colour calibration) would be required if Al-assisted
scoring of tinctorial stains is to be applied widely.

SHG/TPEF imaging has been proposed as a gold
standard for the measurement of liver fibrosis [30],
particularly in the context of clinical trials, where
quantifying potentially small changes through the
course of a study is required. Our comparison of each
of the stain-based methods of collagen quantification
with both raw SHG percentage and the qFibrosis score
demonstrated that human scoring is the most strongly
correlated, again suggesting Al methods are more vul-
nerable to inter- and intra-laboratory staining variation
than humans. The common advantage of both humans
and SHG/TPEF is their ability to consider beyond col-
our quantification. Both can utilise information from
the tissue architecture and ‘landscape’ of the scar
either unconsciously by humans or using feature rec-
ognition processes that are not biased by staining to
quantify based on different aspects of fibrosis.

The study is limited in the type of specimen and the
stain assessed. Only sections from explant livers were
used. Whilst this type of specimen in only encountered
by laboratories at liver transplant centres, it was cho-
sen because the available tissue for research was abun-
dant with no risk of exhausting the blocks. Whilst the
use of explants meant that the study was limited to cir-
rhotic livers, rather than representing the full spectrum
of disease stage, there is no clear reason that the find-
ings cannot be extrapolated to PSR-stained sections
with any amount of fibrosis. The examination of a set
of cases where °‘gold-standard’ ordinal scoring of
fibrosis is unambiguously non-informative (i.e. all
cases are assigned the same score under any pan-
aetiology or aetiology-specific scoring system) serves
to illustrate the potential value for formal computa-
tional quantification. Finally, only PSR-stained sec-
tions were examined. We would suggest that whilst
the sources and extent of staining variation will vary
depending on the specific stain, the susceptibility of
computational methods of feature quantification in
stained sections to such variation should always be
evaluated where studies use anything other than self-
contained, single batch staining.

In conclusion, we demonstrate that computational tools
are not yet able to satisfactorily compensate for differ-
ences in tissue staining both between and within
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laboratories. The results here suggest that caution should
be exercised when applying such methods to stain-based
quantification in histopathology, particularly in large
multi-centre studies, without applying extremely rigorous
standardisation between staining centres.
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