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Abstract: Increased concerns associated with interactions between herbicides, inorganic fertilizers,
soil nutrient availability, and plant phytotoxicity in perennial tree crop production systems have
renewed interest in the use of cover crops in the inter-row middles or between trees as an
alternative sustainable management strategy for these systems. Although interactions between
the soil microbiome and cover crops have been examined for annual cropping systems, there are
critical differences in management and growth in perennial cropping systems that can influence the
soil microbiome and, therefore, the response to cover crops. Here, we discuss the importance of
cover crops in tree cropping systems using multispecies cover crop mixtures and minimum tillage
and no-tillage to not only enhance the soil microbiome but also carbon, nitrogen, and phosphorus
cycling compared to monocropping, conventional tillage, and inorganic fertilization. We also identify
potentially important taxa and research gaps that need to be addressed to facilitate assessments of the
relationships between cover crops, soil microbes, and the health of tree crops. Additional evaluations
of the interactions between the soil microbiome, cover crops, nutrient cycling, and tree performance
will allow for more effective and sustainable management of perennial cropping systems.

Keywords: microbial diversity; microbial abundance; intercropping; orchard; perennial cropping
systems; soil health; nitrogen fixation; nitrification; denitrification; soil organic matter

1. Introduction

Perennial tree crops account for over 10% of global agriculture production according to the United
Nations Food and Agriculture Organization (FAO). In the last 56 years, the global surface area covered
by tree crops has increased to an approximate global harvested area of 86.3 Mha in 2017 [1] (Figure 1).
In 2017, the most cultivated tree crops in the world were grapes, cashews, and mangoes, accounting for
a global harvested area of 69.3, 59.8, and 56.8 Mha, respectively [1]. Management of these perennial
systems can be intensive, and fertigation and foliar applications of inorganic fertilizers are frequently
performed to satisfy the high nutrient demand of tree crops [2–5]. In addition, herbicides are often
applied for row middle vegetation management, which may result in the development of herbicide
resistance [6,7]. Concerns associated with interactions between herbicides, inorganic fertilizers,
soil nutrient availability, and plant phytotoxicity have been raised for several perennial tree crop
production systems [8–11], increasing interest in alternative management strategies for these systems.
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Figure 1. Total world area harvested (blue) and production (orange) of tree crops during the period 
1961–2017 [1]. 

Cover crops are a widely applied soil improvement and conservation technique in agriculture, 
particularly in annual cropping systems [12,13], and their implementation in tree cropping systems 
may provide the same benefits found in annual crops, including improved soil and root health; 
increased production; and reductions in costs due to decreases in fertilizers, irrigation, and herbicides 
[11,14]. Cover cropping can also improve soil carbon (C), nitrogen (N), and phosphorus (P) cycling 
[15–17], as well as increase soil microbial abundance and diversity [18] and suppress soilborne pests 
[19]. 

The majority of research on the benefits and impacts of cover crops to agroecosystems has 
focused on annual cash crops. In annual cropping systems, cover crops are primarily planted during 
the fallow season, often for only 3–5 months, when the cash crop is not in production [12,13]. The 
cover crop is then terminated and incorporated into the soil before planting the cash crop. However, 
as perennial crops often remain in production for over 20 years [20], there are critical differences in 
management and growth compared with annual cropping systems that can influence the soil 
microbiome and, therefore, the response to cover crops. In perennial systems, cover crops are planted 
in the inter-row middles or between trees (trunk-to-trunk, herein called “intercropping”; Figure 2); 
the latter is a less common practice due to potential competition for water between the tree and the 
cover crops when coverage is greater than 45% of the tree canopy [21]. Regardless of whether cover 
crops are planted in the inter-row or between trees, there is potential for both the tree and cover crops 
to share resources [12]. Unlike annual cropping systems, annual rotation and soil tillage are not 
present in perennial systems, which potentially allows for greater increases in soil organic matter 
(SOM) [11,22] and the development of more stable communities of beneficial microbial communities 
[23]. The timing of cover crop planting is another large difference between annual and perennial 
systems. In warmer climates, such as in Florida for citrus, year-round cover crop planting is possible 
for perennial systems, requiring multiple plantings and careful selection of cover crop species for 
each season. The limited space planted to cover crops in perennial compared with annual systems 
may also prolong the time needed to increase nutrient cycling [14]. However, in both perennial and 
annual systems, indirect effects on the soil microbial community through agricultural inputs (i.e., 
application of fertilizers, pesticides, and irrigation) may be similar. 

Figure 1. Total world area harvested (blue) and production (orange) of tree crops during the period
1961–2017 [1].

Cover crops are a widely applied soil improvement and conservation technique in agriculture,
particularly in annual cropping systems [12,13], and their implementation in tree cropping systems may
provide the same benefits found in annual crops, including improved soil and root health; increased
production; and reductions in costs due to decreases in fertilizers, irrigation, and herbicides [11,14].
Cover cropping can also improve soil carbon (C), nitrogen (N), and phosphorus (P) cycling [15–17],
as well as increase soil microbial abundance and diversity [18] and suppress soilborne pests [19].

The majority of research on the benefits and impacts of cover crops to agroecosystems has focused
on annual cash crops. In annual cropping systems, cover crops are primarily planted during the fallow
season, often for only 3–5 months, when the cash crop is not in production [12,13]. The cover crop is
then terminated and incorporated into the soil before planting the cash crop. However, as perennial
crops often remain in production for over 20 years [20], there are critical differences in management and
growth compared with annual cropping systems that can influence the soil microbiome and, therefore,
the response to cover crops. In perennial systems, cover crops are planted in the inter-row middles or
between trees (trunk-to-trunk, herein called “intercropping”; Figure 2); the latter is a less common
practice due to potential competition for water between the tree and the cover crops when coverage is
greater than 45% of the tree canopy [21]. Regardless of whether cover crops are planted in the inter-row
or between trees, there is potential for both the tree and cover crops to share resources [12]. Unlike
annual cropping systems, annual rotation and soil tillage are not present in perennial systems, which
potentially allows for greater increases in soil organic matter (SOM) [11,22] and the development of
more stable communities of beneficial microbial communities [23]. The timing of cover crop planting is
another large difference between annual and perennial systems. In warmer climates, such as in Florida
for citrus, year-round cover crop planting is possible for perennial systems, requiring multiple plantings
and careful selection of cover crop species for each season. The limited space planted to cover crops
in perennial compared with annual systems may also prolong the time needed to increase nutrient
cycling [14]. However, in both perennial and annual systems, indirect effects on the soil microbial
community through agricultural inputs (i.e., application of fertilizers, pesticides, and irrigation) may
be similar.
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Figure 2. Cover crops can be planted in the inter-row middles (A) or between trees (B) in perennial 
systems. In warmer climates, such as in Florida for citrus, year-round cover crop planting is possible 
for perennial systems (C). 

The relationship between cover crops and the soil microbial community is integral to the 
influence of cover crops on the productivity of the cash crop and the benefit to the agroecosystem. 
Plants positively and negatively select for members of their phytobiome through the release of 
chemical signals into their environment [24,25] and establish a soil microbiome that can benefit plant 
growth [26,27]. Although interactions between plants and microbes have generally been studied with 
respect to individual microbes and/or specific crops [25,28–30], examinations of potentially important 
taxa associated with cover crops in perennial production systems are still lacking. Incorporating soil–
plant–microbe interactions into production systems is an essential step for alternative and sustainable 
management strategies aimed at increasing the abundance and diversity of beneficial microbes that 
can play a fundamental role in nutrient cycling and ultimately cash crop production [31–34]. 

However, uncovering potential microbial drivers of the association between cover and tree crops 
in perennial systems is challenging due to the complexity of agroforestry systems and the limited 
number of trees species and cover crops examined. To date, only 20 studies have examined the 
interactions between belowground microbial communities associated with cover crops in tree 
cropping systems (Table 1). Differences in management between annual and perennial systems also 
require separate evaluation of the influence of cover crops on the soil microbiome. Therefore, the 
specific aims of this review are to describe (1) our current understanding of the effect of cover crops 
in perennial production systems on the abundance, diversity, and function of soil microbial 
communities; (2) the effect of cover crops on microbial communities of the N, C, and P biogeochemical 
cycles and their impact on nutrient availability; and (3) potentially important taxa associated with 
cover crops. Finally, we suggest future perspectives to facilitate assessments of the relationships 
between cover crops, soil microbes, and the health of tree crops. 

Figure 2. Cover crops can be planted in the inter-row middles (A) or between trees (B) in perennial
systems. In warmer climates, such as in Florida for citrus, year-round cover crop planting is possible
for perennial systems (C).

The relationship between cover crops and the soil microbial community is integral to the
influence of cover crops on the productivity of the cash crop and the benefit to the agroecosystem.
Plants positively and negatively select for members of their phytobiome through the release of
chemical signals into their environment [24,25] and establish a soil microbiome that can benefit
plant growth [26,27]. Although interactions between plants and microbes have generally been
studied with respect to individual microbes and/or specific crops [25,28–30], examinations of
potentially important taxa associated with cover crops in perennial production systems are still
lacking. Incorporating soil–plant–microbe interactions into production systems is an essential step for
alternative and sustainable management strategies aimed at increasing the abundance and diversity
of beneficial microbes that can play a fundamental role in nutrient cycling and ultimately cash crop
production [31–34].

However, uncovering potential microbial drivers of the association between cover and tree crops
in perennial systems is challenging due to the complexity of agroforestry systems and the limited
number of trees species and cover crops examined. To date, only 20 studies have examined the
interactions between belowground microbial communities associated with cover crops in tree cropping
systems (Table 1). Differences in management between annual and perennial systems also require
separate evaluation of the influence of cover crops on the soil microbiome. Therefore, the specific aims
of this review are to describe (1) our current understanding of the effect of cover crops in perennial
production systems on the abundance, diversity, and function of soil microbial communities; (2) the
effect of cover crops on microbial communities of the N, C, and P biogeochemical cycles and their
impact on nutrient availability; and (3) potentially important taxa associated with cover crops. Finally,
we suggest future perspectives to facilitate assessments of the relationships between cover crops, soil
microbes, and the health of tree crops.
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Table 1. Summary of studies comparing the effect of cover crop treatments on soil microbial communities in woody perennial systems.

Cover Crop Type Tree Crop Microbial Determination Method * Reference

Flemingia macrophylla Eucalyptus urophylla qPCR (16S rRNA gene) and Illumina sequencing (16S rRNA gene) [35]

Lolium multiflorum and Medicago sp. Prunus armeniaca Cultivable microorganisms (actinomycetes, ammonifying and
proteolytic bacteria, Azotobacter sp., Pseudomonas sp.) [36]

Paspalum natatu and Stylosanthes guianensis Psidium guajava DGGE (16S rRNA) [37]
Erodium chium, Medicago polymorpha, Avena sp., Cynodon

dactylon, and Hordeum murinum Vitis vinifera Biolog EcoPlate and number of mycorrhizal spores [38]

Unspecified noncereal grasses, Pisum sativum, Phaseolus sp.,
Trifolium sp., Vicia sp., and Sinapsis sp. V. vinifera Illumina sequencing (16S rRNA gene) [39,40]

Vicia villosa V. vinifera qPCR (16SB, amoA AOA, amoA AOB, nifH, nirK, nirS, nosZ) [41]
Triticum aestivum Juglans regi Illumina sequencing (16S rRNA gene) [42]

Coronilla varia Malus pumila Illumina sequencing (16S rRNA gene and ITS of fungi), metagenome
sequencing (N, C, and P cycling genes), Tax4Fun, and PICRUSt [43–45]

Festuca arundinacea Malus domestica DGGE (nirK gene) [46]
Unspecified grasses M. domestica DGGE (16S rRNA gene) [47]

Symphytum × uplandicum, Allium tuberosum, Rumex acetosa,
Lupinus perennis, Trifolium repens, Mentha × piperita, Monarda

fistulosa, Allium proliferum, and Caragana arborescens (F.
arundinacea, Festuca rubra, and Lolium perenne)

M. domestica qPCR (16S rRNA, 18S rRNA, and ITS genes) [48]

Unspecified grasses Olea europaea
Biolog Ecoplate, DGGE (16S rRNA and 18S rRNA genes),

and cultivable microorganisms (actinomycetes, ammonifying and
proteolytic bacteria, Azotobacter sp., Streptomyces sp.)

[49,50]

Unspecified grasses O. europaea T-RFLP (arbuscular mycorrhizal of fungi), Biolog EcoPlate,
and pyrosequencing (arbuscular mycorrhizal of fungi) [51]

Unspecified grasses O. europaea Pyrosequencing (16S rRNA gene) [52]
Unspecified grasses O. europaea DGGE (16S rRNA gene) and qPCR (16S rRNA) [53]

Unspecified grasses O. europaea qPCR (amoA AOB and amoA AOA genes), pyrosequencing (amoA
AOB, amoA AOA, and nitrite-oxidizing bacteria) [54]

* Denaturing gel electrophoresis (DGGE); terminal fragment polymorphism (T-RFLP); quantitative PCR (qPCR). Total bacterial (16S rRNA), fungal (18 rRNA; internal transcribed spacer,
ITS); N2-fixing (nifH), nitrification (amoA), and denitrification (nirK, nirS, nosZ) genes.
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2. Cover Crops Increase Soil Microbial Diversity

Cover crops can impact the soil microbiome by changing soil characteristics (e.g., pH, temperature,
and soil water content) which are known to influence soil microbial communities [11,18,23]. In addition,
cover crops offer additional organic substrates through the input of plant residues and rhizodeposition,
which may impact soil microbial communities [55–57].

These changing soil conditions and increased organic inputs likely drive the increased microbial
diversity found in soils of perennial systems planted with cover crops [11,14,58]. This increased soil
microbial diversity is positively correlated with nearly all of the benefits of cover crops to production
systems, including increased soil organic carbon (SOC) and total N (TN) contents and, ultimately,
tree production [36–54] (Table 1). Changes can persist throughout the long-term management of a
perennial system, as 10 and 22 years of planting a monoculture cover crop of F. macrophylla in rubber
(E. urophylla) orchards increased bacterial gene abundance and diversity down to a depth of 60 cm
within the soil profile compared with the no-cover-crop control treatment [35].

Planting multispecies cover crop mixtures, which is the combination of at least two legume or
nonlegume species [59], may provide additional benefits by not only increasing microbial diversity but
also the abundance of beneficial soil microbes, such as rhizosphere bacteria (Azospirillum sp., Azotobacter
sp., Bacillus sp., and Pseudomonas sp.) and mycorrhizal fungi (Acaulospora morrowiae, Archaeospora trappei,
Gigaspora gigantea, and Scutellospora calospora), compared with monocultures [60–62]. The positive
effect of cover crop mixtures is not altogether surprising given the positive relationship between plant
biodiversity, the higher availability and diversity of root exudates, and soil microbial diversity [63–66].

Tillage in the row middles is common for some perennial crops, such as almonds, olives,
citrus, and grapevines [11,67], and is generally performed to remove weeds to avoid water and
nutrient competition, resulting in bare soil between tree rows [68,69]. Adopting no-tillage in
combination with cover crops has been identified as a reliable management practice in tree cropping
systems [70,71] that increases soil C sequestration and reduces N fertilization inputs compared with
conventional tillage (down to a depth of 15–20 cm), primarily due to the beneficial effects on soil
microbial diversity [11,14,18,23]. For example, intercropping olive (O. europea) with grasses increased
bacterial diversity in no-tillage systems compared with conventional treatments, and changes in
microbial diversity were positively correlated with improved olive yield [49]. Further, intercropping
Lolium multiflorum and Medicago sp. cover crops in an apricot (P. armeniaca) orchard increased
the diversity of total bacteria, actinomycetes, proteolytic bacteria, Pseudomonas sp., Azotobacter sp.,
and ammonifying bacteria under no-tillage compared with tillage treatments and was correlated with
increased soil fertility [36].

Cover crop termination methods can also impact microbial diversity in perennial systems.
The most common cover crop termination strategies are employed chemically by application
of herbicides [72], naturally by frost, and mechanically by rolling the cover crops with a roller
crimper [14,73]. The termination of cover crops with herbicides reduced the abundance and diversity
of bacterial communities compared with a nonherbicide treatment in olive orchards [53]. However,
while herbicides reduced the abundance and diversity, they had little impact on the microbial activity
of six enzymes involved in C, P, and N cycling, and herbicide-terminated cover crop treatments still
increased soil nutrient availability [53]. This suggests that cover crops may mitigate the negative
impact of herbicides on soil microbial diversity and activity, therefore still improving nutrient cycling
in tree cropping systems.

The assessment of cover crop impacts on the soil fungal communities in perennial systems is less
common than bacterial assessments, and five published studies have shown increases in the diversity
of fungal communities when crops were used in tree cropping systems (Table 1). Intercropping apple
(M. domestica) with grasses significantly increased arbuscular mycorrhizal fungal (AMF) richness
with respect to integrated treatments (cover crops with inorganic N fertilizer) [47,49]. Specifically,
the relative abundance of members of the fungal genera Glomus, Paraglomus, Claroideoglomus, Sclerocystis,
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and Rhizoglomus significantly increased in the cover crop treatments and were linked to increased
crop productivity.

2.1. Carbon Cycle

Cover crops may enhance soil properties and tree yield via the integrated adjustment of N
and P cycling and SOM turnover [35,42]. One of the primary methods for increasing SOM is
through the degradation of cover crop residues (Table 1). For example, in a rubber orchard,
F. macrophylla as a cover crop increased the relative abundance of copiotrophic members of the
phyla Actinobacteria, Bacteroidetes, and Proteobacteria, which were positively correlated with an
increase in SOM degradation [35]. Planting F. arundinacea also increased the SOM content by 7%
over 7 years of applications in organic apple orchards [46]. The relative abundance of members of
the phyla Firmicutes (Bacillus), Proteobacteria (Rhizobiales), Acidobacteria, and Actinobacteria was
also positively correlated with the decomposition of soil organic materials such as cellulose and
chitin when wheat was used as a cover crop in a walnut orchard [42]. Fungal taxa, key for plant
residue degradation, increased in olive orchards intercropped with grass cover crops compared with
no-cover-crop treatments and were correlated with increased SOM [50,51,53].

The abundance of SOM metabolism-related genes and soil enzymes also increased with cover
crops. In an apple orchard [43], 41% of the genes related to the degradation of cellulose, hemicellulose,
and cello-oligosaccharides were significantly more abundant in the cover crop treatments due to
the input of cover crop residues. In addition, the relative abundance of 22 selected taxa of the
Firmicutes and Bacteroidetes phyla related to the breakdown of plant polymers such as cellulose,
hemicellulose, and cello-oligosaccharides significantly increased in apple orchard soils planted with
the cover crop V. villosa compared with a non-cover-crop control and were correlated with increases
in SOM content [44,45]. No-tillage management practices together with the use of grass cover crops
increased soil enzymatic activities with a concomitant increase in SOM content in Mediterranean olive
orchards [51,53] when compared with conventional tillage with N fertilization treatments.

2.2. Nitrogen Cycle

One of the key potential benefits to crop production from cover crops, both in perennial and
annual systems, is the input of N and the influence on soil N availability. As with annual crops [74],
N-cycling microorganisms are crucial for the sustainability of a tree cropping production system as
they are linked to N cycling availability and, ultimately, soil and tree health. Accordingly, in this
section, we highlight the effect of cover crops on N-cycling microbial communities with an emphasis
on three major routes of the N cycle: N2-fixation, nitrification, and denitrification.

2.2.1. N2-Fixation

The use of legume cover crops in tree cropping systems is expected to provide N to the soil
through the process of N2-fixation, during which atmospheric N (N2) is reduced to ammonium (NH4

+)
in root nodules of leguminous plants [75]. Biological N2-fixation is catalyzed by nitrogenase, a complex
enzyme that has two components: a heterotetrameric core encoded by nifD and nifK genes, and a
dinitrogenase reductase subunit encoded by nifH. The nifH gene is the biomarker most widely used to
study the abundance and diversity of N2-fixing bacteria [76].

The relationship between the abundance of the nifH gene and legume cover crops in perennial
systems is not clear or well studied (Table 1), though there are positive correlations between nifH gene
abundance and N availability. When comparing a legume cover crop (V. villosa) to a standard inorganic
N fertilizer application in a vineyard orchard for 10 years, nifH abundance was significantly greater
under the legume [41]. This is not surprising, as nifH abundance and N2-fixation are often limited in
soils with high inorganic N concentrations [77]. By contrast, intercropping Coronilla varia in an apple
orchard for 9 years significantly increased the content of soil N but did not alter the abundance of the
nifD and nifK genes compared to the non-cover-crop treatment [43]. While Pereg et al. [41] used a
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qPCR approach and the nifH gene as a molecular marker to study the abundance of N2-fixing bacteria,
Zheng et al. [43] estimated the size of the N2-fixing community by amplicon sequencing, using the nifD
and nifK genes as biomarkers. It is possible that the use of different molecular approaches and targeted
genes to estimate the size of the N2-fixing community explains the different effects of legume cover crops
on the N2-fixation gene abundances between these two studies. For example, primers for quantification
of N-cycling genes do not always cover all species with the target gene [78], and estimation of microbial
gene abundance appears to be more accurate using metagenome sequencing [79].

While rhizobia associated with legumes are the most common method for providing additional N
to soils through cover crops, free-living N2-fixation could potentially contribute N to perennial systems.
Free-living N2-fixation, defined as N2-fixation occurring without a formal plant–microbe symbiosis, is
an important process distinct from symbiotic N2-fixation in the rhizosphere of legume cover crops [80].
Indeed, free-living N2-fixation is a ubiquitous process in terrestrial systems and can provide significant
inputs of N equal to or greater than symbiotic N2-fixation [80,81], even in perennial crops. For example,
regardless of the presence of legume cover crops, Morales et al. [82] found similar abundances of the
nifH gene between perennial and annual systems, indicating the importance of free-living N2-fixation
in tree cropping systems.

2.2.2. Nitrification

Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in soils and
perform the first (and rate-limiting) step in nitrification: the oxidization of NH4

+ to nitrate (NO3
−).

However, the relative distribution of AOB and AOA and community composition vary depending
on the environmental conditions [83,84], including soil pH [85] and forms of soil N [86]. Both phyla
encode for the enzyme ammonia mono-oxygenase (amo), which can be environmentally traced by
examining the gene coding for the alpha subunit of the enzyme (amoA).

Legume cover crops [35,36,43] can increase the abundance of nitrification genes in perennial
systems (Table 1). In legumes, the abundance of AOB and AOA appears to be positively related to
increased N availability. For example, after 9 years of intercropping C. varia in an apple orchard,
the total abundance of amoA AOB and amoA AOA genes was significantly greater compared with the
non-cover-crop treatment and positively correlated with soil concentrations of NH4

+ and NO3
− [43].

Increases in AOB and AOA in nonlegume cover crops have been reported in annual systems, likely
related to the increases in organic inputs from cover crop residues [87–89]. However, to date, no studies
have evaluated the effect of nonlegume cover crops on the abundance of nitrification genes in
perennial systems.

There is limited information regarding the impact of cover crops on the nitrifying microbial
community in perennial systems. In general, intercropping grasses in an olive orchard for 15 years
did not affect the composition of the nitrifying community in the olive rhizosphere [54]. When cover
crops were controlled by mowing or herbicides instead of by grazing, the abundance of AOB was
significantly increased, an effect that was associated with increased soil organic C in the mowing and
herbicide treatments possibly due to a greater presence of cover crop residues that were subjected to
mineralization [54]. However, these studies only examined nonlegume cover crops, and the impact of
legume cover crops remains unexplored.

2.2.3. Denitrification

Denitrification is a step-by-step pathway that ultimately reduces NO3
− to N2 and comprises

the enzymes nitrate, nitrite, nitric oxide, and nitrous oxide reductases, encoded by the napA/narG,
nirK/nirS, norB, and nosZ structural genes, respectively [90]. Denitrification gene abundances have
increased when planting cover crops in tree cropping systems [41,43,46] (Table 1). In most cases,
such increases are directly related to the presence of organic amendments such as cover crop residues
(e.g., pruning and mulch), which are sources of organic C, one of the most important factors influencing
denitrification [91]. In a vineyard production system, the combined use of grapevine pruning and V.
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villosa as a cover crop had similar abundances of nirK, nirS, and nosZ genes as an organic treatment
(pruning with manure), but abundances significantly increased when compared with an inorganic
N fertilizer treatment [41]. Cover crop influences on biological and physical soil properties, such as
available N, soil microbial biomass, enzymatic activity, and aggregate stability, are also related to
the abundance of denitrification genes. For example, the increase in the abundance and diversity of
nirK-type denitrifiers in an apple orchard with cover crop treatments of F. arundinacea was positively
correlated with the content of dissolved organic nitrogen (DON) in the soil [46]. The high C:N ratio of
intercropping V. villosa in an apple orchard was correlated with the increased abundance of nirB and
nirD genes and SOM content compared with the non-cover-crop control treatment [43].

2.3. Phosphorus Cycle

Despite soil P existing in multiple chemical forms, including inorganic P (Pi) and organic P
(Po), it is often unavailable to plants and microbes due to its slow diffusion and high fixation to soil
particles [92,93]. Soil available P can be released either by mineralization of Po [94] or directly by soil
microbes [95].

Three homologous genes encoding alkaline phosphomonoesterases (APase) in prokaryotes have
been identified and are the most widely used biomarkers to study the ecology and evolution of
P-solubilizing bacteria: phoD [96], phoA [97], and phoX [98]. In addition, the pqqC gene that encodes
the pyrroloquinoline–quinone synthase C [99] and the E3.1.3.8 gene that encodes the production of
phytate [100] can be used as a molecular marker to study the diversity of P-solubilizing microbes.

Inoculation of cover crops with selected rhizobia and AMF strains can effectively improve the
availability of P in soils, which can promote the growth of cash crops [101]. In a guava (P. guajava)
orchard, the combined application of cover crops (Paspalum natatu and Stylosanthes guianensis) and
symbiotic microbes (rhizobia and/or AMF) significantly increased the content of organic P and
phosphorus-related enzymatic activities and the abundance and diversity of APase-harboring bacterial
communities compared with cover cropping alone [37]. In addition, utilization of the cover crops
resulted in a significant increase in the number of spores of AMF, which may play a crucial role in
the absorption and transportation of organic P [102]. However, cover crops alone might be enough to
enhance P-solubilizing communities, as the relative abundances of the phoA, pqqC, and E3.1.3.8 genes
significantly increased in an apple orchard intercropped with V. villosa for 9 years and were positively
correlated to the soil P content compared with the non-cover-crops [43]. Microbial network analysis
showed that the members Proteobacteria, Acidobacteria, and Actinobacteria were the main drives of P
reactions in the cover crop treatments [43].

3. Linking Microbial Diversity to Function in Perennial Systems

While examining the impact of cover crops on soil microbial diversity provides an assessment of
the overall change to the microbial community composition, it is difficult to link these composition
changes to functional changes in the soil microbiome and, therefore, the direct influence of cover
crops on factors influencing the cash crop. Shotgun metagenomic sequencing is currently the most
common tool for determining the functional microbial composition of soils [103]. However, tools such
as PICRUSt2 [104], Tax4Fun2 [105], and FAPROTAX [106] can predict functional profiles and functional
redundancy of prokaryotic communities from 16S rRNA gene sequences. Together, these tools
help identify potentially important taxa responsible for functional differences between microbiomes,
a promising approach towards manipulating microbiomes to increase soil health and plant fertility.
In addition, microbial network analysis based on co-occurrence patterns is being employed to study
the relationships between different taxa and may help to identify interactions between microbial
communities, habitat preference, or keystone species that exert larger effects on ecosystem processes
(i.e., nutrient cycling) that could guide more focused experimental settings [107–109].

There are limited studies on cover crops in perennial systems utilizing these methods, but cover
crops appear to alter the structure and function of the soil microbiome network, increasing intertaxa
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associations in soils which may result in increases in the number of metabolic pathways associated
with nutrient cycling and the abundance of beneficial microbes. Bacterial communities were more
connected in cover crop than non-cover-crop treatments in apple orchards intercropped with crown
vetch (Coronilla varia) and resulted in an increase in the number of links for plant degradation, as well as
N and P reactions [44,45]. Members of the phylum Firmicutes, the order Clostridiales, and the families
Ruminococcaceae and Lachnospiraceae were positively correlated not only to the content of SOC
and TN but also to microbial community functions related to cover crop residue degradation [44,45].
The cover crop alone had stronger positive effects on the connections between taxa than the cover crop
with N fertilizer treatment, suggesting that cover crops greatly influenced the composition of the soil
microbial community compared with inorganic fertilizers. In addition, Capó-Bauçà et al. [38] found that
the use of no-tillage and cover crops (Medicago polymorpha, Avena sp., Cynodon dactylon, and Hordeum
murinum) in vineyard systems increased the microbial functional diversity, as the microbial community
from soils under green cover was able to degrade 10 more substances than from cover crop and
tillage soils.

4. Potentially Important Microbes Associated with Cover Crops in Perennial Systems

As mentioned throughout this review, utilization of cover crops in the inter-row between trees
affects the abundance, diversity, and function of soil microbial communities, with potential beneficial
effects on soil and tree health (Figure 3). Recent studies on the impact of different plants on the soil
microbiome have identified highly connected taxa that individually or in a guild confer particular
functions to their host, irrespective of their abundance [110]. These potentially important taxa are
often pertinent to the major shifts in the whole community structure and their identification can be
a reliable strategy to gain fundamental understanding of both plant–microbe and microbe–microbe
coevolution [111]. As shown in this review, it is reasonable to suppose that cover crops exert important
influences on bacterial and fungal co-occurrence networks. However, while a recent meta-analysis
found cover cropping increased soil microbial abundance, activity, and diversity in annuals [18],
considerations for potentially important taxa associated with cover crops in annual and perennial
systems were not discussed.
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From the set of published studies on the effect of cover crops on the soil microbiome in tree
cropping systems (Table 1), we selected bacterial, archaeal, and fungal taxa from each study that had a
significant and positive correlation to at least one of the following abiotic parameters that are commonly
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used as indicators of soil quality [112]: content of NH4
+, NO3

−, TN, and SOM; decomposition of
complex polymers; and tree production.

Bacteria are the most studied potential microbial indicators for soil quality [33,113]. Across multiple
studies (Table 1), regardless of the use of nonlegume or legume cover crops, the relative abundance of
members of the phyla Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes (Bacillus), Proteobacteria
(Azotobacter, Nitrobacter, Pseudomonas, and Rhizobiales), Tenericutes, and Verrucomicrobia was
positively related to a general improvement in N availability and SOM content in tree cropping
systems [35–40,43–45]. Members of the abovementioned bacterial phyla are the most common drivers
of soil health [33,113]. When looking at the genera level, the taxa associated with improved nutrient
cycling in tree cropping systems differ across studies and seem to be both tree crop and cover
crop specific.

The relative importance of archaeal taxa in tree cropping systems is largely unknown,
but Nitrososphaera were the predominant archaeal taxa in the rhizosphere of olive orchards intercropped
with unspecified grasses and positively correlated to the content of organic N and exchangeable
potassium [54]. Nitrososphaera are the most represented AOA taxa in soils [114,115], and increases
in their relative abundance are linked to increased NH4

+ content [116,117], suggesting that these
microorganisms could be used as biomarkers of soil health in tree cropping systems.

Despite the importance and role of fungal communities in soil health [118], only five studies have
examined the diversity and function of these microorganisms in perennial cropping systems. The fungal
genera Acremonium, Alternaria, Armillaria, Aspergillus, Cladosporium, Cylindrocarpon, Microdochium,
Penicillium, Phaeoacremonium, Phialophora, and Rosellini were positively related to increased SOM
content and decomposition of complex polymers in olive orchards intercropped with grass cover
crops [50,51,53] and their beneficial roles in soil health have been previously described in agricultural
soils [52]. Whether the presence of the abovementioned fungal taxa is indicative of improved soil
health, regardless of the cover crop and tree crop used, remains unexplored.

5. Conclusions and Future Perspectives

Increased interest in improving the sustainability of agriculture and availability of soil nutrients
has led to renewed attention to cover cropping as an agricultural practice with benefits for growers
and the environment. As with annual production systems, cover crops in tree cropping systems
increase microbial abundance and diversity with concomitant positive effects on C, N, and P cycling.
Particularly, intercropping with multispecies cover crop mixtures and minimum tillage and no-tillage
not only enhances the soil microbiome but also SOM and N contents compared with monocropping,
conventional tillage, and inorganic fertilization. Cover crop residues can also be a suitable strategy to
increase the abundance of SOM-related genes, promoting plant degradation and, ultimately, increases in
the content of SOM.

However, many important gaps regarding the effect of cover crops on the soil microbiome in
tree cropping systems exist. For example, the extent to which different combinations of cover crops
(e.g., different mixtures of nonlegume and legume cover crops) impact nutrient cycling and the soil
microbiome is largely unknown and seems to be both cover crop and tree crop specific. The majority
of existing cover crop studies have focused on cereal and/or grain crops, and while there are examples
of significant impacts of cover crop use with tree crops, less is known about the varieties, timing,
and contribution of cover crops to perennial agroecosystems. Further, due to differences in management
between annual and perennial systems, the effect of cover crops on the tree rhizosphere microbiome
is largely unknown as well as that of multiple plantings of cover crop species. The limited space
planted to cover crops in perennial compared with annual systems may also prolong the time needed
to increase nutrient cycling and provoke a spatial variation in the soil microbiome between the row
middle and the tree row (Figure 3).

Measuring changes of the soil microbiome associated with cover crops in tree cropping systems
and linking them to ecosystem functions through the prediction of functional profiles and the use of
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microbial network analyses is a promising strategy to identify potentially important taxa in perennial
systems. Although knowledge of potentially important taxa associated with cover crops may allow for
manipulation of the soil microbiome, the extent to which planting different combinations of cover crops
could be used to select beneficial microbes with particular roles in nutrient cycling and, ultimately,
tree production is largely unknown. Future research should also include methodical isolation of
potentially important microbiota, not only for in situ testing for their use as microbial inoculants
but also to verify their role as potentially important taxa. Together, this information will provide
a more detailed understanding of the molecular mechanisms used by plants to interact with the
soil microbiome and will allow for the development of more sustainable agricultural production for
perennial cropping systems.
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