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Abstract
Cancer genomes contain vast amounts of somatic mutations, many of which are passenger

mutations not involved in oncogenesis. Whereas driver mutations in protein-coding genes

can be distinguished from passenger mutations based on their recurrence, non-coding

mutations are usually not recurrent at the same position. Therefore, it is still unclear how to

identify cis-regulatory driver mutations, particularly when chromatin data from the same

patient is not available, thus relying only on sequence and expression information. Here we

use machine-learning methods to predict functional regulatory regions using sequence

information alone, and compare the predicted activity of the mutated region with the refer-

ence sequence. This way we define the Predicted Regulatory Impact of a Mutation in an

Enhancer (PRIME). We find that the recently identified driver mutation in the TAL1 enhancer

has a high PRIME score, representing a “gain-of-target” for MYB, whereas the highly recur-

rent TERT promoter mutation has a surprisingly low PRIME score. We trained Random For-

est models for 45 cancer-related transcription factors, and used these to score variations in

the HeLa genome and somatic mutations across more than five hundred cancer genomes.

Each model predicts only a small fraction of non-coding mutations with a potential impact

on the function of the encompassing regulatory region. Nevertheless, as these few candi-

date driver mutations are often linked to gains in chromatin activity and gene expression,

they may contribute to the oncogenic program by altering the expression levels of specific

oncogenes and tumor suppressor genes.

Author Summary

Precise regulation of gene expression is controlled by cis-regulatory modules (CRM) con-
taining binding sites for transcription factors (TF). The genome-wide location of all TF
binding sites can often be obtained by ChIP-seq (chromatin immunoprecipitation fol-
lowed by deep sequencing), yet in most cases only a minority of the binding peaks actually
represent functional CRMs that control the transcription initiation of a bona fide TF target
gene. Here, we investigated for 45 cancer-related TFs how machine-learning approaches
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can be used to predict functional TF target CRMs. After careful evaluation of their perfor-
mance, we used these TF-target classifiers to predict which cis-regulatory mutations may
have a significant impact on gene regulation by evaluating whether the mutation causes a
significant gain or loss in the probability that the CRM is a functional TF target. We found
that Random Forest classifiers can achieve more than 100-fold higher specificity for muta-
tion prediction compared to the simple approaches based on scanning with position
weight matrices. By scanning somatic mutations in breast cancer genomes and in the
HeLa genome, we finally show that our TF-target classifiers can identify high impact non-
coding mutations that are associated with concordant TF binding, gene expression
changes and chromatin activity. In conclusion, TF-specific Random Forest classifiers can
be used to prioritize cis-regulatory mutations in cancer genomes with high accuracy.

Introduction
Gene regulation determines the identity and behaviour of all cells, and perturbations of gene
regulatory programs can cause cells to change their identity or become transformed into cancer
cells. Such perturbations of gene regulatory networks can be caused by driver mutations in sig-
nalling molecules, transcription factors (TF), and chromatin modifiers [1]. In addition, driver
mutations can also occur within the non-coding genomic regions that control transcription,
the cis-regulatory modules (CRM). CRMs harbour recognition sites for one to many transcrip-
tion factors and regulate the transcription initiation rate at one or more nearby target genes.
Recently two cancer-related CRMmutations have been discovered, namely: a highly recurrent
mutation in the TERT promoter that is found in many cancer types [2–5]; and a more distally
located enhancer mutation upstream of the TAL1 gene in T-cell acute lymphoblastic leukemia
(T-ALL) [6]. These two examples of driver mutations generate de novo binding sites for onco-
genic transcription factors. Particularly, the TERT promoter mutations create new ETS-like
binding sites (GGAA), while the TAL1mutation creates a MYB binding site. Interestingly, the
latter is associated with a very significant gain of the activating histone modification H3K27Ac,
indicating that the neomorphic enhancer actively regulates TAL1 expression.

To analyze cis-regulatory variation on a genome-wide scale and to prioritize candidate
driver mutations, several types of information can be exploited and integrated [7–11]. A first
class of methods is based on filtering all candidate variants, such as single nucleotide variants
(SNV) and small indels, to retain only those that affect “interesting” nucleotides. For example,
a method called FunSeq retains mutations that affect “sensitive” genomic positions (FunSeq
also combine other types of data [8]). Sensitive positions are determined by FunSeq as posi-
tions that are significantly infrequently substituted in the normal human population. Other
methods, like OncoCis [9] and RegulomeDB [11], retain mutations that are located in candi-
date regulatory regions, as determined by publicly available regulatory data (e.g., from
ENCODE [12]). The disadvantage of this approach is that regulatory activity observed in a can-
cer sample may not correspond to any of the available annotation, particularly when the muta-
tion creates a gain-of-function CRM, or in other words, publicly available regulatory
annotation is not always indicative for the function of the CRM in the cancer sample under
study. A solution to this problem could be to profile chromatin states in the actual cancer sam-
ple itself, but the currently available biochemical methods (mainly open chromatin profiling
and ChIP-seq) still require relatively large amounts of input material, which is often not avail-
able for tumor biopsies. A second class of approaches is based on QTL analyses, whereby DNA
variants are correlated with DNA methylation, chromatin accessibility, or gene expression.

Predicted Impact of a Mutation in an Enhancer (PRIME)
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These methods have been mostly applied to identify variation in the normal population [13–
16] but when larger cohorts of more than 200 cancer samples become available (full genome,
methylome, and transcriptome for each sample), they can, in principle, also be applied to iden-
tify cancer driver mutations. A related approach is to select mutations that cause allelic shifts in
ChIP-seq reads, which was shown to identify functional SNPs that change enhancer activity in
HepG2 cells [17]. A third class of approaches, which can be used in combination with the first
two, investigates the mutated sequence itself, using information about TF recognition motifs
and selects mutations that affect transcription factor binding sites. This can be achieved by
scoring the reference and mutated sequences with a position weight matrix (PWM) of a partic-
ular TF, assessing the impact of the mutation by the difference of the scores for the reference
and mutated sequence. For example, FunSeq calculates “motif maker” and “motif breaker”
scores for PWMs and returns a list of all affected PWMs, for each mutation. A limitation of
these methods is that PWM-scanning methods are notorious for generating high amounts of
false positive predictions, which can affect the accuracy of PWM-based mutation scoring,
yielding excessive amounts of false-positive mutations. The prediction of cis-regulatory muta-
tions using PWMs would therefore benefit from more advanced models of TF target predic-
tion, so that the impact of a mutation can be assessed more accurately, in the context of an
entire CRM. By incorporating CRM context into a predictive model, we may achieve a higher
accuracy for predicting functional cis-regulatory mutations. When using CRM prediction and
classification methods to assess mutations, we can build on a large body of previous methods,
using various kinds of features such as TF motifs, other (higher-order or structural) sequence
features, sequence conservation, or chromatin related data. CRM prediction methods that are
based on motif scanning usually score (sliding) sequence windows for the presence of clusters
of TF binding sites, either for the same TF (i.e., homotypic clusters) or for different co-regula-
tory TFs (i.e., heterotypic clusters) [18–21]. CRM classification methods applying machine
learning, using a training set of positive CRMs, are more flexible in terms of the types of fea-
tures, and once a model is trained, it can be used to predict similar CRMs in the genome. For
example, Narlikar et al., employed a Lasso model with a collection of 701 position weight
matrices (PWMs), de novo discovered motifs and Markov models and were able to predict
heart enhancers [22]. kmer-SVM [23] or IMM [24] use a PWM-blind approach whereby the
features are entirely learned from the sequence of training CRMs, as over-represented k-mers
or Markov chains. Classifiers can also be trained using chromatin data, such as Chromia [25]
which uses chromatin data such as histone modification profiles as features in its model,
trained on TF binding sites defined by ChIP-seq. It was shown for Chromia that such models,
when combined with a PWM, can yield accurate genome-wide predictions of TF targets. More
recent methods for enhancer classification use multiple layers of epigenomic data, such as
chromHMM [26].

We reasoned that such complex CRMmodels, when trained on sets of CRMs targeted by
specific oncogenic or tumor suppressor TFs, could provide an interesting approach to score
putative cis-regulatory mutations, and to assess whether the mutation may cause a gain or loss
of a functional TF target. To this end, we developed 45 Random Forest classifiers for more than
forty different TFs, each trained on subsets of functional CRMs (i.e., regions bound by the TF
that actively regulate target gene expression). We validate these models by cross-validation and
genome-wide scoring, and apply them to identify PRIME mutations (mutations with high
PRIME score: Predicted Regulatory Impact of a Mutation in an Enhancer), both using simu-
lated substitutions and real somatic mutations in a large breast cancer cohort from TCGA and
in the HeLa genome.

Predicted Impact of a Mutation in an Enhancer (PRIME)
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Results

Training TF-specific enhancer classifiers to predict functional TF binding
regions
Chromatin immuno-precipitation coupled with sequencing (ChIP–seq) allows identifying
genome-wide locations of TF binding, however usually only a fraction of observed ChIP-seq
peaks (0.9%-54.6%) are functional, in the sense of being actively involved in regulating target
gene expression [27]. Here, we wanted to develop TF-specific enhancer models by training
them only on functional target CRMs (Fig 1). To identify such training sets of functional ChIP-
seq peaks we searched for peaks that are located near up- or down-regulated genes in response
to a perturbation of the TF, or that are located near tightly co-expressed target genes with the
TF (see Methods). To obtain statistically significant correlations between ChIP-seq data and
co-expressed gene sets, we applied a procedure called “track discovery”, whereby ChIP-seq
peak sets from ENCODE and other resources are tested for their enrichment on a gene set
[28]. Particularly, we compared 344 sets of TF target genes against 1000 ChIP-seq tracks. This
led to the identification of 45 sets of positive training CRMs for 41 distinct transcription fac-
tors, most of which are related to cancer. The average size of the training sets ranges between 6
(POU5F1) and 3901 (YY1) positive samples (S1 Table).

For each set of positive CRMs we trained Random Forest (RF) classifiers each consisting of
151 decision trees that optimally distinguish the positive CRMs from sets of negative
sequences. As negative sequences we used randomly sampled regions from the human genome
with the same size and GC content as the positives, in a 1:20 ratio. We trained different types of
RF models depending on the type of features used in the decision trees (Fig 1B). The first
model, M1, uses ten motifs of the TF and ten motifs of co-regulatory TFs. These twenty motifs
are selected by motif discovery on the training CRMs, out of a collection of nearly 10.000 can-
didate position weight matrices. The second model, M2, uses as features the fifteen most repre-
sentative regulatory tracks: five open chromatin tracks, five active histone modification tracks,
and five ChIP-seq tracks of potential co-regulatory TFs. Model M3 combines all features of M1
and M2, in total twenty motifs and fifteen tracks. Similarly to motif features, these tracks were
selected by track discovery (see Methods). To avoid over-fitting, ChIP-seq tracks of the query
TF itself were excluded as candidate features. The performance of each of the 45 TF models
(for the three different RF types) was evaluated using the area under the precision-recall
(AuPR) and area under the receiver operating characteristic (AuROC) curves, as achieved by
the model in a five-fold cross-validation (Fig 2, S1 Fig). We compared the performances to a
baseline model (M0) that predicts TF targets by simple PWM-scanning using the PWM of the
query TF; and to a previously published alternative classifier based on Support Vector
Machines trained on k-mers (Mk) [29]. Collectively, M1 (the RF classifiers utilising only motif
information) achieved on average across the 45 datasets an AuPR of 0.62; similar to Mk (kmer-
SVM: AuPR = 0.61), and both are much higher than M0 (PWM-only: 0.37). Note that we pre-
fer the AuPR since the AuROC is less reliable for imbalanced training sets with high numbers
of negative sequences [30]. The best performing M1 models are for SRF, GABPA, CEBPB,
STAT2, and YY1. In total, thirty of the RF classifiers achieved an AuPR greater than 0.5 (Fig
2A, S2 Table). Additional quality control and robustness analysis revealed that most models
show stabilization of cross-validation performance (S2 Fig); that Random Forests outperform
other machine-learning approaches on the same data such as Support Vector Machines or
Logistic Regression (S3 and S4 Figs); and that the performance of the models does not depend
on the size of the training set (S5 Fig) nor on the information content of the main PWM (S6
Fig) of the query TF.

Predicted Impact of a Mutation in an Enhancer (PRIME)
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Next, we investigated the performance of M2 models that use data tracks instead of motifs.
These models have drastically higher AuPRs than motif-based models (average AuPR = 0.87),
with all 45 models having an AuPR above 0.5. For M2, the best performing models are for SRF,
E2F4, JUNB, NFE2L2, and TP53. Interestingly, several TFs with ill-performing M1 models
have a much improved AuPR score; for example TAL1 has an M1 model with AuPR = 0.13,
whereas M2 with tracks achieves an AuPR of 0.69 (Fig 2A). Finally, for combined models the
performance increases even further, although not much beyond M2 (average AuPR = 0.9).
Interestingly, TFs can be grouped into different classes, where each class has different types of
features contributing to the classifier, as determined by Gini impurity (see Methods) (S7 Fig).
For 20/45 models, the TF PWMs contribute more than 20% of all features (e.g., TP53 in Fig 3).
For another class of 7/45 models the co-regulatory factor PWMs contribute more than 20% of
all features and dominate over the TF PWMs (NANOG in Fig 3); and for 39/45 models the
sum importance of the three data tracks groups was dominant providing more than 50% of the
feature importance (e.g., MYC in Fig 3).

Fig 3 also shows an example decision tree from the ensemble for the TP53, NANOG, and
MYC examples. By investigating the feature importance we can obtain more insight into the
CRM code; for example that TCF12 and ATF2 tracks are important to predict NANOG targets;
or that SIN3A ChIP-seq peaks in MCF-7 are important to predict MYC binding. Note that this
does not mean that SIN3A and MYC necessarily co-bind in the same cell.

In conclusion, we trained multiple well performing models for the classification of TF-spe-
cific regulatory target regions. The results suggest that not all information in a CRM can be
captured by TF and co-regulatory TF motifs. The track-based M3 models yield an upper-limit

Fig 1. Overview of the methodology. A) To identify functional CRMs we searched for significant correlations between TF ChIP-seq tracks and TF target
genes using i-cisTarget [28]; and selected peaks (marked in green) that are located in 20 kb regulatory space around up- or down-regulated TF target genes.
B) Feature selection was performed on the set of functional CRMs to select TF and co-regulatory PWMs and data tracks. C) The performance of each of the
45 TF models was evaluated by 5-fold cross-validation, using area under the precision-recall and receiver-operating characteristic curves. D) The 45 learned
classifiers where used to identify cis-regulatory somatic mutations that have an impact on the CRM score, defining a PRIME score (Predicted Regulatory
Impact of a Mutation in an Enhancer).

doi:10.1371/journal.pcbi.1004590.g001

Predicted Impact of a Mutation in an Enhancer (PRIME)
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to the classification performance based on sequence/motif information alone. Ultimately how-
ever, to identify cis-regulatory mutations (see further below), we will rely on sequence/motif-
based models because those are generally applicable, as they do not depend on the availability
of multiple regulatory tracks in the cancer and normal sample.

Fig 2. Cross-validation performance for 45 TFmodels. A) Area under precision-recall (AuPR) and receiver operating characteristic (AuROC) curves for
different models. Mk, M1, M2, and M3 are estimated by 5-fold cross-validation. M0 model does not use a training set and the AuROC and AuPR where
obtained by varying the threshold of the PWM. B) Examples of precision-recall curves for ATF2 and BATF. Random Forest classifiers outperform PWM-
based models. M3 models (using experimental data tracks) outperform M1models (using sequence only).

doi:10.1371/journal.pcbi.1004590.g002
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Genome-wide prediction of functional TF targets
To further validate our trained CRM classifers we applied them genome-wide to predict new
functional TF target CRMs (including M1, M3, and Mk models). To this end, we split the
genome into overlapping sliding windows with sizes corresponding to the average lengths of
the sequences in the training set (ranging from 400 bp for NANOG to 2350 bp for GLI3, with
an average of 900 bp). The number of newly predicted functional binding sites for M1 models
ranges from several hundreds to several tens of thousands. To assess the accuracy of new pre-
dictions, we calculated the enrichment of the TF ChIP-seq peaks among newly predicted
CRMs, excluding training CRMs. We found a significant recovery for 31 of the 45 models
using a RF classifier with motifs only (M1). The five best performing models regarding
genome-wide predictions, as measured by the Normalized Enrichment Score (NES) given by i-
cisTarget [28], are TP53 (NES = 31.1), IRF1 (NES = 21.5), STAT2 (NES = 17.45), POU5F1
(NES = 16.25), and SPI1 (NES = 14.15). Interestingly, although the cross-validation perfor-
mances of the motif-only RF and k-mer SVMmodels were highly similar, the genome-wide
prediction accuracies are overall much higher for the RF models (Fig 4A). Particularly, 31 of
the 45 M1 models show significant recovery of the correct ChIP-seq peaks, compared to only
17 of the 45 Mk models (Fig 4A). We also performed genome-wide predictions for M3 models,
which incorporate regulatory data tracks as features in the model. Although the cross-valida-
tion performance of M3 models is much better than M1, the M3 models did not result in more
TFs with high-confidence genome-wide scoring, since again 31 models show significant recov-
ery of correct ChIP-seq peaks. This indicates that M1 models with motif-information alone are
already very performant in genome-wide predictions, and this is confirmed by inspecting the
correlation between the validation scores (i.e., TF track enrichment scores), being very high

Fig 3. Feature importance. A) Three examples of TFs, each with several (for NANOG and TP53) or one (for MYC) target CRMs, illustrating the feature
importance in the Random Forest classifier, in the M3model. For NANOG co-regulatory PWMs contribute more to the classification performance than the
PWM of NANOG itself. For TP53, the contribution of the co-regulatory PWMs is not strong and the classification decision is largely based on the presence of
strong binding sites of TP53 itself. For the MYCmodel the most important features are regulatory tracks. B) Examples of a decision tree in the ensemble. C)
Averaged feature importance across trees, showing the contribution of various features to the classification decision. For example TCF12 and ATF2 tracks
are dominant for NANOGmodel; for TP53 the most relevant features are motifs of the query TF (red) and particular important ones are represented with
logos. The colored region around dashed line demonstrates standard deviation of the feature impartance across trees.

doi:10.1371/journal.pcbi.1004590.g003
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between M1 and M3 (0.876), while they are both better than Mk (S8 Fig). We also analyzed
whether predicted CRMs show enrichment for active chromatin marks, such as H3K27Ac.
Indeed, for 26 to 40 models this is the case for M1 and M3 models respectively. More generally,
for the majority of TFs (39/45 models) the newly predicted CRMs are enriched for regulatory
active chromatin states, as determined by chromHMM segmentations [26] from ENCODE (S9
Fig), with the strongest models overlapping with promoter states being E2F1, TAF1, YY1,
E2F7, and KLF5, and the strongest models overlapping with enhancer states being E2F7,
TCF12, and FOSL1. In conclusion, we evaluated the quality of the TF-target classifiers in an

Fig 4. Validation of classifiers by genome-wide CRM prediction. After genome-wide CRM scoring, removing the training CRMs, we evaluated the
enrichment of ChIP-seq peaks of the corresponding TF, and the enrichment of motifs of the corresponding TF, within the top 1000 newly predicted CRMs.
Enrichment is calculated by i-cisTarget [28], and represented as a Normalized Enrichment Score (NES). A) Significant enrichment of ChIP-seq peaks
(orange color corresponds to NES>2.5) for 31/45 M1 models, compared to 17/45 of the Mk models. B) The motif of the respective TF is also enriched in the
top 1000 newly predicted functional CRMs, for those in orange (NES>2.5).

doi:10.1371/journal.pcbi.1004590.g004

Predicted Impact of a Mutation in an Enhancer (PRIME)
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alternative way, independent of cross-validation performances and found that most RF classifi-
ers are enriched for ChIP-seq peaks of the query TF and active chromatin marks.

Using enhancer models to predict high-impact cis-regulatory mutations
Whereas current methods for the prediction of changes in TF binding sites assess local changes
in the actual TF binding site, for example using a change in the PWM score [8–10], here we
wanted to assess whether TF-specific enhancer models allow identifying cis-regulatory muta-
tions that have an impact on the global CRM score. Firstly, we simulated mutations by creating
substitutions in gene promoters. Particularly, we selected the 900 bp promoter of 752 curated
cancer driver genes [31–35] and changed at each position the sequence into each of the three
alternative nucleotides. To measure the impact of each possible single nucleotide variation
(SNV) we introduce a score, called PRIME, that is calculated as the difference between the RF
classifier scores for mutant and reference sequences. PRIME values range between -1.0 to 1.0
and allow capturing both gains and losses of CRM function. To evaluate the quality of PRIME,
we hypothesized that nucleotides with higher PRIME scores should be more conserved. Indeed,
nucleotides tend to be under higher constraint with increasing absolute PRIME score (Fig 5A).
There is one caveat to this analysis however: low PRIME scores can represent a mixture of sites
that are not bound by either allele, and bound sites where the variant does not change binding.
To distinguish between these, we simulated substitutions inside ChIP-peaks (true sites) versus
substitutions outside ChIP-peaks (not bound by either allele) in terms of conservation (S10
Fig). The results demonstrate that although nucleotides belonging to real binding sites tend to
be more conserved with increasing PRIME score, also high-scoring mutations outside ChIP
peaks are enriched for high phastCons scores. We performed a similar validation experiment
using open chromatin data and found that substitutions with high PRIME score tend to be
more located in accessible regions than low PRIME substitutions, suggesting their potential
involvement in CRM function (S11 Fig). As an example, we show in Fig 5B the promoter of the
E2F1 gene, where the E2F4 model identifies a hotspot of high PRIME substitutions. Convinc-
ingly, these positions overlap with the summit of an E2F4 ChIP-seq peak and cover the entire
E2F4 consensus site. We expected an increased specificity (rather than sensitivity) of mutation
detection with Random Forest models (M1) compared to the simple PWMmodel (M0),
because PWMs are known to suffer from high false positive rates [36]. To test whether this is
indeed the case for the E2F1 promoter, we scored all possible substitutions in this promoter
with several E2F4 PWMs, and indeed found many non-functional positions that show a change
in PWM score (Fig 5B). This suggests that random forest classifiers are better suited to detect
cis-regulatory variation than PWMs.

We then scored a large collection of real non-coding somatic mutations collected from three
cancer whole genome sequencing studies: 50 AML samples (N = 19797) [35], 21 breast cancer
samples (N = 183703) [37], and 25 melanoma samples (N = 1875157) [38]. Similarly to the
simulated substitutions, we found that predicted high-impact mutations are more conserved
than mutations with low predicted regulatory impact (S12 Fig). Also, mutations with high
absolute PRIME score (greater than 0.4) are enriched for chromatin states corresponding to
functional regulatory elements such as active promoters, weak promoters, and strong enhanc-
ers (S13 Fig). When compared to measuring the impact of a mutation by the change in PWM
score, also on this set we find that the Random Forest models show greater specificity than
PWMs (S14 Fig).

In conclusion, the TF specific classifiers can identify regulatory variation affecting the activ-
ity of functional CRMs, making this a feasible strategy for the prediction of cancer driver
mutations.

Predicted Impact of a Mutation in an Enhancer (PRIME)
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Previously known driver mutations in the TAL1 enhancer are predicted
as high-impact cis-regulatory mutations
To test whether the Random Forest CRMmodels may be suitable to identify cancer driver
mutations we examined in detail a recently published cis-regulatory mutation in the TAL1 pro-
moter in T-cell Acute Lymphoblastic Leukemia (T-ALL) [6]. Particularly, a recurrent (5.5% of
patient T-ALL samples) mutation is caused by a short insertion that creates one or two de novo
binding sites (depending on the length of the insertion) for the MYB transcription factor, a
well-known regulator involved in T-ALL. Our 45 models do not contain a MYB-specific model

Fig 5. Regulatory impact score on simulated substitions. A) Nucleotide substitutions with higher PRIME scores are under constraint. B) An example of
the E2F1 promoter for which each possible substitution is evaluated by M0 and M1 models. The M1 model (Random Forest) identifies a 15 bp region that is
highly vulnerable to mutations, while three different M0 models (using only the PWM), identify excessive numbers of false-positive substitutions,
demonstrating the higher specificity of the Random Forest classifiers, compared to single PWMs. C) Barplot showing an example from A), thus averaged
phastCons scores depeneding on the PRIME score threshold, for the E2F4 model. Error bars represent standard error of the mean.

doi:10.1371/journal.pcbi.1004590.g005
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(only a MYBL2 model), and none of the 45 models predicted a high PRIME score for this site.
However, when we trained a MYB-specific M1 model, using MYB target CRMs as training set
(obtained by anti-MYB ChIP-seq in the Jurkat T-ALL cell line [6]), the TAL1mutation yields a
very high PRIME score (from 0.054 in the reference to 0.3774 in the mutated CRM). Thus,
only the MYB model identifies this gain-of-function mutation. In contrast, when we used the
PWM for MYB, which yields an increase in PWM score of 0.1 for the actual driver mutation
compared to reference (from 0.844 to 0.949), we also find two other PWMs of the 45 tested M0
models (GABPA and CEBPB) that yield a similar PWM score increase (more than 0.1) and
that have a high PWM score (>0.9) for the mutant sequence. In other words, although the
MYB PWM can identify the mutation, it is also falsely predicted by other PWMs, but not by
other Random Forest models.

For a MYB model to prioritize this mutation in the genome, out of all possible somatic
mutations, the model also needs to be specific. To test this, we scored a large set of control
somatic mutations (both SNVs and insertions) with the same MYB model (Fig 6A and 6B).
These control mutations were selected from breast cancer somatic mutations from TCGA.
Since MYB is not known to be involved in breast cancer, we could argue that each mutation
with a high PRIME score for the MYB model would be a false positive prediction. This analysis
shows a remarkable specificity, with only 2/19796 SNVs and 0/7323 insertions predicted as
high-impact mutation for MYB (PRIME>0.3). For comparison, using the MYB PWM identi-
fies 179 SNVs and 354 insertions with a delta of 0.1 or more in the control set. For the TAL1
promoter mutation we can conclude that the predicted high impact corroborates the gain of
CRM activity observed in the Jurkat cell line that harbors this mutation, as measured by
H3K27ac (Fig 6D).

The empirical distribution of background PRIME scores for the MYB model allows estimat-
ing the significance of this PRIME score using a z-score (see Methods), which is 26.5 for the
Jurkat insertion. A similar but shorter insertion was found in the MOLT-3 cell line and in sev-
eral patient samples; these insertions generate only one new MYB binding site and yield z-
scores between 1.41 and 21.45 for the MYB model. Note that we used these thresholds based
on the MOLT-3 insertion, determined from the empirical distribution of PRIMEs for SNVs or
insertions thresholds (9.65 and 14.03, respectively) to determine model-specific PRIME thresh-
olds for other models, further below.

To investigate why the Random Forest model for MYB achieves such high specificity com-
pared to the PWM, we analysed the feature importance within the MYB model and found that
both MYB motifs and co-regulatory TF motifs contribute significantly to the classification
decision. Interestingly, the most important co-regulatory motif is RUNX, a known co-regula-
tory factor of MYB (Fig 6C). The combination of MYB motif clusters and co-regulatory motifs
allows assessing the impact of a mutation taking the context of a CRM into account. To illus-
trate this, we tested whether inserting exactly the same sequence at random position does not
always produce a similar gain of function. Indeed, when we inserted the same sequence into
100 randomly chosen genomic loci having the same 3 bp flanking nucleotides we found that
the PRIME score strongly depends on the surrounding sequence context. For example, the Jur-
kat insertion generates a PRIME score equal or higher than 0.32 (the observed PRIME in the
TAL1 enhancer) in only 10/100 locations, indicating that most genomic locations are not sus-
ceptible to this insertion, in terms of MYB-dependent activity (S15 Fig).

We also performed this analysis for another well-known promoter mutation, in the TERT
promoter. The TERT promoter harbors two recurrent mutations and these are among the
highest recurring mutations in cancer (between 33% and 85% in melanoma [2]). The original
articles reporting this mutation suggested that this mutation generates an ETS-like binding site
(GGAA) and that ETS family members might cause an up-regulation of the TERT gene due to
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Fig 6. Comparison of PWMs and Random Forest classifiers on the known TAL1 insertion.We scored the known TAL1 enhancer insertion that occurs in
the Jurkat cell line [6] with Random Forest (M1) and PWM (M0) MYB-specific models. As control, we scored all SNVs and insertions in promoters across 498
breast cancer genomes with the sameMYBmodels, to calculate a background distribution of impact scores. A) The distribution of background PRIME scores
(i.e., delta Random Forest scores) and the observed PRIME score for M1, indicated as the orange arrow. B) The distribution of background PWM-delta
scores (M0 model) and the observed score. C) Feature importance within the MYBmodel indicates that both and MYBmotifs and co-regulatory TF motifs
contribute significantly to the classification decision and the most important co-regulatory motif is RUNX, a known co-regulatory factor of MYB. D) The known
driver insertion in the TAL1 enhancer generates a gain of H2K27Ac peak, whereas the known SNV in the TERT promoter does not. The red highlighted region
indicates which samples harbor the respective cis-regulatory mutation.

doi:10.1371/journal.pcbi.1004590.g006
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this gain of function binding site mutation. More recently, these mutations were linked to de
novo binding by GABPA, which also binds to a GGAAmotif [39]. However, our GABPA
model did not result in a significant PRIME score (PRIME = 0.026; Z-score = 0.99). We con-
structed four alternative models for different ETS-like factors using their respective top ChIP-
peaks as training set (see Methods), namely ELF1, ELK1, ELK4, and ETS1. For two of these
models, namely for the EFL1 and the ELK1 model, we found significant PRIME scores (z-
score = 2.83 and 6.49, respectively), although the PRIME score was much lower than for the
TAL1mutation (the highest PRIME is 0.097 for ELK1 =>TERT, compared to 0.32 for MYB =
>TAL1). Remarkably, looking at promoter activity data by H3K27Ac, across a cohort of mela-
noma samples we generated before [40], we could not observe any gain of activity in the sam-
ples that harbor the mutation (Fig 6D). We can conclude for the TERT promoter that the
predicted impact scores are significant but modest and that they corroborate with low observed
impact at the promoter activity level.

Identification of cis-regulatory mutations linked to gene expression and
chromatin activity
Next we used the TF-specific random forest models to prioritize cis-regulatory mutations in
498 re-sequenced breast cancer genomes from TCGA, for which gene expression data is avail-
able [41]. We specifically scored all SNVs and insertions located in promoters (see Methods).
To evaluate whether mutations with high PRIME scores could have a functional impact on
gene expression, we evaluated the expression level of the target gene in the sample with the
mutated promoter, compared to all other samples (using z-scores). Indeed, this shows a clear
association of changes in gene expression with predicted impact of promoter mutations (S16
Fig). Moreover, the median absolute z-score values of gene expression increases with increasing
PRIME score. When we focused on promoters of cancer related genes (the list of 752 curated
cancer driver genes), we found only 36 genes having single nucleotide mutations with absolute
PRIME score> 0.3 (Fig 7A, S3 Table). Using the model-specific z-scores (with a cutoff of 9.65
for SNVs and 14.03 for insertions), 84 genes are found with significant mutations. When we
applied our models to small insertions in promoters, we found only three high impact inser-
tions, namely in the SOX9 promoter (gain for E2F1), theMETTL14 promoter (YY1 loss), and
the NLGN2 promoter (PAX5 gain). Interestingly, two of these three mutations are recurrently
mutated across the TCGA cohort (Fig 7A). Expanding our search to 10 kb, and focusing only
on breast-cancer related transcription factors as targets (along the lines of the MYB-TAL1
gain), we found an additional 91 SNVs and 11 insertions with high impact (S4 Table), includ-
ing a gain of TP53 CRM upstream of SOX5, and a loss of a SIX5 site upstream of NR3C1. Inter-
estingly, these two latter insertions are recurrent across the TCGA cohort (39 and 59 samples,
respectively). Furthermore, expression of SOX5 target gene is significantly higher in the sam-
ples with the insertion, compared to the samples without the insertion (Fig 7B). Overall, we
thus found a limited number of potentially harmful cis-regulatory mutations, given that in Fig
7A we pooled together all the results across 498 breast cancer genomes.

Finally, we reasoned that if a mutation really causes a gain of CRM activity, this should be
directly visible as a change in chromatin activity, such as increased chromatin accessibility,
increased H3K27Ac signal, or decreased DNA methylation. Unfortunately, none of these data
are available at the genome-wide level for the TCGA cohort (DNA methylation is currently
available for 450K probes, which is too sparse for our low number of high-impact mutations).
To test a potential correlation between mutations with high PRIME scores and chromatin, we
therefore used the HeLa genome [42,43], for which H3K27Ac data is available from ENCODE
(GSM733684) [12]. Scoring all 13923 small insertions located in 10 kb regulatory space around
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TSS of the HeLa genome, for our 45 models, we found 141 variations with significantly high
PRIME scores, based on the model-specific z-scores (S17 Fig). A small subset of these are
indeed located in regions with H3K27Ac signal that is specific, or semi-specific for the HeLa
cell line (compared to H3K27Ac data for 108 other samples, see Methods), possibly indicating
that these mutations have a local effect on the activity of the enhancer (Fig 8A). To test whether
any particular TF has more mutated CRMs, we compared the amount of gains and losses for
each TF model stratified on whether the variation is a known polymorphism from dbSNP or

Fig 7. Candidate cis-regulatory driver SNVs and insertions across 498 breast cancer genomes. A) All SNVs and insertions with high PRIME score
(>0.3) (insertions are within the black box) found by M1 models in the regulatory regions around cancer related genes and 167 TFs expressed in breast
cancer (all significant PRIME scores with model-specific thresholds are provided in S5–S6 Tables). Values inside boxes indicate the recurrence, that is the
number of samples where this variant was found across the 498 TCGA samples. B) An example of a high scoring recurrent insertion that is predicted to
generate a TP53 gain of target in the vicinity of SOX5. Z-scores of the SOX5 gene expression are significantly higher (Wilcoxon rank sum test) in the 33
samples with the insertion, compared to samples without the insertion.

doi:10.1371/journal.pcbi.1004590.g007
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Fig 8. Scoring cis-regulatory variants in the HeLa cell-line. A) Scatter plot of PRIME scores (45 M1models) for heterozygous SNVs in the HeLa cell line
versus z-scores of H3K27Ac peak scores (the higher the z-score the more exclusive the H3K27Ac signal to Hela, compared to 108 other samples). The
arrow indicates an example SNV that generates a de novo JUN binding site (shown in C-D). B) Using high-scoring SNVs falling in acetylation peaks for each
TF model we plotted fractions of gains and losses in dbSNP (polymorphisms) versus not in dbSNP (possibly somatic mutations). Oncogenic TFs that are
important for HeLa, namely MYC, E2F7, JUND, and STAT1, have more gains than losses, specifically for variations not in dbSNP. Vice versa, YY1, a known
repressor related to cancer, has almost no gains in non-dbSNP variations, while dbSNP variations have an almost equal amount of gains and losses. C)
H3K27Ac signal around SNP that is predicted to generate a gain in JUN binding (PRIME = 0.21; z-score = 16.28) indeed shows a moderate exclusivity of
H3K27Ac to HeLa. D) This position shows an allele-specific binding of JUN, only having ChIP-seq reads with the variant allele that causes a gain in JUN
binding sites.

doi:10.1371/journal.pcbi.1004590.g008
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not, the latter representing possibly somatic mutations (Fig 8B). Interestingly, this shows that
oncogenic TFs that are important for HeLa, namely MYC, E2F7, JUND, and STAT1, have
more gains than losses, specifically for variations not in dbSNP. Vice versa, YY1, a known
repressor related to cancer, has almost no gains in non-dbSNP variations, while dbSNP varia-
tions have an almost equal amount of gains and losses. We believe that such skews towards
“relevant TFs” strongly indicate a cis-regulatory effect for this group of mutations. AP-1 (JUN/
FOS dimer) is indeed a relevant factor for HeLa, because it is the most enriched motif and
track among all the HeLa-specific H3K27Ac peaks (AP-1 motif rank = 1, NES = 7.36; FOS
ChIP-seq NES = 7.20). A clear example of a SNP with a cis-regulatory effect is shown in Fig 8C,
where a heterozygous SNP that is predicted to generate a gain in JUN binding (PRIME = 0.21;
z-score = 16.28), indeed shows a gain of JUN binding in the HeLa ChIP-seq data for JUN (Fig
8D). All the reads in the JUN ChIP-seq peak contain the alternative (non-reference) allele,
which generates an AP-1 binding site in a favorable CRM context. Note that compared to the
MYB-TAL1 interaction (see above), which generates a de novo super-enhancer that is unique
to the Jurkat and MOLT-3 samples, for the HeLa genome we did not identify such strong
effects in H3K27ac gains. Indeed, only four insertions are located in a H3K27Ac peak that is
unique to HeLa. One of these four has an absolute PRIME score close to 0.3 (-0.295) (i.e.,
observed frequency is 0.25). Interestingly, this predicted mutation is located near CDH10, a
gene that is specifically expressed in HeLa, compared to other cell types of the human body
map, as determined by Landry et al. [43] (S17 Fig).

In conclusion, TF-specific random forest classifiers can identify cis-regulatory variation
with potential impact on the function of a promoter or enhancer.

Discussion
Whole genome sequencing of cancer samples has revealed that cancer genomes harbour thou-
sands to hundreds of thousands of non-coding mutations. Sifting through all these mutations
to identify mutations that contribute to the oncogenic process is a key challenge in cancer
genomics, as it is yet unclear to what extent regulatory mutations can be actual driver muta-
tions. For coding mutations, driver mutations are usually identified by their significant recur-
rence across a patient cohort. For example, TP53 is mutated in 37% of breast cancer samples in
the TCGA and Sanger cohorts [41,44]. Thus far, although non-coding mutations are more
numerous than coding mutations, very few recurrent cis-regulatory mutations have been
found, and recent pan-cancer analyses concluded that in fact only one potential cis-regulatory
mutation, in the TERT promoter is highly recurrent [2,3]. TERT promoter mutations have
been identified in 6 of 14 cancer types where they occur in 3 to 62% of cancer samples, depend-
ing on the type of cancer [45]. They are associated with higher expression of TERT, both in
promoter-luciferase assays [3], and in patient samples [46]. Because these mutations generate
GGAA sites, it was hypothesized that this could lead to increased activation by TFs of the ETS-
family, which recognize GGAA consensus sites. Recently, it was shown that the TF is in fact
GABPA. While the TERTmutation has relatively low PRIME scores and no gain of H3K27Ac,
the TAL1 promoter mutation, which generates a de novoMYB binding site, causes neo-
morphic/ectopic enhancer activity as seen by a very strong and broad H3K27Ac signal span-
ning a large region encompassing the mutation. Interestingly, our enhancer models for MYB
predict the TAL1mutation as a high-impact mutation.

We have applied CRM prediction methods to the reference genome and to cancer genomes,
and calculated the differential CRM score between the reference sequence and the sequence
carrying a single nucleotide variant or a small insertion. CRM prediction methods are compu-
tational techniques to predict regulatory regions (e.g., promoters, enhancers) based on their
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sequence content and usually take advantage of transcription factor motifs [47,48]. Whereas
CRM prediction methods have often been applied to identify tissue-specific enhancers (e.g.,
human heart enhancers [22], Drosophila tissue-specific enhancers [24], etc.), their application
to identify TF-specific target CRMs is relatively limited [49–51]. Here we specifically train
models on training sets of functional TF ChIP-seq peaks. We define functional peaks as the
signficant subset (or “leading edge” [28]) of peaks that are located near genes that are up- or
down-regulated upon perturbation of the TF. Compared to previous methods that often rely
on k-mers, Markov chains, or de novo discovered motifs in the training set [24,29], we have
here assessed the power of using large PWM collections. Since we know (to a large extent) the
identity of the TF for each PWM, this strategy allows selecting a set (we choose 10) of specific
PWMs for the query TF, and a set of PWMs for potential co-regulatory TFs. We furthermore
believe that the power of using PWMs for CRM predictions will further increase, given the
recent progress in high-throughput determination of TF binding specificities [52]. Interest-
ingly, we found that for a subset of TFs the co-regulatory transcription factor motifs have a
higher feature importance than the motifs of the query TF itself. An important example of this
category is the cancer-related TF FOXM1, which requires a Random Forest model with co-reg-
ulatory factor motifs to identify FOXM1 targets in the genome. This is also corroborated by the
fact that FOXM1 ChIP-seq peaks are not enriched for any FOXM1 motif [53]. Therefore, when
potential cis-regulatory mutations are scored for their potential motif-breaking or motif-mak-
ing effects, using the FOXM1 motif would render meaningless results.

As an alternative we have also trained CRMmodels using regulatory data as features, such
as histone modifications and chromatin accessibility. Corroborating previous work by others
[25,49,54], such models have a higher performance compared to sequence-based prediction
methods. This likely implies that CRM function/output cannot entirely be captured by
sequence and motif content of the CRM itself. In this respect, we consider the models using
experimental regulatory data to represent an upper limit to the CRM prediction problem.
Although for some TFs the sequence-based models reach an accuracy close to their respective
data-based model, the performance of most TF models is still far from perfect (15 TFs with
AuPR<0.5). To evaluate our models and to compare different approaches we used standard
cross-validation. Importantly however, we included a complementary evaluation approach,
namely the genome-wide prediction of CRMs. We then tested the performance of each model
by assessing the overlap between predicted TF-specific CRMs and TF ChIP-peaks, excluding
the ChIP-peaks used in the training set. This allowed to functionally validate our predictions,
and to compare our models with alternative modelling approaches (namely, a simple PWM, a
k-mer SVM approach, and a gapped k-mer SVM), showing that Random Forest classifiers out-
performed these alternative methods (S18 and S19 Figs). In addition, this experiment showed
that the predicted CRMs using sequence-based models represent regions with typical charac-
teristics for CRMs, such as cross-species conservation and enhancer/promoter-related chroma-
tin states, including DNAse I hypersensitivity and H3K27Ac enrichment.

Encouraged by the high CRM prediction performance, we then applied the optimized TF-
specific CRMmodels to mutated cancer genomes, to predict cis-regulatory mutations with
potential impact on CRM function. Using thresholds of the PRIME score based on a z-score,
which is calculated on a TF model-specific empirical distribution, by scoring that model on
20000 variants from TCGA; we found relatively few mutations, with only 0.1%– 1.2% high
impact mutations with PRIME>0.3 (comparable to the MYB-TAL1mutation) per cancer
genome, on average. This was true for the large TCGA breast cancer cohort, but also for
smaller cohorts of melanoma (25), another breast cancer (21), and AML (50) genomes. Never-
theless, the high-scoring mutations, as well as simulated substitutions we introduced in pro-
moters of cancer genes, overlap significantly with conserved nucleotides and with enhancer/
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promoter chromatin states, indicating that these predictions are valuable. The low number of
high-impact mutations was again confirmed when we scored insertions found in the HeLa
genome (scoring 10 kb regions around TSS) [42,43], where we found only one insertion (near
CDH10) with high impact and associated with a gain in H3K27Ac signal (as the reported inser-
tion in the TAL1 enhancer). Note that although the thresholds we have applied to PRIME
scores are based on model-specific z-scores, the stringent z-score cutoffs are largely inspired by
the TAL1 examplars, and could be fine-tuned or relaxed in the future if more experimentally
validated cis-regulatory mutations are discovered. Another reason why we identify few muta-
tions may be partly due to the limited number of models we have built (currently 45; with an
additional nine models specifically added for the HeLa genome), but we speculate that even
with more models, the total number of high impact cis-regulatory mutations will be low. This
is indeed corroborated with the low number of cis-regulatory mutations that are found to be
recurrent across cancer samples [7,45]. Importantly, when PWMs are used to score cis-regula-
tory mutations, more than 100-fold excess of false-positives are predicted. This is mostly due to
the context of the CRM, for example, when multiple binding sites of the same factor are present
in a CRM (i.e., a homotypic cluster [55]), adding or deleting a single binding site may not have
any dramatic effect on the CRM. This is measured in the first layer by the CRM score, but not
by the individual PWM scores. In a second layer, different features are combined via optimized
parameters in an ensemble of decision trees, further increasing the specificity (S20 Fig).
Recently, a similar method was published, called deltaSVM [56], which also uses a machine-
learning approach to train a model and score reference and variant sequence, to calculate a
delta score. Although deltaSVM was mainly applied to GWAS data to score natural variation,
it could in principle also be applied to cancer mutations. This method is complementary to our
Random Forest models because it is trained on a different type of training set (all open chroma-
tin regions of a sample, rather than TF-specific models) and it uses entirely different features
(k-mers for the deltaSVM, compared to PWMs and data tracks for our PRIME scores). There-
fore these two approaches are complemenatary and both can predict the impact of mutations
in an enhancer, as shown in S21 Fig, on a data set of synthetic enhancer sequences. Neverthe-
less, since our RF models are often more specific in genome-wide scorings, they may also yield
less false-positive predictions on genomic variation (S22 Fig). A future challenge will be to use
M3 models to score mutations, incorporating epigenomic data tracks into the model. To this
end however, besides a fully re-sequenced cancer genome and germline control, also a cancer
and control epigenome would be required. As an alternative, if full genomes can be phased into
haplotypes, M3 models could be exploited to score the allele-specific impact of heterozygous
variants.

In conclusion, we presented an approach to model CRM context allowing to predict and pri-
oritize candidate cis-regulatory mutations in cancer genomes that could affect CRM function,
and provide a solution to the excess of false-positive predictions obtained by approaches using
position weight matrices. Our predictions on cancer genomes furthermore suggest that the
majority of non-coding mutations may be passenger mutations, and that only few top-scoring
mutations may contribute to the oncogenic program as cis-regulatory drivers.

Materials and Methods

Selection and identification of TF target genes
TFs target genes were selected either from curated TF perturbation gene signatures (MSigDB)
[57] or from a GENIE3 [58] inferred co-expression network focused on melanoma (skin (77):
GSE7553 [59], GSE28914 [60], GSE13355 [61]; primary melanoma (90): GSE7553 [62],
GSE19293 [63], GSE23376; metastasis (71): GSE7553, GSE10282, GSE22968 [64]. As
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parameters of GENIE3 we used as input list of transcription factors 2245 items (combined
from TRANSFAC1 Professional database and MSigDB collection (v4.0)), and a threshold of
0.005 (2041 regulatory modules were identified). In total, we selected 224 curated sets and 120
predicted sets based on the availability of TF ChIP-seq data.

Identification of a subset of functional ChIP-peaks
For each target gene set we performed “track discovery” using i-cisTarget [28], on all available
TF ChIP-seq tracks. If the corresponding TF ChIP-seq track was significantly enriched, the
leading edge was selected as optimal target CRMs. As parameters of i-cisTarget we used a
search space size of 20 kb around TSS. For four TFs (E2F1, FOXM1, ESRRA, MYC) we found
two different studies that provided a target gene set for this TF and for which i-cisTarget found
the ChIP-seq of the factor enriched, thus for which we could identify a training set of func-
tional target CRMs. These models are named as E2F1_2, FOXM1_2, ESRRA_2, MYC_2.

Additional models for TERT and TAL1 mutations
Besides the 45 models trained using the high-throughput procedure above, we trained a MYB
model using the top 500 peaks from ChIP-seq data from [6] and several models for ETS-like
factors, namely ELK1, ELF1, ELK4, and ETS1, each time using the top 500 ChIP-seq peaks
from the ENCODE data [12].

Feature selection
To select DNAmotifs and regulatory tracks enriched in the set of training CRMs we again
used i-cisTarget, but now using regions as input. i-cisTarget uses a large collection of motifs
(9,713 PWMs) and human regulatory tracks (2,046) derived from different resources [28].
Two groups of motifs where selected: the top ten enriched motifs of the query TF and the top
ten motifs of co-regulatory TFs. In addition, for M2 and M3 models, three groups of the most
representative regulatory tracks were selected: up to five open chromatin tracks, five histone
modification tracks (active marks), and five ChIP-seq tracks of potential co-regulatory TFs
selecting only enriched tracks.

Cross-validation
We performed 5-fold cross-validation. The selection of features using i-cisTarget was per-
formed only once, on the entire training set. This does not affect the cross-validation perfor-
mance because this filtering step is performed in an unsupervised way (without using the
negative samples) [65]. We confirmed this by performing i-cisTarget on every fold, without
using the left-out samples, thereby using different features during each fold, but as expected
this had no influence on the the AuPR values for cross-validation (S23 Fig). Note that for small
training sets (e.g., POU2F1 has only 6 positive CRMs in the training set, the 5-fold cross-valida-
tion leaves out only 1 or 2 samples, thus making it more a leave-one-out cross-validation.

Feature-vector representation of the DNA sequence and Random Forest
Selected enriched PWMs and tracks were used for numerical representation of the DNA
regions. For the motif scores we used Cluster-Buster (with default parameters except option -c
was set to zero to obtain a score for every sequence) employing a Hidden Markov Model to
score CRM sequences for clusters of binding sites [18]. We consider the PWMs as features and
for each PWMwe calculate on a CRM (which is a sample, so positive or negative) the total
Cluster-Buster motif-cluster score for that PWM. This means that for each feature (PWM) we
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have one score per CRM (so per window). The final M1 models thus contain only 20 features,
and each region’s feature vector contains 20 Cluster-Buster scores. For M2 and M3 models we
also include data tracks as features. For their scores we assigned the maximum score of broad
or narrow peaks (corresponds to signalValue column in the bed file format) overlapping with
the scoring region (the overlap was obtained using BEDtools [66]). As negatives we used 20x
more sequences, randomly selected from the genome without restriction on genomic locations,
with the same length and GC distribution as the positives. As Random Forest implementation
we used the scikit-learn Python package [67] 151 decision trees were used for each classifier.
Changing the number of trees can be indicative of the stabilisation of the cross-validation per-
formance (S1 Fig). The parameter max_features (responsible for number of features to con-
sider when looking for the best split) was set to sqrt(number of features). To calculate the
feature importance we used the Gini impurity criterion averaged across trees, using the whole
training data, again with the implementation from scikit-learn library [67].

Comparison with existing CRM prediction methods
The performance of the RF classifiers was compared with simple PWMmatching (M0) and
with another supervised machine learning methods, namely kmerSVM (Mk) [29] and gapped
kmerSVM (Mgk) [51]. The performance of the Mk, Mgk, M1, M2, M3 models where evaluated
in 5-fold cross-validation. To evaluate performance of the M0 we obtained AuROC and AuPR
curves varying the motif score threshold. For M0 we used as PWMmatching tool MotifLocator
[68] with default parameters except option -t was set to zero. For each TF we selected the
PWM that was most enriched PWM in the training set. As a background model we used a first
order Markov model with nucleotide transition probabilities estimated using human genome
(hg19) sequence.

Genome-wide scoring with RF classifiers
Genome-wide predictions were performed by segmenting the genome in overlapping sliding
windows. The size of the window is chosen specifically for each TF as the average length of the
regions used for training, and the overlapping segment between windows is equal to 200 bp.

Scoring of simulated nucleotide substitutions
We selected a set of 752 known cancer drivers from different sources (MSigDB, TCGA, COS-
MIC). In the regions 900 bp upstream of these genes we replaced every nucleotide to each pos-
sible variant and scored with M1 models; PRIME score was calculated (difference between M1
classification score in mutant versus reference sequenc) to estimate contribution of the location
and type of nucleotide substitution on the CRM score.

Scoring of SNVs and insertions
The sequence around each mutation was scored with M1 models. Several sliding windows
around each mutation were taken into account using a shift equal to 10% of the region. For
each mutation the window with the maximum score of the classifier is taken into account.

Conservation analysis
Bigwig file with phastCons scores [69] based on alignment of 46 placental mammal species was
downloaded from UCSC Genome Browser. We used a custom Python script and bigWigTo-
Wig [70] tool to calculated the score for each position.
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Overlap with ChromHMM predictions
All chromatin states identified across nine human cell lines (HSMM, GM12878, HUVEC,
H1-hESC, K562, HepG2, NHEK, HMEC, NHLF) using ChromHMMwere downloaded from
the UCSC browser [71] and combined into one dataset. We calculated the enrichment of posi-
tively predicted functional TF binding sites in different chromatin states using the GAT tool
[72]. Only values where enrichment or depletion is significant (pvalue<0.05) are taken into
account.

TCGA breast cancer samples
From VCF files provided by TCGA consortium we selected non-coding somatic mutations
(SNVs and insertions passed filtering criteria) falling in 500 bp regions around TSS. This
yielded 51117 SNVs and 7323 insertions combined from 498 full-genome sequenced breast
cancer samples. Z-scores of gene expression across samples were calculated using RPKM values
(max value per gene) as derived from processed RNA-seq data for 768 breast cancer samples.

The HeLa genome and epigenome
Processed full genome sequencing results of the HeLa cell line (CCL-2 and Kyoto cells) were
downloaded as VCF files. Only insertions located in +- 10 kb non-coding regions around TSS
and identified in both studies [43,73] were selected for scoring (N = 13923) and all heterozygos
HeLa falling in H3K27Ac data (N = 89451). For the HeLa H3K27Ac data we used broadPeak
formatted data generated by ENCODE (on the HeLa-S3 cells) [12] from which signalValue
was used for creating z-scores as follows. Candidate regulatory regions (that we defined before
[28]) were scored by a large collection of 109 H3K27Ac ChIP-seq data across different cell
types including HeLa (46 datasets from Blueprint project [74,75], 23 from ENCODE [12], 3
from DEEP [76], 33 fromMcGill EMC (http://epigenomesportal.ca) and 4 in-house generated
datasets). The acetylation score was multiplied by the fraction of the peak length that overlaps
with the candidate regulatory region. If more than one peak overlaps with the same regulatory
region then the average value was used. Finally, each regulatory region had a score for all the
109 acetylation datasets and z-scores were computed across all the samples.

Availability of software code
Python scripts are available at https://github.com/aertslab/primescore.

Supporting Information
S1 Fig. Example ROC curves. ROC curves for two example models, BATF and ATF2, showing
the increasing performance of M1 compared to M0, and of M3 compared to M1.
(TIFF)

S2 Fig. Random Forest stabilization. AuPR of the M1 models depending on the number or
trees. Varying the number of trees in the forest demonstrates stabilization of the classifier per-
formance (AuPR) for the majority of the models. For some models (POU5F1, NANOG) fluctu-
ations are higher due to the low number of training samples.
(TIFF)

S3 Fig. Comparison of machine learning methods using the AuPR.Heatmap with AuPR
scores for Logistic regression (LR), SVM and Random Forest (RF) classifiers. We compared RF
classifiers with two other supervised machine learning methods using the same data and fea-
tures. For all models the RF classifier outperforms other learning algorithms. Also, increasing
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complexity of the also yields higher performance. (A) AuPR values for M1 models using motifs
only; (B) AuPR values for M2 models, using tracks only; (C) AuPR values for M3 models using
both motifs and tracks.
(TIFF)

S4 Fig. Comparison of machine learning methods using the ROC. AuROC for LR, SVM and
Random Forest (RF) classifiers. AuROC for LR and SVM are lower than for RF considering the
same training data and features. (A) AuROC values for M1 models using motifs only; (B)
AuROC values for M2 models, using tracks only; (C) AuROC values for M3 models using both
motifs and tracks.
(TIFF)

S5 Fig. Performance versus number of training samples. Performance (AuPR) of the M1
models in cross-validation does not depend on the number of training CRMs. For the three
models (ESR1, MYC and YY1) having more than 2000 training CRMs performance is relatively
high but not bigger then for some models with less then 200 samples.
(TIFF)

S6 Fig. Performance versus PWM information content. AuPR vs information content of the
PWMs of M1 model. A) There is no clear dependence between the average information con-
tent of the PWMs used by M1 and AuPR achieved in cross-validation. B) Furthermore, the
most informative PWMs do not lead to higher classifier performance.
(TIFF)

S7 Fig. Feature importance for 45 Random Forest models.Heatmap showing the summed
Gini importance averaged across tries for each group of features (M3 model). The higher values
mean larger contribution of the attributes to the classification decision.
(TIFF)

S8 Fig. Comparison of genome-wide scoring results between models. Correlation of the TF
ChIP-seq peak enrichment scores for genome wide predictions obtained with Mk, M1, M3
models. Random forest models (M1 and M3) utilizing various set of features show high agree-
ment with each other (r = 0.876) and both models are less correlated with the TF ChIP-seq
peak enrichment of predictions obtained with Mk. This demonstrates that for the same TFs
both RF classifiers (M1 and M3) have similar enrichment of the corresponding ChIP-seq peaks
in the newly predicted CRMs. Diagonal shows density profile of the enrichment scores for each
of the 45 models fromM1, M3 and Mk.
(TIFF)

S9 Fig. Enrichment of newly predicted functional CRMs in various chromatin states. For all
genome-wide predicted (M1) functional CRMs (excluding training regions) with score above
0.5 we calculated the enrichment of overlap with chromatin states obtained with chromHMM
across 9 cell lines. Values on the heatmap show significant (p-value<0.05) log2 fold ratio of the
observed overlap against expected by chance. Non significant values were set to zero.
(TIFF)

S10 Fig. Comparison of PRIME scores with sequence constraint inside and outside real
binding sites.High PRIME score nucleotides overlapping with true binding sites are under
higher constraint compared to nucleotides outside of the ChIP-seq peaks. Nevertheless, high-
scoring mutations outside experimentally identified TF binding sites are enriched for high
phastCons scores.
(TIFF)
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S11 Fig. DNAseI-seq profile around high-scoring (>0.3) nucleotides. Simulated substitu-
tions (center of x-axis) with high PRIME scores are located in more accessible regions than
substitutions with low scores (<0.01) suggesting their potential involvement in CRM function.
The DNAseI-seq data shown here was obtained for the A549 cell line by the ENCODE consor-
tium.
(TIFF)

S12 Fig. Cancer mutations with high PRIME scores are under constraint. All scored somatic
mutations from AML (N = 50), melanoma (N = 25) and breast cancer (N = 21) samples are
pooled. With increasing PRIME score we observe a trend towards an increase of the average
nucleotide conservation measured by the phastCons score.
(TIFF)

S13 Fig. Enrichment of high scoring mutations in chromHMM states.Non-coding muta-
tions with high PRIME scores show much stronger enrichment in regulatory active chromatin
states (promoters and enhancers) compared to all mutations in the group.
(TIFF)

S14 Fig. Specificity of the M1 models for scoring non-coding somatic mutations. Non-cod-
ing somatic mutations found in breast cancer samples with absolute PRIME score>0.4
(N = 911) where checked for specificity with M1 and M0 models. Simulated possible nucleotide
substitutions in the window around mutations where scored and ranked. The plot demon-
strates the rank recovery of the true non-coding mutations ranked according to PRIME scores
(M1) and delta PWM scores (M0), demonstrating greater specificity of the Random Forest
models comparing to PWMs.
(TIFF)

S15 Fig. Specificity of MYB gain of function PRIME scores.We inserted exactly the same
sequence as found in Jurkat, MOLT-3 and patient samples (P6, P8) at 100 randomly chosen
genomic loci having the same 3bp flanking nucleotides. The PRIME score strongly depends on
the surrounding sequence context and for example, the Jurkat insertion generates a PRIME
score equal or higher than 0.32 (the observed PRIME in the TAL1 enhancer) in only 10/100
locations.
(TIFF)

S16 Fig. Correlation of PRIME scores with gene expression changes. Violin and boxplots
show an association of changes in gene expression with predicted impact of promoter muta-
tions. The median absolute z-score values of gene expression increase with increasing PRIME
score. Also, the expression changes in the low PRIME group (PRIME below 0.03) are less com-
paring to high scoring groups.
(TIFF)

S17 Fig. Association of PRIME scores with H3K27Ac in HeLa. A) Scatter plot of PRIME
scores (45 M1 models) for insertions in the HeLa cell line versus z-scores of H3K27ac peak
scores. The most upper left point indicates an insertion near CDH10 with high PRIME score
(-0.295 for POU5F1 and -0.274 for NANOG), which also has a high H3K27ac z-score. B) Illus-
tration of CDH10 regulatory insertion, with the H3K27Ac signal around this mutation found
exclusively in the HeLa cell line, not in other ENCODE cell lines. The red box indicates the
position of the insertion.
(TIFF)
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S18 Fig. Cross-validation results of the gkm-SVMmethod. Area under precision-recall
(AuPR) and receiver operating characteristic (AuROC) curves for gapped kmer-SVM (Mgk)
compared to M1 models, estimated by 5-fold cross-validation. Both methods demonstrate
comparable results with slight outperformance on average for M1.
(TIFF)

S19 Fig. Comparison of genome-wide scoring results between gkm-SVM and M1. After
genome-wide CRM scoring, removing the training CRMs, evaluating the enrichment of ChIP-
seq peaks of the corresponding TF, and the enrichment of motifs of the corresponding TF,
within the top 1000 newly predicted CRMs. Enrichment is represented as a Normalized
Enrichment Score (NES) calculated by i-cisTarget. A) Significant enrichment of ChIP-seq
peaks (orange is NES>2.5) for 31/45 M1 models, compared to 12/45 of the Mgk models. B)
The motif of the respective TF is also enriched in the top 1000 newly predicted functional
CRMs, for those in orange (NES>2.5).
(TIFF)

S20 Fig. Comparison of the specificity of M1 and M0 summodels. For the “M0 sum”model
we summed the maximal motif scores (using the same PWMs as for M1 model) found in the
900bp regions upstream of MTM1 gene. Possible nucleotide substitutions demonstrate that
M1 PRIME score are more specific and most scoring nucleotides are within the ChIPed region,
which is not the case for M0 sum model.
(TIFF)

S21 Fig. Comparison with deltaSVM on hepG2 enhancers.M1 and deltaSVMmodels
(trained on the same sequences for NFE2L2 and HNF4A TFs) show association of the delta
scores (predicted impact, x-axis) with reporter expression changes (y-axis). Both methods
demonstrate comparable performance.
(TIFF)

S22 Fig. Comparison with deltaSVM regarding specificity.M1 and deltaSVMmodels for
IRF1, SPI1, E2F4 and FOSL1 models where applied to predict the impact of simulated nucleo-
tide substitutions. Both methods demonstrate good agreement with each other identifying the
highest scoring nucleotides within the ChIP’ped regions for IRF1 and SPI1 but E2F4 and
FOSL1 models are more specific for the Random Forest M1 model than for deltaSVM.
(TIFF)

S23 Fig. Cross-validation with i-cisTarget feature filtering per fold. The performance of the
M1 models using features selected on the entire dataset is comparable (r = 0.978) with models
utilizing features identified only using training subset of the data and applied to the test data
not participated in the selection.
(TIFF)

S1 Table. Number of training CRMs for each TF.
(XLSX)

S2 Table. AuPR and AuROC for M0, Mk, M1, M2, M3.
(XLSX)

S3 Table. SNVs in TCGA breast cancer genomes, in promoters of cancer-related genes and
in 20kB around TSS of breast-cancer specific TFs, with significant PRIME (z-score>9.65).
(XLSX)
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S4 Table. Small insertions in TCGA breast cancer genomes, in promoters of cancer-related
genes, and in 10kb upstream of breast-cancer specific TFs, with high absolute PRIME score
(z-score>14.00).
(XLSX)

S5 Table. Number of used features for each model.
(XLSX)

S6 Table. PRIME score threshold for each model based on the insertion in the TAL1
enhancer in the MOLT-3 cell line.
(XLSX)

Author Contributions
Conceived and designed the experiments: SA DS. Performed the experiments: DS HI ZKA.
Analyzed the data: DS HI ZKAMF. Wrote the paper: SA DS.

References
1. Aerts S, Cools J. Cancer: Mutations close in on gene regulation. Nature. 2013; 499: 35–36. doi: 10.

1038/499035a PMID: 23823789

2. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial
and sporadic melanoma. Science. 2013; 339: 959–961. doi: 10.1126/science.1230062 PMID:
23348503

3. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly Recurrent TERT Promoter
Mutations in Human Melanoma. Science. 2013; 339: 957–959. doi: 10.1126/science.1229259 PMID:
23348506

4. Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter muta-
tions in human cancers. Nat Commun. 2013; 4: 2185. doi: 10.1038/ncomms3185 PMID: 23887589

5. Heidenreich B, Rachakonda PS, Hemminki K, Kumar R. TERT promoter mutations in cancer develop-
ment. Curr Opin Genet Dev. 2014; 24: 30–37. doi: 10.1016/j.gde.2013.11.005 PMID: 24657534

6. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. An oncogenic
super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;
346: 1373–1377. doi: 10.1126/science.1259037 PMID: 25394790

7. Weinhold N, Jacobsen A, Schultz N, Sander C, LeeW. Genome-wide analysis of noncoding regulatory
mutations in cancer. Nat Genet. 2014; 46: 1160–1165. doi: 10.1038/ng.3101 PMID: 25261935

8. Khurana E, Fu Y, Colonna V, Mu XJ, Kang HM, Lappalainen T, et al. Integrative Annotation of Variants
from 1092 Humans: Application to Cancer Genomics. Science. 2013; 342: 1235587. doi: 10.1126/
science.1235587 PMID: 24092746

9. Perera D, Chacon D, Thoms JA, Poulos RC, Shlien A, Beck D, et al. OncoCis: annotation of cis-regula-
tory mutations in cancer. Genome Biol. 2014; 15: 485. doi: 10.1186/s13059-014-0485-0 PMID:
25298093

10. Fu Y, Liu Z, Lou S, Bedford J, Mu XJ, Yip KY, et al. FunSeq2: a framework for prioritizing noncoding reg-
ulatory variants in cancer. Genome Biol. 2014; 15: 480. doi: 10.1186/s13059-014-0480-5 PMID:
25273974

11. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional
variation in personal genomes using RegulomeDB. Genome Res. 2012; 22: 1790–1797. doi: 10.1101/
gr.137323.112 PMID: 22955989

12. Consortium TEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;
489: 57–74. doi: 10.1038/nature11247 PMID: 22955616

13. Degner JF, Pai AA, Pique-Regi R, Veyrieras J-B, Gaffney DJ, Pickrell JK, et al. DNase I sensitivity
QTLs are a major determinant of human expression variation. Nature. 2012; 482: 390–394. doi: 10.
1038/nature10808 PMID: 22307276

14. Gaffney DJ, Veyrieras J-B, Degner JF, Pique-Regi R, Pai AA, Crawford GE, et al. Dissecting the regula-
tory architecture of gene expression QTLs. Genome Biol. 2012; 13: R7. doi: 10.1186/gb-2012-13-1-r7
PMID: 22293038

Predicted Impact of a Mutation in an Enhancer (PRIME)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004590 November 12, 2015 25 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004590.s027
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004590.s028
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004590.s029
http://dx.doi.org/10.1038/499035a
http://dx.doi.org/10.1038/499035a
http://www.ncbi.nlm.nih.gov/pubmed/23823789
http://dx.doi.org/10.1126/science.1230062
http://www.ncbi.nlm.nih.gov/pubmed/23348503
http://dx.doi.org/10.1126/science.1229259
http://www.ncbi.nlm.nih.gov/pubmed/23348506
http://dx.doi.org/10.1038/ncomms3185
http://www.ncbi.nlm.nih.gov/pubmed/23887589
http://dx.doi.org/10.1016/j.gde.2013.11.005
http://www.ncbi.nlm.nih.gov/pubmed/24657534
http://dx.doi.org/10.1126/science.1259037
http://www.ncbi.nlm.nih.gov/pubmed/25394790
http://dx.doi.org/10.1038/ng.3101
http://www.ncbi.nlm.nih.gov/pubmed/25261935
http://dx.doi.org/10.1126/science.1235587
http://dx.doi.org/10.1126/science.1235587
http://www.ncbi.nlm.nih.gov/pubmed/24092746
http://dx.doi.org/10.1186/s13059-014-0485-0
http://www.ncbi.nlm.nih.gov/pubmed/25298093
http://dx.doi.org/10.1186/s13059-014-0480-5
http://www.ncbi.nlm.nih.gov/pubmed/25273974
http://dx.doi.org/10.1101/gr.137323.112
http://dx.doi.org/10.1101/gr.137323.112
http://www.ncbi.nlm.nih.gov/pubmed/22955989
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.1038/nature10808
http://dx.doi.org/10.1038/nature10808
http://www.ncbi.nlm.nih.gov/pubmed/22307276
http://dx.doi.org/10.1186/gb-2012-13-1-r7
http://www.ncbi.nlm.nih.gov/pubmed/22293038


15. Ongen H, Andersen CL, Bramsen JB, Oster B, Rasmussen MH, Ferreira PG, et al. Putative cis-regula-
tory drivers in colorectal cancer. Nature. 2014;advance online publication. doi: 10.1038/nature13602

16. Cowper-Sal lari R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J, et al. Breast cancer risk-
associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet.
2012; 44: 1191–1198. doi: 10.1038/ng.2416 PMID: 23001124

17. Huang D, Ovcharenko I. Identifying causal regulatory SNPs in ChIP-seq enhancers. Nucleic Acids
Res. 2015; 43: 225–236. doi: 10.1093/nar/gku1318 PMID: 25520196

18. Frith MC, Li MC, Weng Z. Cluster-Buster: finding dense clusters of motifs in DNA sequences. Nucleic
Acids Res. 2003; 31: 3666–3668. PMID: 12824389

19. Berman BP, Nibu Y, Pfeiffer BD, Tomancak P, Celniker SE, Levine M, et al. Exploiting transcription fac-
tor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Dro-
sophila genome. Proc Natl Acad Sci U S A. 2002; 99: 757–762. doi: 10.1073/pnas.231608898 PMID:
11805330

20. Rajewsky N, Vergassola M, Gaul U, Siggia ED. Computational detection of genomic cis-regulatory
modules applied to body patterning in the early Drosophila embryo. BMC Bioinformatics. 2002; 3: 30.
PMID: 12398796

21. Aerts S, van Helden J, Sand O, Hassan BA. Fine-tuning enhancer models to predict transcriptional tar-
gets across multiple genomes. PloS One. 2007; 2: e1115. doi: 10.1371/journal.pone.0001115 PMID:
17973026

22. Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA, et al. Genome-wide dis-
covery of human heart enhancers. Genome Res. 2010; 20: 381–392. doi: 10.1101/gr.098657.109
PMID: 20075146

23. Lee D, Karchin R, Beer MA. Discriminative prediction of mammalian enhancers from DNA sequence.
Genome Res. 2011; gr.121905.111. doi: 10.1101/gr.121905.111

24. Kazemian M, Zhu Q, Halfon MS, Sinha S. Improved accuracy of supervised CRM discovery with inter-
polated Markov models and cross-species comparison. Nucleic Acids Res. 2011; 39: 9463–9472. doi:
10.1093/nar/gkr621 PMID: 21821659

25. Won K-J, Ren B, WangW. Genome-wide prediction of transcription factor binding sites using an inte-
grated model. Genome Biol. 2010; 11: R7. doi: 10.1186/gb-2010-11-1-r7 PMID: 20096096

26. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Meth-
ods. 2012; 9: 215–216. doi: 10.1038/nmeth.1906 PMID: 22373907

27. Cusanovich DA, Pavlovic B, Pritchard JK, Gilad Y. The Functional Consequences of Variation in Tran-
scription Factor Binding. PLoS Genet. 2014; 10: e1004226. doi: 10.1371/journal.pgen.1004226 PMID:
24603674

28. Imrichová H, Hulselmans G, Kalender Atak Z, Potier D, Aerts S. i-cisTarget 2015 update: generalized
cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res. 2015; gkv395. doi: 10.
1093/nar/gkv395

29. Gorkin DU, Lee D, Reed X, Fletez-Brant C, Bessling SL, Loftus SK, et al. Integration of ChIP-seq and
machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes.
Genome Res. 2012; 22: 2290–2301. doi: 10.1101/gr.139360.112 PMID: 23019145

30. He H, Garcia EA. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng. 2009; 21: 1263–1284.
doi: 10.1109/TKDE.2008.239

31. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Land-
scapes. Science. 2013; 339: 1546–1558. doi: 10.1126/science.1235122 PMID: 23539594

32. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer
genes. Nat Rev Cancer. 2004; 4: 177–183. doi: 10.1038/nrc1299 PMID: 14993899

33. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of onco-
genic signatures across human cancers. Nat Genet. 2013; 45: 1127–1133. doi: 10.1038/ng.2762
PMID: 24071851

34. Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Kandoth C, Reimand J, et al. Compre-
hensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep. 2013; 3: 2650.
doi: 10.1038/srep02650 PMID: 24084849

35. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo
acute myeloid leukemia. N Engl J Med. 2013; 368: 2059–2074. doi: 10.1056/NEJMoa1301689 PMID:
23634996

36. Loo PV, Marynen P. Computational methods for the detection of cis-regulatory modules. Brief Bioin-
form. 2009; 10: 509–524. doi: 10.1093/bib/bbp025 PMID: 19498042

Predicted Impact of a Mutation in an Enhancer (PRIME)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004590 November 12, 2015 26 / 28

http://dx.doi.org/10.1038/nature13602
http://dx.doi.org/10.1038/ng.2416
http://www.ncbi.nlm.nih.gov/pubmed/23001124
http://dx.doi.org/10.1093/nar/gku1318
http://www.ncbi.nlm.nih.gov/pubmed/25520196
http://www.ncbi.nlm.nih.gov/pubmed/12824389
http://dx.doi.org/10.1073/pnas.231608898
http://www.ncbi.nlm.nih.gov/pubmed/11805330
http://www.ncbi.nlm.nih.gov/pubmed/12398796
http://dx.doi.org/10.1371/journal.pone.0001115
http://www.ncbi.nlm.nih.gov/pubmed/17973026
http://dx.doi.org/10.1101/gr.098657.109
http://www.ncbi.nlm.nih.gov/pubmed/20075146
http://dx.doi.org/10.1101/gr.121905.111
http://dx.doi.org/10.1093/nar/gkr621
http://www.ncbi.nlm.nih.gov/pubmed/21821659
http://dx.doi.org/10.1186/gb-2010-11-1-r7
http://www.ncbi.nlm.nih.gov/pubmed/20096096
http://dx.doi.org/10.1038/nmeth.1906
http://www.ncbi.nlm.nih.gov/pubmed/22373907
http://dx.doi.org/10.1371/journal.pgen.1004226
http://www.ncbi.nlm.nih.gov/pubmed/24603674
http://dx.doi.org/10.1093/nar/gkv395
http://dx.doi.org/10.1093/nar/gkv395
http://dx.doi.org/10.1101/gr.139360.112
http://www.ncbi.nlm.nih.gov/pubmed/23019145
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1126/science.1235122
http://www.ncbi.nlm.nih.gov/pubmed/23539594
http://dx.doi.org/10.1038/nrc1299
http://www.ncbi.nlm.nih.gov/pubmed/14993899
http://dx.doi.org/10.1038/ng.2762
http://www.ncbi.nlm.nih.gov/pubmed/24071851
http://dx.doi.org/10.1038/srep02650
http://www.ncbi.nlm.nih.gov/pubmed/24084849
http://dx.doi.org/10.1056/NEJMoa1301689
http://www.ncbi.nlm.nih.gov/pubmed/23634996
http://dx.doi.org/10.1093/bib/bbp025
http://www.ncbi.nlm.nih.gov/pubmed/19498042


37. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The Life History of
21 Breast Cancers. Cell. 2012; 149: 994–1007. doi: 10.1016/j.cell.2012.04.023 PMID: 22608083

38. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, et al. Melanoma genome
sequencing reveals frequent PREX2mutations. Nature. 2012; 485: 502–506. doi: 10.1038/
nature11071 PMID: 22622578

39. Bell RJA, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, et al. Cancer. The transcription factor
GABP selectively binds and activates the mutant TERT promoter in cancer. Science. 2015; 348: 1036–
1039. doi: 10.1126/science.aab0015 PMID: 25977370

40. Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F, Hulselmans G, et al. Decoding the regula-
tory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun.
2015;6. doi: 10.1038/ncomms7683

41. Network TCGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490: 61–
70. doi: 10.1038/nature11412 PMID: 23000897

42. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, et al. The haplotype-resolved genome
and epigenome of the aneuploid HeLa cancer cell line. Nature. 2013; 500: 207–211. doi: 10.1038/
nature12064 PMID: 23925245

43. Landry JJM, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stütz AM, et al. The Genomic and Transcrip-
tomic Landscape of a HeLa Cell Line. G3 GenesGenomesGenetics. 2013; 3: 1213–1224. doi: 10.1534/
g3.113.005777

44. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of can-
cer genes and mutational processes in breast cancer. Nature. 2012; 486: 400–404. doi: 10.1038/
nature11017 PMID: 22722201

45. Fredriksson NJ, Ny L, Nilsson JA, Larsson E. Systematic analysis of noncoding somatic mutations and
gene expression alterations across 14 tumor types. Nat Genet. 2014; 46: 1258–1263. doi: 10.1038/ng.
3141 PMID: 25383969

46. Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, et al. TERT promoter mutations and telo-
merase reactivation in urothelial cancer. Science. 2015; doi: 10.1126/science.1260200

47. Aerts S. Computational strategies for the genome-wide identification of cis-regulatory elements and
transcriptional targets. Curr Top Dev Biol. 2012; 98: 121–145. doi: 10.1016/B978-0-12-386499-4.
00005-7 PMID: 22305161

48. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predic-
tions. Nat Rev Genet. 2014; 15: 272–286. doi: 10.1038/nrg3682 PMID: 24614317

49. Arvey A, Agius P, Noble WS, Leslie C. Sequence and chromatin determinants of cell-type-specific tran-
scription factor binding. Genome Res. 2012; 22: 1723–1734. doi: 10.1101/gr.127712.111 PMID:
22955984

50. Yáñez-Cuna JO, Dinh HQ, Kvon EZ, Shlyueva D, Stark A. Uncovering cis-regulatory sequence require-
ments for context-specific transcription factor binding. Genome Res. 2012; 22: 2018–2030. doi: 10.
1101/gr.132811.111 PMID: 22534400

51. Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory sequence prediction using
gapped k-mer features. PLoS Comput Biol. 2014; 10: e1003711. doi: 10.1371/journal.pcbi.1003711
PMID: 25033408

52. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and
inference of eukaryotic transcription factor sequence specificity. Cell. 2014; 158: 1431–1443. doi: 10.
1016/j.cell.2014.08.009 PMID: 25215497

53. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, et al. Sequence features and chromatin
structure around the genomic regions bound by 119 human transcription factors. Genome Res. 2012;
22: 1798–1812. doi: 10.1101/gr.139105.112 PMID: 22955990

54. Rajagopal N, Xie W, Li Y, Wagner U, WangW, Stamatoyannopoulos J, et al. RFECS: a random-forest
based algorithm for enhancer identification from chromatin state. PLoS Comput Biol. 2013; 9:
e1002968. doi: 10.1371/journal.pcbi.1002968 PMID: 23526891

55. Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I. Homotypic clusters of
transcription factor binding sites are a key component of human promoters and enhancers. Genome
Res. 2010; 20: 565–577. doi: 10.1101/gr.104471.109 PMID: 20363979

56. Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to predict the impact
of regulatory variants from DNA sequence. Nat Genet. 2015; 47: 955–961. doi: 10.1038/ng.3331 PMID:
26075791

57. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signa-
tures database (MSigDB) 3.0. Bioinforma Oxf Engl. 2011; 27: 1739–1740. doi: 10.1093/bioinformatics/
btr260

Predicted Impact of a Mutation in an Enhancer (PRIME)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004590 November 12, 2015 27 / 28

http://dx.doi.org/10.1016/j.cell.2012.04.023
http://www.ncbi.nlm.nih.gov/pubmed/22608083
http://dx.doi.org/10.1038/nature11071
http://dx.doi.org/10.1038/nature11071
http://www.ncbi.nlm.nih.gov/pubmed/22622578
http://dx.doi.org/10.1126/science.aab0015
http://www.ncbi.nlm.nih.gov/pubmed/25977370
http://dx.doi.org/10.1038/ncomms7683
http://dx.doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pubmed/23000897
http://dx.doi.org/10.1038/nature12064
http://dx.doi.org/10.1038/nature12064
http://www.ncbi.nlm.nih.gov/pubmed/23925245
http://dx.doi.org/10.1534/g3.113.005777
http://dx.doi.org/10.1534/g3.113.005777
http://dx.doi.org/10.1038/nature11017
http://dx.doi.org/10.1038/nature11017
http://www.ncbi.nlm.nih.gov/pubmed/22722201
http://dx.doi.org/10.1038/ng.3141
http://dx.doi.org/10.1038/ng.3141
http://www.ncbi.nlm.nih.gov/pubmed/25383969
http://dx.doi.org/10.1126/science.1260200
http://dx.doi.org/10.1016/B978-0-12-386499-4.00005-7
http://dx.doi.org/10.1016/B978-0-12-386499-4.00005-7
http://www.ncbi.nlm.nih.gov/pubmed/22305161
http://dx.doi.org/10.1038/nrg3682
http://www.ncbi.nlm.nih.gov/pubmed/24614317
http://dx.doi.org/10.1101/gr.127712.111
http://www.ncbi.nlm.nih.gov/pubmed/22955984
http://dx.doi.org/10.1101/gr.132811.111
http://dx.doi.org/10.1101/gr.132811.111
http://www.ncbi.nlm.nih.gov/pubmed/22534400
http://dx.doi.org/10.1371/journal.pcbi.1003711
http://www.ncbi.nlm.nih.gov/pubmed/25033408
http://dx.doi.org/10.1016/j.cell.2014.08.009
http://dx.doi.org/10.1016/j.cell.2014.08.009
http://www.ncbi.nlm.nih.gov/pubmed/25215497
http://dx.doi.org/10.1101/gr.139105.112
http://www.ncbi.nlm.nih.gov/pubmed/22955990
http://dx.doi.org/10.1371/journal.pcbi.1002968
http://www.ncbi.nlm.nih.gov/pubmed/23526891
http://dx.doi.org/10.1101/gr.104471.109
http://www.ncbi.nlm.nih.gov/pubmed/20363979
http://dx.doi.org/10.1038/ng.3331
http://www.ncbi.nlm.nih.gov/pubmed/26075791
http://dx.doi.org/10.1093/bioinformatics/btr260
http://dx.doi.org/10.1093/bioinformatics/btr260


58. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring Regulatory Networks from Expression Data
Using Tree-Based Methods. PLoS ONE. 2010; 5: e12776. doi: 10.1371/journal.pone.0012776 PMID:
20927193

59. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, et al. The gene expression profiles of pri-
mary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC
Med Genomics. 2008; 1: 13. doi: 10.1186/1755-8794-1-13 PMID: 18442402

60. Nuutila K, Siltanen A, Peura M, Bizik J, Kaartinen I, Kuokkanen H, et al. Human skin transcriptome dur-
ing superficial cutaneous wound healing. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue
Repair Soc. 2012; 20: 830–839. doi: 10.1111/j.1524-475X.2012.00831.x

61. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. Genome-wide scan reveals associa-
tion of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009; 41: 199–204. doi: 10.1038/ng.
311 PMID: 19169254

62. Swindell WR, Johnston A, Carbajal S, Han G, Wohn C, Lu J, et al. Genome-wide expression profiling of
five mouse models identifies similarities and differences with human psoriasis. PloS One. 2011; 6:
e18266. doi: 10.1371/journal.pone.0018266 PMID: 21483750

63. Augustine CK, Jung S-H, Sohn I, Yoo JS, Yoshimoto Y, Olson JA, et al. Gene expression signatures as
a guide to treatment strategies for in-transit metastatic melanoma. Mol Cancer Ther. 2010; 9: 779–790.
doi: 10.1158/1535-7163.MCT-09-0764 PMID: 20371714

64. Beasley GM, Riboh JC, Augustine CK, Zager JS, Hochwald SN, Grobmyer SR, et al. Prospective multi-
center phase II trial of systemic ADH-1 in combination with melphalan via isolated limb infusion in
patients with advanced extremity melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2011; 29: 1210–
1215. doi: 10.1200/JCO.2010.32.1224

65. Books: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition
(Springer Series in Statistics) (Hardcover) by Trevor Hastie, Robert Tibshirani, Jerome Friedman [Inter-
net]. Available: http://www.tower.com/elements-statistical-learning-data-mining-inference-prediction-
second-jerome-friedman-hardcover/wapi/113059096

66. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr Protoc Bioinforma
Ed Board Andreas Baxevanis Al. 2014; 47: 11.12.1–11.12.34. doi: 10.1002/0471250953.bi1112s47

67. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine
Learning in Python. J Mach Learn Res. 2011; 12: 2825–2830.

68. Aerts S, Loo PV, Thijs G, Mayer H, de Martin R , Moreau Y, et al. TOUCAN 2: the all-inclusive open
source workbench for regulatory sequence analysis. Nucleic Acids Res. 2005; 33: W393–W396. doi:
10.1093/nar/gki354 PMID: 15980497

69. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, HouM, Rosenbloom K, et al. Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15: 1034–1050. doi: 10.
1101/gr.3715005 PMID: 16024819

70. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling browsing of
large distributed datasets. Bioinformatics. 2010; 26: 2204–2207. doi: 10.1093/bioinformatics/btq351
PMID: 20639541

71. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE Data in the
UCSCGenome Browser: year 5 update. Nucleic Acids Res. 2013; 41: D56–D63. doi: 10.1093/nar/
gks1172 PMID: 23193274

72. Heger A, Webber C, Goodson M, Ponting CP, Lunter G. GAT: a simulation framework for testing the
association of genomic intervals. Bioinforma Oxf Engl. 2013; 29: 2046–2048. doi: 10.1093/
bioinformatics/btt343

73. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, et al. The haplotype-resolved genome
and epigenome of the aneuploid HeLa cancer cell line. Nature. 2013; 500: 207–211. doi: 10.1038/
nature12064 PMID: 23925245

74. Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al. BLUEPRINT to decode the
epigenetic signature written in blood. Nat Biotechnol. 2012; 30: 224–226. doi: 10.1038/nbt.2153 PMID:
22398613

75. Martens JHA, Stunnenberg HG. BLUEPRINT: mapping human blood cell epigenomes. Haematologica.
2013; 98: 1487–1489. doi: 10.3324/haematol.2013.094243 PMID: 24091925

76. Kleftogiannis D, Kalnis P, Bajic VB. DEEP: a general computational framework for predicting enhanc-
ers. Nucleic Acids Res. 2014; gku1058. doi: 10.1093/nar/gku1058

Predicted Impact of a Mutation in an Enhancer (PRIME)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004590 November 12, 2015 28 / 28

http://dx.doi.org/10.1371/journal.pone.0012776
http://www.ncbi.nlm.nih.gov/pubmed/20927193
http://dx.doi.org/10.1186/1755-8794-1-13
http://www.ncbi.nlm.nih.gov/pubmed/18442402
http://dx.doi.org/10.1111/j.1524-475X.2012.00831.x
http://dx.doi.org/10.1038/ng.311
http://dx.doi.org/10.1038/ng.311
http://www.ncbi.nlm.nih.gov/pubmed/19169254
http://dx.doi.org/10.1371/journal.pone.0018266
http://www.ncbi.nlm.nih.gov/pubmed/21483750
http://dx.doi.org/10.1158/1535-7163.MCT-09-0764
http://www.ncbi.nlm.nih.gov/pubmed/20371714
http://dx.doi.org/10.1200/JCO.2010.32.1224
http://www.tower.com/elements-statistical-learning-data-mining-inference-prediction-second-jerome-friedman-hardcover/wapi/113059096
http://www.tower.com/elements-statistical-learning-data-mining-inference-prediction-second-jerome-friedman-hardcover/wapi/113059096
http://dx.doi.org/10.1002/0471250953.bi1112s47
http://dx.doi.org/10.1093/nar/gki354
http://www.ncbi.nlm.nih.gov/pubmed/15980497
http://dx.doi.org/10.1101/gr.3715005
http://dx.doi.org/10.1101/gr.3715005
http://www.ncbi.nlm.nih.gov/pubmed/16024819
http://dx.doi.org/10.1093/bioinformatics/btq351
http://www.ncbi.nlm.nih.gov/pubmed/20639541
http://dx.doi.org/10.1093/nar/gks1172
http://dx.doi.org/10.1093/nar/gks1172
http://www.ncbi.nlm.nih.gov/pubmed/23193274
http://dx.doi.org/10.1093/bioinformatics/btt343
http://dx.doi.org/10.1093/bioinformatics/btt343
http://dx.doi.org/10.1038/nature12064
http://dx.doi.org/10.1038/nature12064
http://www.ncbi.nlm.nih.gov/pubmed/23925245
http://dx.doi.org/10.1038/nbt.2153
http://www.ncbi.nlm.nih.gov/pubmed/22398613
http://dx.doi.org/10.3324/haematol.2013.094243
http://www.ncbi.nlm.nih.gov/pubmed/24091925
http://dx.doi.org/10.1093/nar/gku1058

