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Abstract
Deep learning (DL), a branch of machine learning (ML) and artificial intelligence (AI) is nowadays considered as a core 
technology of today’s Fourth Industrial Revolution (4IR or Industry 4.0). Due to its learning capabilities from data, DL 
technology originated from artificial neural network (ANN), has become a hot topic in the context of computing, and is 
widely applied in various application areas like healthcare, visual recognition, text analytics, cybersecurity, and many more. 
However, building an appropriate DL model is a challenging task, due to the dynamic nature and variations in real-world 
problems and data. Moreover, the lack of core understanding turns DL methods into black-box machines that hamper develop-
ment at the standard level. This article presents a structured and comprehensive view on DL techniques including a taxonomy 
considering various types of real-world tasks like supervised or unsupervised. In our taxonomy, we take into account deep 
networks for supervised or discriminative learning, unsupervised or generative learning as well as hybrid learning and 
relevant others. We also summarize real-world application areas where deep learning techniques can be used. Finally, we 
point out ten potential aspects for future generation DL modeling with research directions. Overall, this article aims to draw 
a big picture on DL modeling that can be used as a reference guide for both academia and industry professionals.

Keywords Deep learning · Artificial neural network · Artificial intelligence · Discriminative learning · Generative 
learning · Hybrid learning · Intelligent systems

Introduction

In the late 1980s, neural networks became a prevalent topic 
in the area of Machine Learning (ML) as well as Artificial 
Intelligence (AI), due to the invention of various efficient 
learning methods and network structures [52]. Multilayer 
perceptron networks trained by “Backpropagation” type 
algorithms, self-organizing maps, and radial basis function 
networks were such innovative methods [26, 36, 37]. While 
neural networks are successfully used in many applications, 

the interest in researching this topic decreased later on. 
After that, in 2006, “Deep Learning” (DL) was introduced 
by Hinton et al. [41], which was based on the concept of 
artificial neural network (ANN). Deep learning became a 
prominent topic after that, resulting in a rebirth in neural 
network research, hence, some times referred to as “new-
generation neural networks”. This is because deep networks, 
when properly trained, have produced significant success in 
a variety of classification and regression challenges [52].

Nowadays, DL technology is considered as one of the 
hot topics within the area of machine learning, artificial 
intelligence as well as data science and analytics, due to its 
learning capabilities from the given data. Many corporations 
including Google, Microsoft, Nokia, etc., study it actively 
as it can provide significant results in different classifica-
tion and regression problems and datasets [52]. In terms of 
working domain, DL is considered as a subset of ML and 
AI, and thus DL can be seen as an AI function that mimics 
the human brain’s processing of data. The worldwide popu-
larity of “Deep learning” is increasing day by day, which is 
shown in our earlier paper [96] based on the historical data 
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collected from Google trends [33]. Deep learning differs 
from standard machine learning in terms of efficiency as the 
volume of data increases, discussed briefly in Section “Why 
Deep Learning in Today's Research and Applications?”. DL 
technology uses multiple layers to represent the abstractions 
of data to build computational models. While deep learning 
takes a long time to train a model due to a large number of 
parameters, it takes a short amount of time to run during 
testing as compared to other machine learning algorithms 
[127].

While today’s Fourth Industrial Revolution (4IR or Indus-
try 4.0) is typically focusing on technology-driven “automa-
tion, smart and intelligent systems”, DL technology, which 
is originated from ANN, has become one of the core tech-
nologies to achieve the goal [103, 114]. A typical neural 
network is mainly composed of many simple, connected pro-
cessing elements or processors called neurons, each of which 
generates a series of real-valued activations for the target 
outcome. Figure 1 shows a schematic representation of the 
mathematical model of an artificial neuron, i.e., processing 
element, highlighting input ( Xi ), weight (w), bias (b), sum-
mation function ( 

∑

 ), activation function (f) and correspond-
ing output signal (y). Neural network-based DL technology 
is now widely applied in many fields and research areas such 
as healthcare, sentiment analysis, natural language process-
ing, visual recognition, business intelligence, cybersecurity, 
and many more that have been summarized in the latter part 
of this paper.

Although DL models are successfully applied in various 
application areas, mentioned above, building an appropri-
ate model of deep learning is a challenging task, due to 
the dynamic nature and variations of real-world problems 
and data. Moreover, DL models are typically considered as 

“black-box” machines that hamper the standard develop-
ment of deep learning research and applications. Thus for 
clear understanding, in this paper, we present a structured 
and comprehensive view on DL techniques considering the 
variations in real-world problems and tasks. To achieve 
our goal, we briefly discuss various DL techniques and 
present a taxonomy by taking into account three major 
categories: (i) deep networks for supervised or discrimi-
native learning that is utilized to provide a discrimina-
tive function in supervised deep learning or classifica-
tion applications; (ii) deep networks for unsupervised 
or generative learning that are used to characterize the 
high-order correlation properties or features for pattern 
analysis or synthesis, thus can be used as preprocessing 
for the supervised algorithm; and (ii) deep networks for 
hybrid learning that is an integration of both supervised 
and unsupervised model and relevant others. We take into 
account such categories based on the nature and learning 
capabilities of different DL techniques and how they are 
used to solve problems in real-world applications [97]. 
Moreover, identifying key research issues and prospects 
including effective data representation, new algorithm 
design, data-driven hyper-parameter learning, and model 
optimization, integrating domain knowledge, adapting 
resource-constrained devices, etc. is one of the key targets 
of this study, which can lead to “Future Generation DL-
Modeling”. Thus the goal of this paper is set to assist those 
in academia and industry as a reference guide, who want 
to research and develop data-driven smart and intelligent 
systems based on DL techniques.

The overall contribution of this paper is summarized as 
follows:

– This article focuses on different aspects of deep learning 
modeling, i.e., the learning capabilities of DL techniques 
in different dimensions such as supervised or unsuper-
vised tasks, to function in an automated and intelligent 
manner, which can play as a core technology of today’s 
Fourth Industrial Revolution (Industry 4.0).

– We explore a variety of prominent DL techniques and 
present a taxonomy by taking into account the variations 
in deep learning tasks and how they are used for differ-
ent purposes. In our taxonomy, we divide the techniques 
into three major categories such as deep networks for 
supervised or discriminative learning, unsupervised or 
generative learning, as well as deep networks for hybrid 
learning, and relevant others.

– We have summarized several potential real-world appli-
cation areas of deep learning, to assist developers as well 
as researchers in broadening their perspectives on DL 
techniques. Different categories of DL techniques high-
lighted in our taxonomy can be used to solve various 
issues accordingly.

Fig. 1  Schematic representation of the mathematical model of an 
artificial neuron (processing element), highlighting input ( X

i
 ), weight 

(w), bias (b), summation function ( 
∑

 ), activation function (f) and out-
put signal (y)
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– Finally, we point out and discuss ten potential aspects 
with research directions for future generation DL mod-
eling in terms of conducting future research and system 
development.

This paper is organized as follows. Section “Why Deep 
Learning in Today's Research andApplications?” motivates 
why deep learning is important to build data-driven intel-
ligent systems. In Section“ Deep Learning Techniques and 
Applications”, we present our DL taxonomy by taking into 
account the variations of deep learning tasks and how they 
are used in solving real-world issues and briefly discuss the 
techniques with summarizing the potential application areas. 
In Section “Research Directions and Future Aspects”, we 
discuss various research issues of deep learning-based mod-
eling and highlight the promising topics for future research 
within the scope of our study. Finally, Section “Concluding 
Remarks” concludes this paper.

Why Deep Learning in Today’s Research 
and Applications?

The main focus of today’s Fourth Industrial Revolution 
(Industry 4.0) is typically technology-driven automation, 
smart and intelligent systems, in various application areas 
including smart healthcare, business intelligence, smart cit-
ies, cybersecurity intelligence, and many more [95]. Deep 
learning approaches have grown dramatically in terms of 
performance in a wide range of applications considering 
security technologies, particularly, as an excellent solution 
for uncovering complex architecture in high-dimensional 
data. Thus, DL techniques can play a key role in building 
intelligent data-driven systems according to today’s needs, 
because of their excellent learning capabilities from histori-
cal data. Consequently, DL can change the world as well 
as humans’ everyday life through its automation power and 
learning from experience. DL technology is therefore rel-
evant to artificial intelligence [103], machine learning [97] 
and data science with advanced analytics [95] that are well-
known areas in computer science, particularly, today’s intel-
ligent computing. In the following, we first discuss regarding 
the position of deep learning in AI, or how DL technology 
is related to these areas of computing.

The Position of Deep Learning in AI

Nowadays, artificial intelligence (AI), machine learning 
(ML), and deep learning (DL) are three popular terms that 
are sometimes used interchangeably to describe systems or 
software that behaves intelligently. In Fig. 2, we illustrate the 
position of deep Learning, comparing with machine learning 
and artificial intelligence. According to Fig. 2, DL is a part 

of ML as well as a part of the broad area AI. In general, AI 
incorporates human behavior and intelligence to machines 
or systems [103], while ML is the method to learn from data 
or experience [97], which automates analytical model build-
ing. DL also represents learning methods from data where 
the computation is done through multi-layer neural networks 
and processing. The term “Deep” in the deep learning meth-
odology refers to the concept of multiple levels or stages 
through which data is processed for building a data-driven 
model.

Thus, DL can be considered as one of the core technol-
ogy of AI, a frontier for artificial intelligence, which can be 
used for building intelligent systems and automation. More 
importantly, it pushes AI to a new level, termed “Smarter 
AI”. As DL are capable of learning from data, there is a 
strong relation of deep learning with “Data Science” [95] as 
well. Typically, data science represents the entire process of 
finding meaning or insights in data in a particular problem 
domain, where DL methods can play a key role for advanced 
analytics and intelligent decision-making [104, 106]. Over-
all, we can conclude that DL technology is capable to change 
the current world, particularly, in terms of a powerful com-
putational engine and contribute to technology-driven auto-
mation, smart and intelligent systems accordingly, and meets 
the goal of Industry 4.0.

Understanding Various Forms of Data

As DL models learn from data, an in-depth understanding 
and representation of data are important to build a data-
driven intelligent system in a particular application area. In 
the real world, data can be in various forms, which typically 
can be represented as below for deep learning modeling:

– Sequential Data Sequential data is any kind of data 
where the order matters, i,e., a set of sequences. It needs 
to explicitly account for the sequential nature of input 
data while building the model. Text streams, audio frag-

Fig. 2  An illustration of the position of deep learning (DL), compar-
ing with machine learning (ML) and artificial intelligence (AI)
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ments, video clips, time-series data, are some examples 
of sequential data.

– Image or 2D Data A digital image is made up of a 
matrix, which is a rectangular array of numbers, sym-
bols, or expressions arranged in rows and columns in 
a 2D array of numbers. Matrix, pixels, voxels, and bit 
depth are the four essential characteristics or fundamental 
parameters of a digital image.

– Tabular Data A tabular dataset consists primarily of 
rows and columns. Thus tabular datasets contain data in 
a columnar format as in a database table. Each column 
(field) must have a name and each column may only con-
tain data of the defined type. Overall, it is a logical and 
systematic arrangement of data in the form of rows and 
columns that are based on data properties or features. 
Deep learning models can learn efficiently on tabular 
data and allow us to build data-driven intelligent systems.

The above-discussed data forms are common in the real-
world application areas of deep learning. Different cat-
egories of DL techniques perform differently depending 
on the nature and characteristics of data, discussed briefly 
in Section “Deep Learning Techniques and Applications” 
with a taxonomy presentation. However, in many real-world 
application areas, the standard machine learning techniques, 
particularly, logic-rule or tree-based techniques [93, 101] 
perform significantly depending on the application nature. 
Figure 3 also shows the performance comparison of DL and 
ML modeling considering the amount of data. In the fol-
lowing, we highlight several cases, where deep learning is 
useful to solve real-world problems, according to our main 
focus in this paper.

DL Properties and Dependencies

A DL model typically follows the same processing stages 
as machine learning modeling. In Fig. 4, we have shown a 
deep learning workflow to solve real-world problems, which 
consists of three processing steps, such as data understand-
ing and preprocessing, DL model building, and training, 
and validation and interpretation. However, unlike the ML 
modeling [98, 108], feature extraction in the DL model is 
automated rather than manual. K-nearest neighbor, support 
vector machines, decision tree, random forest, naive Bayes, 
linear regression, association rules, k-means clustering, are 
some examples of machine learning techniques that are com-
monly used in various application areas [97]. On the other 
hand, the DL model includes convolution neural network, 
recurrent neural network, autoencoder, deep belief network, 
and many more, discussed briefly with their potential appli-
cation areas in Section 3. In the following, we discuss the 
key properties and dependencies of DL techniques, that are 

Fig. 3  An illustration of the performance comparison between deep 
learning (DL) and other machine learning (ML) algorithms, where 
DL modeling from large amounts of data can increase the perfor-
mance

Fig. 4  A typical DL workflow to solve real-world problems, which consists of three sequential stages (i) data understanding and preprocessing 
(ii) DL model building and training (iii) validation and interpretation
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needed to take into account before started working on DL 
modeling for real-world applications.

– Data Dependencies Deep learning is typically dependent 
on a large amount of data to build a data-driven model 
for a particular problem domain. The reason is that when 
the data volume is small, deep learning algorithms often 
perform poorly [64]. In such circumstances, however, 
the performance of the standard machine-learning algo-
rithms will be improved if the specified rules are used 
[64, 107].

– Hardware Dependencies The DL algorithms require 
large computational operations while training a model 
with large datasets. As the larger the computations, the 
more the advantage of a GPU over a CPU, the GPU is 
mostly used to optimize the operations efficiently. Thus, 
to work properly with the deep learning training, GPU 
hardware is necessary. Therefore, DL relies more on 
high-performance machines with GPUs than standard 
machine learning methods [19, 127].

– Feature Engineering Process Feature engineering is the 
process of extracting features (characteristics, properties, 
and attributes) from raw data using domain knowledge. A 
fundamental distinction between DL and other machine-
learning techniques is the attempt to extract high-level 
characteristics directly from data [22, 97]. Thus, DL 
decreases the time and effort required to construct a fea-
ture extractor for each problem.

– Model Training and Execution time In general, train-
ing a deep learning algorithm takes a long time due to a 
large number of parameters in the DL algorithm; thus, 
the model training process takes longer. For instance, the 
DL models can take more than one week to complete a 
training session, whereas training with ML algorithms 
takes relatively little time, only seconds to hours [107, 
127]. During testing, deep learning algorithms take 
extremely little time to run [127], when compared to 
certain machine learning methods.

– Black-box Perception and Interpretability Interpret-
ability is an important factor when comparing DL with 
ML. It’s difficult to explain how a deep learning result 
was obtained, i.e., “black-box”. On the other hand, the 
machine-learning algorithms, particularly, rule-based 
machine learning techniques [97] provide explicit logic 
rules (IF-THEN) for making decisions that are easily 
interpretable for humans. For instance, in our earlier 
works, we have presented several machines learning rule-
based techniques [100, 102, 105], where the extracted 
rules are human-understandable and easier to interpret, 
update or delete according to the target applications.

The most significant distinction between deep learning and 
regular machine learning is how well it performs when data 

grows exponentially. An illustration of the performance 
comparison between DL and standard ML algorithms has 
been shown in Fig. 3, where DL modeling can increase the 
performance with the amount of data. Thus, DL modeling is 
extremely useful when dealing with a large amount of data 
because of its capacity to process vast amounts of features 
to build an effective data-driven model. In terms of develop-
ing and training DL models, it relies on parallelized matrix 
and tensor operations as well as computing gradients and 
optimization. Several, DL libraries and resources [30] such 
as PyTorch [82] (with a high-level API called Lightning) and 
TensorFlow [1] (which also offers Keras as a high-level API) 
offers these core utilities including many pre-trained models, 
as well as many other necessary functions for implementa-
tion and DL model building.

Deep Learning Techniques and Applications

In this section, we go through the various types of deep 
neural network techniques, which typically consider sev-
eral layers of information-processing stages in hierarchical 
structures to learn. A typical deep neural network contains 
multiple hidden layers including input and output layers. 
Figure 5 shows a general structure of a deep neural network 
( hidden layer = N  and N ≥ 2) comparing with a shallow 
network ( hidden layer = 1 ). We also present our taxonomy 
on DL techniques based on how they are used to solve vari-
ous problems, in this section. However, before exploring the 
details of the DL techniques, it’s useful to review various 
types of learning tasks such as (i) Supervised: a task-driven 
approach that uses labeled training data, (ii) Unsupervised: 
a data-driven process that analyzes unlabeled datasets, (iii) 
Semi-supervised: a hybridization of both the supervised and 
unsupervised methods, and (iv) Reinforcement: an environ-
ment driven approach, discussed briefly in our earlier paper 
[97]. Thus, to present our taxonomy, we divide DL tech-
niques broadly into three major categories: (i) deep networks 
for supervised or discriminative learning; (ii) deep networks 
for unsupervised or generative learning; and (ii) deep net-
works for hybrid learning combing both and relevant others, 
as shown in Fig. 6. In the following, we briefly discuss each 
of these techniques that can be used to solve real-world prob-
lems in various application areas according to their learning 
capabilities.

Deep Networks for Supervised or Discriminative 
Learning

This category of DL techniques is utilized to provide a 
discriminative function in supervised or classification 
applications. Discriminative deep architectures are typi-
cally designed to give discriminative power for pattern 
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classification by describing the posterior distributions of 
classes conditioned on visible data [21]. Discriminative 
architectures mainly include Multi-Layer Perceptron (MLP), 
Convolutional Neural Networks (CNN or ConvNet), Recur-
rent Neural Networks (RNN), along with their variants. In 
the following, we briefly discuss these techniques.

Multi‑layer Perceptron (MLP)

Multi-layer Perceptron (MLP), a supervised learning 
approach [83], is a type of feedforward artificial neural 

network (ANN). It is also known as the foundation archi-
tecture of deep neural networks (DNN) or deep learning. A 
typical MLP is a fully connected network that consists of 
an input layer that receives input data, an output layer that 
makes a decision or prediction about the input signal, and 
one or more hidden layers between these two that are consid-
ered as the network’s computational engine [36, 103]. The 
output of an MLP network is determined using a variety of 
activation functions, also known as transfer functions, such 
as ReLU (Rectified Linear Unit), Tanh, Sigmoid, and Soft-
max [83, 96]. To train MLP employs the most extensively 

Fig. 5  A general architecture of a a shallow network with one hidden layer and b a deep neural network with multiple hidden layers

Fig. 6  A taxonomy of DL techniques, broadly divided into three major categories (i) deep networks for supervised or discriminative learning, 
(ii) deep networks for unsupervised or generative learning, and (ii) deep networks for hybrid learning and relevant others
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used algorithm “Backpropagation” [36], a supervised learn-
ing technique, which is also known as the most basic build-
ing block of a neural network. During the training process, 
various optimization approaches such as Stochastic Gradi-
ent Descent (SGD), Limited Memory BFGS (L-BFGS), and 
Adaptive Moment Estimation (Adam) are applied. MLP 
requires tuning of several hyperparameters such as the num-
ber of hidden layers, neurons, and iterations, which could 
make solving a complicated model computationally expen-
sive. However, through partial fit, MLP offers the advantage 
of learning non-linear models in real-time or online [83].

Convolutional Neural Network (CNN or ConvNet)

The Convolutional Neural Network (CNN or ConvNet) [65] 
is a popular discriminative deep learning architecture that 
learns directly from the input without the need for human 
feature extraction. Figure 7 shows an example of a CNN 
including multiple convolutions and pooling layers. As a 
result, the CNN enhances the design of traditional ANN like 
regularized MLP networks. Each layer in CNN takes into 
account optimum parameters for a meaningful output as well 
as reduces model complexity. CNN also uses a ‘dropout’ 
[30] that can deal with the problem of over-fitting, which 
may occur in a traditional network.

CNNs are specifically intended to deal with a variety of 
2D shapes and are thus widely employed in visual recogni-
tion, medical image analysis, image segmentation, natural 
language processing, and many more [65, 96]. The capa-
bility of automatically discovering essential features from 
the input without the need for human intervention makes it 
more powerful than a traditional network. Several variants 
of CNN are exist in the area that includes visual geometry 
group (VGG) [38], AlexNet [62], Xception [17], Inception 
[116], ResNet [39], etc. that can be used in various applica-
tion domains according to their learning capabilities.

Recurrent Neural Network (RNN) and its Variants

A Recurrent Neural Network (RNN) is another popular neu-
ral network, which employs sequential or time-series data 
and feeds the output from the previous step as input to the 
current stage [27, 74]. Like feedforward and CNN, recurrent 
networks learn from training input, however, distinguish by 

their “memory”, which allows them to impact current input 
and output through using information from previous inputs. 
Unlike typical DNN, which assumes that inputs and outputs 
are independent of one another, the output of RNN is reliant 
on prior elements within the sequence. However, standard 
recurrent networks have the issue of vanishing gradients, 
which makes learning long data sequences challenging. In 
the following, we discuss several popular variants of the 
recurrent network that minimizes the issues and perform 
well in many real-world application domains.

– Long short-term memory (LSTM) This is a popular form 
of RNN architecture that uses special units to deal with 
the vanishing gradient problem, which was introduced by 
Hochreiter et al. [42]. A memory cell in an LSTM unit 
can store data for long periods and the flow of informa-
tion into and out of the cell is managed by three gates. 
For instance, the ‘Forget Gate’ determines what informa-
tion from the previous state cell will be memorized and 
what information will be removed that is no longer use-
ful, while the ‘Input Gate’ determines which information 
should enter the cell state and the ‘Output Gate’ deter-
mines and controls the outputs. As it solves the issues 
of training a recurrent network, the LSTM network is 
considered one of the most successful RNN.

– Bidirectional RNN/LSTM Bidirectional RNNs connect 
two hidden layers that run in opposite directions to a 
single output, allowing them to accept data from both 
the past and future. Bidirectional RNNs, unlike tradi-
tional recurrent networks, are trained to predict both 
positive and negative time directions at the same time. 
A Bidirectional LSTM, often known as a BiLSTM, is 
an extension of the standard LSTM that can increase 
model performance on sequence classification issues 
[113]. It is a sequence processing model comprising of 
two LSTMs: one takes the input forward and the other 
takes it backward. Bidirectional LSTM in particular is a 
popular choice in natural language processing tasks.

– Gated recurrent units (GRUs) A Gated Recurrent Unit 
(GRU) is another popular variant of the recurrent net-
work that uses gating methods to control and manage 
information flow between cells in the neural network, 
introduced by Cho et al. [16]. The GRU is like an LSTM, 
however, has fewer parameters, as it has a reset gate and 

Fig. 7  An example of a convo-
lutional neural network (CNN 
or ConvNet) including multiple 
convolution and pooling layers
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an update gate but lacks the output gate, as shown in 
Fig. 8. Thus, the key difference between a GRU and an 
LSTM is that a GRU has two gates (reset and update 
gates) whereas an LSTM has three gates (namely input, 
output and forget gates). The GRU’s structure enables 
it to capture dependencies from large sequences of data 
in an adaptive manner, without discarding information 
from earlier parts of the sequence. Thus GRU is a slightly 
more streamlined variant that often offers comparable 
performance and is significantly faster to compute [18]. 
Although GRUs have been shown to exhibit better per-
formance on certain smaller and less frequent datasets 
[18, 34], both variants of RNN have proven their effec-
tiveness while producing the outcome.

Overall, the basic property of a recurrent network is that 
it has at least one feedback connection, which enables acti-
vations to loop. This allows the networks to do temporal 
processing and sequence learning, such as sequence recogni-
tion or reproduction, temporal association or prediction, etc. 
Following are some popular application areas of recurrent 
networks such as prediction problems, machine translation, 
natural language processing, text summarization, speech 
recognition, and many more.

Deep Networks for Generative or Unsupervised 
Learning

This category of DL techniques is typically used to charac-
terize the high-order correlation properties or features for 
pattern analysis or synthesis, as well as the joint statistical 
distributions of the visible data and their associated classes 
[21]. The key idea of generative deep architectures is that 
during the learning process, precise supervisory information 

such as target class labels is not of concern. As a result, 
the methods under this category are essentially applied for 
unsupervised learning as the methods are typically used for 
feature learning or data generating and representation [20, 
21]. Thus generative modeling can be used as preprocessing 
for the supervised learning tasks as well, which ensures the 
discriminative model accuracy. Commonly used deep neural 
network techniques for unsupervised or generative learning 
are Generative Adversarial Network (GAN), Autoencoder 
(AE), Restricted Boltzmann Machine (RBM), Self-Organ-
izing Map (SOM), and Deep Belief Network (DBN) along 
with their variants.

Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN), designed by Ian 
Goodfellow [32], is a type of neural network architecture 
for generative modeling to create new plausible samples on 
demand. It involves automatically discovering and learning 
regularities or patterns in input data so that the model may 
be used to generate or output new examples from the origi-
nal dataset. As shown in Fig. 9, GANs are composed of two 
neural networks, a generator G that creates new data having 
properties similar to the original data, and a discriminator 
D that predicts the likelihood of a subsequent sample being 
drawn from actual data rather than data provided by the 
generator. Thus in GAN modeling, both the generator and 
discriminator are trained to compete with each other. While 
the generator tries to fool and confuse the discriminator by 
creating more realistic data, the discriminator tries to distin-
guish the genuine data from the fake data generated by G.

Generally, GAN network deployment is designed for 
unsupervised learning tasks, but it has also proven to be a 
better solution for semi-supervised and reinforcement learn-
ing as well depending on the task [3]. GANs are also used 
in state-of-the-art transfer learning research to enforce the 

Fig. 8  Basic structure of a gated recurrent unit (GRU) cell consisting 
of reset and update gates

Fig. 9  Schematic structure of a standard generative adversarial net-
work (GAN)
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alignment of the latent feature space [66]. Inverse models, 
such as Bidirectional GAN (BiGAN) [25] can also learn a 
mapping from data to the latent space, similar to how the 
standard GAN model learns a mapping from a latent space 
to the data distribution. The potential application areas of 
GAN networks are healthcare, image analysis, data augmen-
tation, video generation, voice generation, pandemics, traffic 
control, cybersecurity, and many more, which are increas-
ing rapidly. Overall, GANs have established themselves as 
a comprehensive domain of independent data expansion and 
as a solution to problems requiring a generative solution.

Auto‑Encoder (AE) and Its Variants

An auto-encoder (AE) [31] is a popular unsupervised learn-
ing technique in which neural networks are used to learn 
representations. Typically, auto-encoders are used to work 
with high-dimensional data, and dimensionality reduction 
explains how a set of data is represented. Encoder, code, and 
decoder are the three parts of an autoencoder. The encoder 
compresses the input and generates the code, which the 
decoder subsequently uses to reconstruct the input. The 
AEs have recently been used to learn generative data mod-
els [69]. The auto-encoder is widely used in many unsuper-
vised learning tasks, e.g., dimensionality reduction, feature 
extraction, efficient coding, generative modeling, denoising, 
anomaly or outlier detection, etc. [31, 132]. Principal com-
ponent analysis (PCA) [99], which is also used to reduce the 
dimensionality of huge data sets, is essentially similar to a 
single-layered AE with a linear activation function. Regular-
ized autoencoders such as sparse, denoising, and contractive 
are useful for learning representations for later classification 
tasks [119], while variational autoencoders can be used as 
generative models [56], discussed below.

– Sparse Autoencoder (SAE) A sparse autoencoder [73] 
has a sparsity penalty on the coding layer as a part of its 
training requirement. SAEs may have more hidden units 
than inputs, but only a small number of hidden units are 
permitted to be active at the same time, resulting in a 
sparse model. Figure 10 shows a schematic structure of 
a sparse autoencoder with several active units in the hid-
den layer. This model is thus obliged to respond to the 
unique statistical features of the training data following 
its constraints.

– Denoising Autoencoder (DAE) A denoising autoencoder 
is a variant on the basic autoencoder that attempts to 
improve representation (to extract useful features) by 
altering the reconstruction criterion, and thus reduces the 
risk of learning the identity function [31, 119]. In other 
words, it receives a corrupted data point as input and is 
trained to recover the original undistorted input as its out-
put through minimizing the average reconstruction error 

over the training data, i.e, cleaning the corrupted input, or 
denoising. Thus, in the context of computing, DAEs can 
be considered as very powerful filters that can be utilized 
for automatic pre-processing. A denoising autoencoder, 
for example, could be used to automatically pre-process 
an image, thereby boosting its quality for recognition 
accuracy.

– Contractive Autoencoder (CAE) The idea behind a con-
tractive autoencoder, proposed by Rifai et al. [90], is to 
make the autoencoders robust of small changes in the 
training dataset. In its objective function, a CAE includes 
an explicit regularizer that forces the model to learn an 
encoding that is robust to small changes in input values. 
As a result, the learned representation’s sensitivity to the 
training input is reduced. While DAEs encourage the 
robustness of reconstruction as discussed above, CAEs 
encourage the robustness of representation.

– Variational Autoencoder (VAE) A variational autoen-
coder [55] has a fundamentally unique property that 
distinguishes it from the classical autoencoder dis-
cussed above, which makes this so effective for gen-
erative modeling. VAEs, unlike the traditional autoen-

Fig. 10  Schematic structure of a sparse autoencoder (SAE) with sev-
eral active units (filled circle) in the hidden layer
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coders which map the input onto a latent vector, map 
the input data into the parameters of a probability dis-
tribution, such as the mean and variance of a Gaussian 
distribution. A VAE assumes that the source data has 
an underlying probability distribution and then tries to 
discover the distribution’s parameters. Although this 
approach was initially designed for unsupervised learn-
ing, its use has been demonstrated in other domains 
such as semi-supervised learning [128] and supervised 
learning [51].

Although, the earlier concept of AE was typically for 
dimensionality reduction or feature learning mentioned 
above, recently, AEs have been brought to the forefront of 
generative modeling, even the generative adversarial net-
work is one of the popular methods in the area. The AEs 
have been effectively employed in a variety of domains, 
including healthcare, computer vision, speech recogni-
tion, cybersecurity, natural language processing, and many 
more. Overall, we can conclude that auto-encoder and its 
variants can play a significant role as unsupervised feature 
learning with neural network architecture.

Kohonen Map or Self‑Organizing Map (SOM)

A Self-Organizing Map (SOM) or Kohonen Map [59] is 
another form of unsupervised learning technique for creat-
ing a low-dimensional (usually two-dimensional) represen-
tation of a higher-dimensional data set while maintaining 
the topological structure of the data. SOM is also known 
as a neural network-based dimensionality reduction algo-
rithm that is commonly used for clustering [118]. A SOM 
adapts to the topological form of a dataset by repeatedly 
moving its neurons closer to the data points, allowing us 
to visualize enormous datasets and find probable clusters. 
The first layer of a SOM is the input layer, and the second 
layer is the output layer or feature map. Unlike other neu-
ral networks that use error-correction learning, such as 
backpropagation with gradient descent [36], SOMs employ 
competitive learning, which uses a neighborhood function 
to retain the input space’s topological features. SOM is 
widely utilized in a variety of applications, including pat-
tern identification, health or medical diagnosis, anomaly 
detection, and virus or worm attack detection [60, 87]. The 
primary benefit of employing a SOM is that this can make 
high-dimensional data easier to visualize and analyze to 
understand the patterns. The reduction of dimensionality 
and grid clustering makes it easy to observe similarities 
in the data. As a result, SOMs can play a vital role in 
developing a data-driven effective model for a particular 
problem domain, depending on the data characteristics.

Restricted Boltzmann Machine (RBM)

A Restricted Boltzmann Machine (RBM) [75] is also a gen-
erative stochastic neural network capable of learning a prob-
ability distribution across its inputs. Boltzmann machines 
typically consist of visible and hidden nodes and each node 
is connected to every other node, which helps us understand 
irregularities by learning how the system works in normal 
circumstances. RBMs are a subset of Boltzmann machines 
that have a limit on the number of connections between the 
visible and hidden layers [77]. This restriction permits train-
ing algorithms like the gradient-based contrastive divergence 
algorithm to be more efficient than those for Boltzmann 
machines in general [41]. RBMs have found applications 
in dimensionality reduction, classification, regression, col-
laborative filtering, feature learning, topic modeling, and 
many others. In the area of deep learning modeling, they 
can be trained either supervised or unsupervised, depend-
ing on the task. Overall, the RBMs can recognize patterns 
in data automatically and develop probabilistic or stochastic 
models, which are utilized for feature selection or extraction, 
as well as forming a deep belief network.

Deep Belief Network (DBN)

A Deep Belief Network (DBN) [40] is a multi-layer genera-
tive graphical model of stacking several individual unsu-
pervised networks such as AEs or RBMs, that use each 
network’s hidden layer as the input for the next layer, i.e, 
connected sequentially. Thus, we can divide a DBN into 
(i) AE-DBN which is known as stacked AE, and (ii) RBM-
DBN that is known as stacked RBM, where AE-DBN is 
composed of autoencoders and RBM-DBN is composed 
of restricted Boltzmann machines, discussed earlier. The 
ultimate goal is to develop a faster-unsupervised training 
technique for each sub-network that depends on contrastive 
divergence [41]. DBN can capture a hierarchical representa-
tion of input data based on its deep structure. The primary 
idea behind DBN is to train unsupervised feed-forward 
neural networks with unlabeled data before fine-tuning 
the network with labeled input. One of the most important 
advantages of DBN, as opposed to typical shallow learning 
networks, is that it permits the detection of deep patterns, 
which allows for reasoning abilities and the capture of the 
deep difference between normal and erroneous data [89]. A 
continuous DBN is simply an extension of a standard DBN 
that allows a continuous range of decimals instead of binary 
data. Overall, the DBN model can play a key role in a wide 
range of high-dimensional data applications due to its strong 
feature extraction and classification capabilities and become 
one of the significant topics in the field of neural networks.

In summary, the generative learning techniques discussed 
above typically allow us to generate a new representation 
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of data through exploratory analysis. As a result, these 
deep generative networks can be utilized as preprocessing 
for supervised or discriminative learning tasks, as well as 
ensuring model accuracy, where unsupervised representation 
learning can allow for improved classifier generalization.

Deep Networks for Hybrid Learning and Other 
Approaches

In addition to the above-discussed deep learning categories, 
hybrid deep networks and several other approaches such as 
deep transfer learning (DTL) and deep reinforcement learn-
ing (DRL) are popular, which are discussed in the following.

Hybrid Deep Neural Networks

Generative models are adaptable, with the capacity to learn 
from both labeled and unlabeled data. Discriminative mod-
els, on the other hand, are unable to learn from unlabeled 
data yet outperform their generative counterparts in super-
vised tasks. A framework for training both deep generative 
and discriminative models simultaneously can enjoy the 
benefits of both models, which motivates hybrid networks.

Hybrid deep learning models are typically composed of 
multiple (two or more) deep basic learning models, where 
the basic model is a discriminative or generative deep learn-
ing model discussed earlier. Based on the integration of dif-
ferent basic generative or discriminative models, the below 
three categories of hybrid deep learning models might be 
useful for solving real-world problems. These are as follows:

– Hybrid Model_1 : An integration of different generative 
or discriminative models to extract more meaningful 
and robust features. Examples could be CNN+LSTM, 
AE+GAN, and so on.

– Hybrid Model_2 : An integration of generative model 
followed by a discriminative model. Examples could be 
DBN+MLP, GAN+CNN, AE+CNN, and so on.

– Hybrid Model_3 : An integration of generative or discrim-
inative model followed by a non-deep learning classifier. 
Examples could be AE+SVM, CNN+SVM, and so on.

Thus, in a broad sense, we can conclude that hybrid mod-
els can be either classification-focused or non-classification 
depending on the target use. However, most of the hybrid 
learning-related studies in the area of deep learning are 
classification-focused or supervised learning tasks, sum-
marized in Table 1. The unsupervised generative models 
with meaningful representations are employed to enhance 
the discriminative models. The generative models with use-
ful representation can provide more informative and low-
dimensional features for discrimination, and they can also 

enable to enhance the training data quality and quantity, 
providing additional information for classification.

Deep Transfer Learning (DTL)

Transfer Learning is a technique for effectively using previ-
ously learned model knowledge to solve a new task with 
minimum training or fine-tuning. In comparison to typical 
machine learning techniques [97], DL takes a large amount 
of training data. As a result, the need for a substantial vol-
ume of labeled data is a significant barrier to address some 
essential domain-specific tasks, particularly, in the medical 
sector, where creating large-scale, high-quality annotated 
medical or health datasets is both difficult and costly. Fur-
thermore, the standard DL model demands a lot of computa-
tional resources, such as a GPU-enabled server, even though 
researchers are working hard to improve it. As a result, Deep 
Transfer Learning (DTL), a DL-based transfer learning 
method, might be helpful to address this issue. Figure 11 
shows a general structure of the transfer learning process, 
where knowledge from the pre-trained model is transferred 
into a new DL model. It’s especially popular in deep learning 
right now since it allows to train deep neural networks with 
very little data [126].

Transfer learning is a two-stage approach for training a 
DL model that consists of a pre-training step and a fine-
tuning step in which the model is trained on the target task. 
Since deep neural networks have gained popularity in a vari-
ety of fields, a large number of DTL methods have been pre-
sented, making it crucial to categorize and summarize them. 
Based on the techniques used in the literature, DTL can be 
classified into four categories [117]. These are (i) instances-
based deep transfer learning that utilizes instances in source 
domain by appropriate weight, (ii) mapping-based deep 
transfer learning that maps instances from two domains into 
a new data space with better similarity, (iii) network-based 
deep transfer learning that reuses the partial of network pre-
trained in the source domain, and (iv) adversarial based deep 
transfer learning that uses adversarial technology to find 
transferable features that both suitable for two domains. Due 
to its high effectiveness and practicality, adversarial-based 
deep transfer learning has exploded in popularity in recent 
years. Transfer learning can also be classified into inductive, 
transductive, and unsupervised transfer learning depending 
on the circumstances between the source and target domains 
and activities [81]. While most current research focuses on 
supervised learning, how deep neural networks can transfer 
knowledge in unsupervised or semi-supervised learning may 
gain further interest in the future. DTL techniques are useful 
in a variety of fields including natural language processing, 
sentiment classification, visual recognition, speech recogni-
tion, spam filtering, and relevant others.
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Table 1  A summary of deep learning tasks and methods in several popular real-world applications areas

Application areas Tasks Methods References

Healthcare and Medical applications Regular health factors analysis CNN-based Ismail et al. [48]
Identifying malicious behaviors RNN-based Xue et al. [129]
Coronary heart disease risk prediction Autoencoder based Amarbayasgalan et al. [6]
Cancer classification Transfer learning based Sevakula et al. [110]
Diagnosis of COVID-19 CNN and BiLSTM based Aslan et al. [10]
Detection of COVID-19 CNN-LSTM based Islam et al. [47]

Natural Language Processing Text summarization Auto-encoder based Yousefi et al. [130]
Sentiment analysis CNN-LSTM based Wang et al. [120]
Sentiment analysis CNN and Bi-LSTM based Minaee et al. [78]
Aspect-level sentiment classification Attention-based LSTM Wang et al. [124]

Speech recognition Distant speech recognition Attention-based LSTM Zhang et al. [135]
Speech emotion classification Transfer learning based Latif et al. [63]
Emotion recognition from speech CNN and LSTM based Satt et al. [109]

Cybersecurity Zero-day malware detection Autoencoders and GAN based Kim et al. [54]
Security incidents and fraud analysis SOM-based Lopez et al. [70]
Android malware detection Autoencoder and CNN based Wang et al. [122]
intrusion detection classification DBN-based Wei et al. [125]
DoS attack detection RBM-based Imamverdiyev et al. [46]
Suspicious flow detection Hybrid deep-learning-based Garg et al. [29]
Network intrusion detection AE and SVM based Al et al. [4]

IoT and Smart cities Smart energy management CNN and Attention mechanism Abdel et al. [2]
Particulate matter forecasting CNN-LSTM based Huang et al. [43]
Smart parking system CNN-LSTM based Piccialli et al. [85]
Disaster management DNN-based Aqib et al. [8]
Air quality prediction LSTM-RNN based Kok et al. [61]
Cybersecurity in smart cities RBM, DBN, RNN, CNN, GAN Chen et al. [15]

Smart Agriculture A smart agriculture IoT system RL-based Bu et al. [11]
Plant disease detection CNN-based Ale et al. [5]
Automated soil quality evaluation DNN-based Sumathi et al. [115]

Business and Financial Services Predicting customers’ purchase behavior DNN based Chaudhuri [14]
Stock trend prediction CNN and LSTM based anuradha et al. [7]
Financial loan default prediction CNN-based Deng et al. [23]
Power consumption forecasting LSTM-based Shao et al. [112]

Virtual Assistant and Chatbot Services An intelligent chatbot Bi-RNN and Attention model Dhyani et al. [24]
Virtual listener agent GRU and LSTM based Huang et al. [44]
Smart blind assistant CNN-based Rahman et al. [88]

Object Detection and Recognition Object detection in X-ray images CNN-based Gu et al. [35]
Object detection for disaster response CNN-based Pi et al. [84]
Medicine recognition system CNN-based Chang et al. [12]
Face recognition in IoT-cloud environ-

ment
CNN-based Masud et al. [76]

Food recognition system CNN-based Liu et al. [68]
Affect recognition system DBN-based Kawde et al. [53]
Facial expression analysis CNN and LSTM based Li et al. [67]

Recommendation and Intelligent system Hybrid recommender system DNN-based Kiran et al. [57]
Visual recommendation and search CNN-based Shankar et al. [111]
Recommendation system CNN and Bi-LSTM based Rosa et al. [91]
Intelligent system for impaired patients RL-based Naeem et al. [79]
Intelligent transportation system CNN-based Wang et al. [123]
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Deep Reinforcement Learning (DRL)

Reinforcement learning takes a different approach to solv-
ing the sequential decision-making problem than other 
approaches we have discussed so far. The concepts of an 
environment and an agent are often introduced first in 
reinforcement learning. The agent can perform a series of 
actions in the environment, each of which has an impact on 
the environment’s state and can result in possible rewards 
(feedback) - “positive” for good sequences of actions that 
result in a “good” state, and “negative” for bad sequences 
of actions that result in a “bad” state. The purpose of rein-
forcement learning is to learn good action sequences through 
interaction with the environment, typically referred to as a 
policy.

Deep reinforcement learning (DRL or deep RL) [9] inte-
grates neural networks with a reinforcement learning archi-
tecture to allow the agents to learn the appropriate actions 
in a virtual environment, as shown in Fig. 12. In the area 
of reinforcement learning, model-based RL is based on 
learning a transition model that enables for modeling of the 
environment without interacting with it directly, whereas 
model-free RL methods learn directly from interactions with 
the environment. Q-learning is a popular model-free RL 
technique for determining the best action-selection policy 
for any (finite) Markov Decision Process (MDP) [86, 97]. 
MDP is a mathematical framework for modeling decisions 
based on state, action, and rewards [86]. In addition, Deep 
Q-Networks, Double DQN, Bi-directional Learning, Monte 
Carlo Control, etc. are used in the area [50, 97]. In DRL 
methods it incorporates DL models, e.g. Deep Neural Net-
works (DNN), based on MDP principle [71], as policy and/
or value function approximators. CNN for example can be 
used as a component of RL agents to learn directly from 

raw, high-dimensional visual inputs. In the real world, DRL-
based solutions can be used in several application areas 
including robotics, video games, natural language process-
ing, computer vision, and relevant others.

Deep Learning Application Summary

During the past few years, deep learning has been success-
fully applied to numerous problems in many application 
areas. These include natural language processing, senti-
ment analysis, cybersecurity, business, virtual assistants, 
visual recognition, healthcare, robotics, and many more. In 
Fig. 13, we have summarized several potential real-world 
application areas of deep learning. Various deep learning 
techniques according to our presented taxonomy in Fig. 6 
that includes discriminative learning, generative learning, 
as well as hybrid models, discussed earlier, are employed in 
these application areas. In Table 1, we have also summarized 

Fig. 11  A general structure of 
transfer learning process, where 
knowledge from pre-trained 
model is transferred into new 
DL model

Fig. 12  Schematic structure of deep reinforcement learning (DRL) 
highlighting a deep neural network
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various deep learning tasks and techniques that are used to 
solve the relevant tasks in several real-world applications 
areas. Overall, from Fig. 13 and Table 1, we can conclude 
that the future prospects of deep learning modeling in real-
world application areas are huge and there are lots of scopes 
to work. In the next section, we also summarize the research 
issues in deep learning modeling and point out the potential 
aspects for future generation DL modeling.

Research Directions and Future Aspects

While existing methods have established a solid foundation 
for deep learning systems and research, this section outlines 
the below ten potential future research directions based on 
our study.

– Automation in Data Annotation According to the existing 
literature, discussed in Section 3, most of the deep learn-
ing models are trained through publicly available datasets 
that are annotated. However, to build a system for a new 
problem domain or recent data-driven system, raw data 
from relevant sources are needed to collect. Thus, data 

annotation, e.g., categorization, tagging, or labeling of a 
large amount of raw data, is important for building dis-
criminative deep learning models or supervised tasks, 
which is challenging. A technique with the capability of 
automatic and dynamic data annotation, rather than man-
ual annotation or hiring annotators, particularly, for large 
datasets, could be more effective for supervised learning 
as well as minimizing human effort. Therefore, a more 
in-depth investigation of data collection and annotation 
methods, or designing an unsupervised learning-based 
solution could be one of the primary research directions 
in the area of deep learning modeling.

– Data Preparation for Ensuring Data Quality As dis-
cussed earlier throughout the paper, the deep learning 
algorithms highly impact data quality, and availability 
for training, and consequently on the resultant model for 
a particular problem domain. Thus, deep learning models 
may become worthless or yield decreased accuracy if 
the data is bad, such as data sparsity, non-representative, 
poor-quality, ambiguous values, noise, data imbalance, 
irrelevant features, data inconsistency, insufficient quan-
tity, and so on for training. Consequently, such issues 
in data can lead to poor processing and inaccurate find-

Fig. 13  Several potential real-world application areas of deep learning
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ings, which is a major problem while discovering insights 
from data. Thus deep learning models also need to adapt 
to such rising issues in data, to capture approximated 
information from observations. Therefore, effective data 
pre-processing techniques are needed to design accord-
ing to the nature of the data problem and characteristics, 
to handling such emerging challenges, which could be 
another research direction in the area.

– Black-box Perception and Proper DL/ML Algorithm 
Selection In general, it’s difficult to explain how a deep 
learning result is obtained or how they get the ultimate 
decisions for a particular model. Although DL models 
achieve significant performance while learning from 
large datasets, as discussed in Section 2, this “black-box” 
perception of DL modeling typically represents weak 
statistical interpretability that could be a major issue in 
the area. On the other hand, ML algorithms, particularly, 
rule-based machine learning techniques provide explicit 
logic rules (IF-THEN) for making decisions that are eas-
ier to interpret, update or delete according to the target 
applications [97, 100, 105]. If the wrong learning algo-
rithm is chosen, unanticipated results may occur, result-
ing in a loss of effort as well as the model’s efficacy and 
accuracy. Thus by taking into account the performance, 
complexity, model accuracy, and applicability, selecting 
an appropriate model for the target application is chal-
lenging, and in-depth analysis is needed for better under-
standing and decision making.

– Deep Networks for Supervised or Discriminative Learn-
ing: According to our designed taxonomy of deep learn-
ing techniques, as shown in Fig. 6, discriminative archi-
tectures mainly include MLP, CNN, and RNN, along 
with their variants that are applied widely in various 
application domains. However, designing new techniques 
or their variants of such discriminative techniques by tak-
ing into account model optimization, accuracy, and appli-
cability, according to the target real-world application 
and the nature of the data, could be a novel contribution, 
which can also be considered as a major future aspect in 
the area of supervised or discriminative learning.

– Deep Networks for Unsupervised or Generative Learn-
ing As discussed in Section 3, unsupervised learning or 
generative deep learning modeling is one of the major 
tasks in the area, as it allows us to characterize the 
high-order correlation properties or features in data, or 
generating a new representation of data through explor-
atory analysis. Moreover, unlike supervised learning 
[97], it does not require labeled data due to its capa-
bility to derive insights directly from the data as well 
as data-driven decision making. Consequently, it thus 
can be used as preprocessing for supervised learning 
or discriminative modeling as well as semi-supervised 
learning tasks, which ensure learning accuracy and 

model efficiency. According to our designed taxonomy 
of deep learning techniques, as shown in Fig. 6, genera-
tive techniques mainly include GAN, AE, SOM, RBM, 
DBN, and their variants. Thus, designing new tech-
niques or their variants for an effective data modeling 
or representation according to the target real-world 
application could be a novel contribution, which can 
also be considered as a major future aspect in the area 
of unsupervised or generative learning.

– Hybrid/Ensemble Modeling and Uncertainty Handling 
According to our designed taxonomy of DL techniques, 
as shown in Fig 6, this is considered as another major 
category in deep learning tasks. As hybrid modeling 
enjoys the benefits of both generative and discrimina-
tive learning, an effective hybridization can outperform 
others in terms of performance as well as uncertainty 
handling in high-risk applications. In Section 3, we 
have summarized various types of hybridization, e.g., 
AE+CNN/SVM. Since a group of neural networks is 
trained with distinct parameters or with separate sub-
sampling training datasets, hybridization or ensem-
bles of such techniques, i.e., DL with DL/ML, can 
play a key role in the area. Thus designing effective 
blended discriminative and generative models accord-
ingly rather than naive method, could be an important 
research opportunity to solve various real-world issues 
including semi-supervised learning tasks and model 
uncertainty.

– Dynamism in Selecting Threshold/ Hyper-parameters 
Values, and Network Structures with Computational Effi-
ciency In general, the relationship among performance, 
model complexity, and computational requirements is a 
key issue in deep learning modeling and applications. A 
combination of algorithmic advancements with improved 
accuracy as well as maintaining computational efficiency, 
i.e., achieving the maximum throughput while consum-
ing the least amount of resources, without significant 
information loss, can lead to a breakthrough in the effec-
tiveness of deep learning modeling in future real-world 
applications. The concept of incremental approaches or 
recency-based learning [100] might be effective in sev-
eral cases depending on the nature of target applications. 
Moreover, assuming the network structures with a static 
number of nodes and layers, hyper-parameters values or 
threshold settings, or selecting them by the trial-and-
error process may not be effective in many cases, as it 
can be changed due to the changes in data. Thus, a data-
driven approach to select them dynamically could be 
more effective while building a deep learning model in 
terms of both performance and real-world applicability. 
Such type of data-driven automation can lead to future 
generation deep learning modeling with additional intel-
ligence, which could be a significant future aspect in the 
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area as well as an important research direction to contrib-
ute.

– Lightweight Deep Learning Modeling for Next-Gener-
ation Smart Devices and Applications: In recent years, 
the Internet of Things (IoT) consisting of billions of 
intelligent and communicating things and mobile com-
munications technologies have become popular to detect 
and gather human and environmental information (e.g. 
geo-information, weather data, bio-data, human behav-
iors, and so on) for a variety of intelligent services and 
applications. Every day, these ubiquitous smart things or 
devices generate large amounts of data, requiring rapid 
data processing on a variety of smart mobile devices 
[72]. Deep learning technologies can be incorporate to 
discover underlying properties and to effectively han-
dle such large amounts of sensor data for a variety of 
IoT applications including health monitoring and dis-
ease analysis, smart cities, traffic flow prediction, and 
monitoring, smart transportation, manufacture inspec-
tion, fault assessment, smart industry or Industry 4.0, 
and many more. Although deep learning techniques 
discussed in Section 3 are considered as powerful tools 
for processing big data, lightweight modeling is impor-
tant for resource-constrained devices, due to their high 
computational cost and considerable memory overhead. 
Thus several techniques such as optimization, simplifi-
cation, compression, pruning, generalization, important 
feature extraction, etc. might be helpful in several cases. 
Therefore, constructing the lightweight deep learning 
techniques based on a baseline network architecture to 
adapt the DL model for next-generation mobile, IoT, or 
resource-constrained devices and applications, could be 
considered as a significant future aspect in the area.

– Incorporating Domain Knowledge into Deep Learn-
ing Modeling Domain knowledge, as opposed to general 
knowledge or domain-independent knowledge, is knowl-
edge of a specific, specialized topic or field. For instance, 
in terms of natural language processing, the properties 
of the English language typically differ from other lan-
guages like Bengali, Arabic, French, etc. Thus integrating 
domain-based constraints into the deep learning model 
could produce better results for such particular purpose. 
For instance, a task-specific feature extractor considering 
domain knowledge in smart manufacturing for fault diag-
nosis can resolve the issues in traditional deep-learning-
based methods [28]. Similarly, domain knowledge in medi-
cal image analysis [58], financial sentiment analysis [49], 
cybersecurity analytics [94, 103] as well as conceptual data 
model in which semantic information, (i.e., meaningful for 
a system, rather than merely correlational) [45, 121, 131] is 
included, can play a vital role in the area. Transfer learning 
could be an effective way to get started on a new challenge 
with domain knowledge. Moreover, contextual information 

such as spatial, temporal, social, environmental contexts 
[92, 104, 108] can also play an important role to incorpo-
rate context-aware computing with domain knowledge for 
smart decision making as well as building adaptive and 
intelligent context-aware systems. Therefore understanding 
domain knowledge and effectively incorporating them into 
the deep learning model could be another research direc-
tion.

– Designing General Deep Learning Framework for Target 
Application Domains One promising research direction 
for deep learning-based solutions is to develop a general 
framework that can handle data diversity, dimensions, stim-
ulation types, etc. The general framework would require 
two key capabilities: the attention mechanism that focuses 
on the most valuable parts of input signals, and the abil-
ity to capture latent feature that enables the framework to 
capture the distinctive and informative features. Attention 
models have been a popular research topic because of their 
intuition, versatility, and interpretability, and employed in 
various application areas like computer vision, natural lan-
guage processing, text or image classification, sentiment 
analysis, recommender systems, user profiling, etc [13, 
80]. Attention mechanism can be implemented based on 
learning algorithms such as reinforcement learning that is 
capable of finding the most useful part through a policy 
search [133, 134]. Similarly, CNN can be integrated with 
suitable attention mechanisms to form a general classifi-
cation framework, where CNN can be used as a feature 
learning tool for capturing features in various levels and 
ranges. Thus, designing a general deep learning framework 
considering attention as well as a latent feature for target 
application domains could be another area to contribute.

To summarize, deep learning is a fairly open topic to which 
academics can contribute by developing new methods or 
improving existing methods to handle the above-mentioned 
concerns and tackle real-world problems in a variety of 
application areas. This can also help the researchers con-
duct a thorough analysis of the application’s hidden and 
unexpected challenges to produce more reliable and realis-
tic outcomes. Overall, we can conclude that addressing the 
above-mentioned issues and contributing to proposing effec-
tive and efficient techniques could lead to “Future Genera-
tion DL” modeling as well as more intelligent and automated 
applications.

Concluding Remarks

In this article, we have presented a structured and compre-
hensive view of deep learning technology, which is consid-
ered a core part of artificial intelligence as well as data sci-
ence. It starts with a history of artificial neural networks and 
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moves to recent deep learning techniques and breakthroughs 
in different applications. Then, the key algorithms in this 
area, as well as deep neural network modeling in various 
dimensions are explored. For this, we have also presented a 
taxonomy considering the variations of deep learning tasks 
and how they are used for different purposes. In our compre-
hensive study, we have taken into account not only the deep 
networks for supervised or discriminative learning but also 
the deep networks for unsupervised or generative learning, 
and hybrid learning that can be used to solve a variety of 
real-world issues according to the nature of problems.

Deep learning, unlike traditional machine learning and 
data mining algorithms, can produce extremely high-level 
data representations from enormous amounts of raw data. As 
a result, it has provided an excellent solution to a variety of 
real-world problems. A successful deep learning technique 
must possess the relevant data-driven modeling depending 
on the characteristics of raw data. The sophisticated learn-
ing algorithms then need to be trained through the collected 
data and knowledge related to the target application before 
the system can assist with intelligent decision-making. Deep 
learning has shown to be useful in a wide range of applica-
tions and research areas such as healthcare, sentiment analy-
sis, visual recognition, business intelligence, cybersecurity, 
and many more that are summarized in the paper.

Finally, we have summarized and discussed the chal-
lenges faced and the potential research directions, and future 
aspects in the area. Although deep learning is considered 
a black-box solution for many applications due to its poor 
reasoning and interpretability, addressing the challenges or 
future aspects that are identified could lead to future genera-
tion deep learning modeling and smarter systems. This can 
also help the researchers for in-depth analysis to produce 
more reliable and realistic outcomes. Overall, we believe 
that our study on neural networks and deep learning-based 
advanced analytics points in a promising path and can be uti-
lized as a reference guide for future research and implemen-
tations in relevant application domains by both academic 
and industry professionals.

Declarations 

Conflict of interest The author declares no conflict of interest.

References

 1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin 
Ma, Ghemawat S, Irving G, Isard M, et al. Tensorflow: a system 
for large-scale machine learning. In: 12th {USENIX} Symposium 
on operating systems design and implementation ({OSDI} 16), 
2016; p. 265–283.

 2. Abdel-Basset M, Hawash H, Chakrabortty RK, Ryan M. 
Energy-net: a deep learning approach for smart energy man-
agement in iot-based smart cities. IEEE Internet of Things J. 
2021.

 3. Aggarwal A, Mittal M, Battineni G. Generative adversarial net-
work: an overview of theory and applications. Int J Inf Manag 
Data Insights. 2021; p. 100004.

 4. Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K. Deep learning 
approach combining sparse autoencoder with svm for network 
intrusion detection. IEEE Access. 2018;6:52843–56.

 5. Ale L, Sheta A, Li L, Wang Y, Zhang N. Deep learning based 
plant disease detection for smart agriculture. In: 2019 IEEE 
Globecom Workshops (GC Wkshps), 2019; p. 1–6. IEEE.

 6. Amarbayasgalan T, Lee JY, Kim KR, Ryu KH. Deep autoencoder 
based neural networks for coronary heart disease risk prediction. 
In: Heterogeneous data management, polystores, and analytics 
for healthcare. Springer; 2019. p. 237–48.

 7. Anuradha J, et al. Big data based stock trend prediction using 
deep cnn with reinforcement-lstm model. Int J Syst Assur Eng 
Manag. 2021; p. 1–11.

 8. Aqib M, Mehmood R, Albeshri A, Alzahrani A. Disaster man-
agement in smart cities by forecasting traffic plan using deep 
learning and gpus. In: International Conference on smart cities, 
infrastructure, technologies and applications. Springer; 2017. p. 
139–54.

 9. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. Deep 
reinforcement learning: a brief survey. IEEE Signal Process Mag. 
2017;34(6):26–38.

 10. Aslan MF, Unlersen MF, Sabanci K, Durdu A. Cnn-based trans-
fer learning-bilstm network: a novel approach for covid-19 infec-
tion detection. Appl Soft Comput. 2021;98:106912.

 11. Bu F, Wang X. A smart agriculture iot system based on deep rein-
forcement learning. Futur Gener Comput Syst. 2019;99:500–7.

 12. Chang W-J, Chen L-B, Hsu C-H, Lin C-P, Yang T-C. A deep 
learning-based intelligent medicine recognition system for 
chronic patients. IEEE Access. 2019;7:44441–58.

 13. Chaudhari S, Mithal V, Polatkan Gu, Ramanath R. An attentive 
survey of attention models. arXiv preprint arXiv:1904.02874, 
2019.

 14. Chaudhuri N, Gupta G, Vamsi V, Bose I. On the platform but will 
they buy? predicting customers’ purchase behavior using deep 
learning. Decis Support Syst. 2021; p. 113622.

 15. Chen D, Wawrzynski P, Lv Z. Cyber security in smart cities: 
a review of deep learning-based applications and case studies. 
Sustain Cities Soc. 2020; p. 102655.

 16. Cho K, Van MB, Gulcehre C, Bahdanau D, Bougares F, Schwenk 
H, Bengio Y. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint 
arXiv:1406.1078, 2014.

 17. Chollet F. Xception: Deep learning with depthwise separable 
convolutions. In: Proceedings of the IEEE Conference on com-
puter vision and pattern recognition, 2017; p. 1251–258.

 18. Chung J, Gulcehre C, Cho KH, Bengio Y. Empirical evaluation 
of gated recurrent neural networks on sequence modeling. arXiv 
preprint arXiv:1412.3555, 2014.

 19. Coelho IM, Coelho VN, da Eduardo J, Luz S, Ochi LS, Guima-
rães FG, Rios E. A gpu deep learning metaheuristic based model 
for time series forecasting. Appl Energy. 2017;201:412–8.

 20. Da'u A, Salim N. Recommendation system based on deep learn-
ing methods: a systematic review and new directions. Artif Intel 
Rev. 2020;53(4):2709–48.

 21. Deng L. A tutorial survey of architectures, algorithms, and appli-
cations for deep learning. APSIPA Trans Signal Inf Process. 
2014; p. 3.

 22. Deng L, Dong Yu. Deep learning: methods and applications. 
Found Trends Signal Process. 2014;7(3–4):197–387.



 SN Computer Science (2021) 2:420420 Page 18 of 20

SN Computer Science

 23. Deng S, Li R, Jin Y, He H. Cnn-based feature cross and clas-
sifier for loan default prediction. In: 2020 International Con-
ference on image, video processing and artificial intelligence, 
volume 11584, page 115841K. International Society for Optics 
and Photonics, 2020.

 24. Dhyani M, Kumar R. An intelligent chatbot using deep learning 
with bidirectional rnn and attention model. Mater Today Proc. 
2021;34:817–24.

 25. Donahue J, Krähenbühl P, Darrell T. Adversarial feature learn-
ing. arXiv preprint arXiv:1605.09782, 2016.

 26. Du K-L, Swamy MNS. Neural networks and statistical learn-
ing. Berlin: Springer Science & Business Media; 2013.

 27. Dupond S. A thorough review on the current advance of neural 
network structures. Annu Rev Control. 2019;14:200–30.

 28. Feng J, Yao Y, Lu S, Liu Y. Domain knowledge-based deep-
broad learning framework for fault diagnosis. IEEE Trans Ind 
Electron. 2020;68(4):3454–64.

 29. Garg S, Kaur K, Kumar N, Rodrigues JJPC. Hybrid deep-
learning-based anomaly detection scheme for suspicious flow 
detection in sdn: a social multimedia perspective. IEEE Trans 
Multimed. 2019;21(3):566–78.

 30. Géron A. Hands-on machine learning with Scikit-Learn, Keras. 
In: and TensorFlow: concepts, tools, and techniques to build 
intelligent systems. O’Reilly Media; 2019.

 31. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, 
vol. 1. Cambridge: MIT Press; 2016.

 32. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley 
D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. 
In: Advances in neural information processing systems. 2014; 
p. 2672–680.

 33. Google trends. 2021. https:// trends. google. com/ trends/.
 34. Gruber N, Jockisch A. Are gru cells more specific and lstm 

cells more sensitive in motive classification of text? Front Artif 
Intell. 2020;3:40.

 35. Gu B, Ge R, Chen Y, Luo L, Coatrieux G. Automatic and 
robust object detection in x-ray baggage inspection using deep 
convolutional neural networks. IEEE Trans Ind Electron. 2020.

 36. Han J, Pei J, Kamber M. Data mining: concepts and techniques. 
Amsterdam: Elsevier; 2011.

 37. Haykin S. Neural networks and learning machines, 3/E. Lon-
don: Pearson Education; 2010.

 38. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep 
convolutional networks for visual recognition. IEEE Trans Pat-
tern Anal Mach Intell. 2015;37(9):1904–16.

 39. He K, Zhang X, Ren S, Sun J. Deep residual learning for image 
recognition. In: Proceedings of the IEEE Conference on com-
puter vision and pattern recognition, 2016; p. 770–78.

 40. Hinton GE. Deep bel ief  networks.  Scholarpedia. 
2009;4(5):5947.

 41. Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm 
for deep belief nets. Neural Comput. 2006;18(7):1527–54.

 42. Hochreiter S, Schmidhuber J. Long short-term memory. Neural 
Comput. 1997;9(8):1735–80.

 43. Huang C-J, Kuo P-H. A deep cnn-lstm model for particu-
late matter (pm2. 5) forecasting in smart cities. Sensors. 
2018;18(7):2220.

 44. Huang H-H, Fukuda M, Nishida T. Toward rnn based micro 
non-verbal behavior generation for virtual listener agents. In: 
International Conference on human-computer interaction, 
2019; p. 53–63. Springer.

 45. Hulsebos M, Hu K, Bakker M, Zgraggen E, Satyanarayan A, 
Kraska T, Demiralp Ça, Hidalgo C. Sherlock: a deep learning 
approach to semantic data type detection. In: Proceedings of 
the 25th ACM SIGKDD International Conference on knowl-
edge discovery & data mining, 2019; p. 1500–508.

 46. Imamverdiyev Y, Abdullayeva F. Deep learning method for 
denial of service attack detection based on restricted Boltzmann 
machine. Big Data. 2018;6(2):159–69.

 47. Islam MZ, Islam MM, Asraf A. A combined deep cnn-lstm net-
work for the detection of novel coronavirus (covid-19) using 
x-ray images. Inf Med Unlock. 2020;20:100412.

 48. Ismail WN, Hassan MM, Alsalamah HA, Fortino G. Cnn-based 
health model for regular health factors analysis in internet-of-
medical things environment. IEEE. Access. 2020;8:52541–9.

 49. Jangid H, Singhal S, Shah RR, Zimmermann R. Aspect-based 
financial sentiment analysis using deep learning. In: Compan-
ion Proceedings of the The Web Conference 2018, 2018; p. 
1961–966.

 50. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: 
a survey. J Artif Intell Res. 1996;4:237–85.

 51. Kameoka H, Li L, Inoue S, Makino S. Supervised determined 
source separation with multichannel variational autoencoder. 
Neural Comput. 2019;31(9):1891–914.

 52. Karhunen J, Raiko T, Cho KH. Unsupervised deep learning: a 
short review. In: Advances in independent component analysis 
and learning machines. 2015; p. 125–42.

 53. Kawde P, Verma GK. Deep belief network based affect recogni-
tion from physiological signals. In: 2017 4th IEEE Uttar Pradesh 
Section International Conference on electrical, computer and 
electronics (UPCON), 2017; p. 587–92. IEEE.

 54. Kim J-Y, Seok-Jun B, Cho S-B. Zero-day malware detection 
using transferred generative adversarial networks based on deep 
autoencoders. Inf Sci. 2018;460:83–102.

 55. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv 
preprint arXiv:1312.6114, 2013.

 56. Kingma DP, Welling M. An introduction to variational autoen-
coders. arXiv preprint arXiv:1906.02691, 2019.

 57. Kiran PKR, Bhasker B. Dnnrec: a novel deep learning based 
hybrid recommender system. Expert Syst Appl. 2020.

 58. Kloenne M, Niehaus S, Lampe L, Merola A, Reinelt J, Roeder 
I, Scherf N. Domain-specific cues improve robustness of 
deep learning-based segmentation of ct volumes. Sci Rep. 
2020;10(1):1–9.

 59. Kohonen T. The self-organizing map. Proc IEEE. 
1990;78(9):1464–80.

 60. Kohonen T. Essentials of the self-organizing map. Neural Netw. 
2013;37:52–65.

 61. Kök İ, Şimşek MU, Özdemir S. A deep learning model for air 
quality prediction in smart cities. In: 2017 IEEE International 
Conference on Big Data (Big Data), 2017; p. 1983–990. IEEE.

 62. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification 
with deep convolutional neural networks. In: Advances in neural 
information processing systems. 2012; p. 1097–105.

 63. Latif S, Rana R, Younis S, Qadir J, Epps J. Transfer learning for 
improving speech emotion classification accuracy. arXiv preprint 
arXiv:1801.06353, 2018.

 64. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521(7553):436–44.

 65. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based 
learning applied to document recognition. Proc IEEE. 
1998;86(11):2278–324.

 66. Li B, François-Lavet V, Doan T, Pineau J. Domain adversarial 
reinforcement learning. arXiv preprint arXiv:2102.07097, 2021.

 67. Li T-HS, Kuo P-H, Tsai T-N, Luan P-C. Cnn and lstm based 
facial expression analysis model for a humanoid robot. IEEE 
Access. 2019;7:93998–4011.

 68. Liu C, Cao Y, Luo Y, Chen G, Vokkarane V, Yunsheng M, Chen 
S, Hou P. A new deep learning-based food recognition system for 
dietary assessment on an edge computing service infrastructure. 
IEEE Trans Serv Comput. 2017;11(2):249–61.

https://trends.google.com/trends/


SN Computer Science (2021) 2:420 Page 19 of 20 420

SN Computer Science

 69. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of 
deep neural network architectures and their applications. Neuro-
computing. 2017;234:11–26.

 70. López AU, Mateo F, Navío-Marco J, Martínez-Martínez JM, 
Gómez-Sanchís J, Vila-Francés J, Serrano-López AJ. Analysis 
of computer user behavior, security incidents and fraud using 
self-organizing maps. Comput Secur. 2019;83:38–51.

 71. Lopez-Martin M, Carro B, Sanchez-Esguevillas A. Application 
of deep reinforcement learning to intrusion detection for super-
vised problems. Expert Syst Appl. 2020;141:112963.

 72. Ma X, Yao T, Menglan H, Dong Y, Liu W, Wang F, Liu J. A sur-
vey on deep learning empowered iot applications. IEEE Access. 
2019;7:181721–32.

 73. Makhzani A, Frey B. K-sparse autoencoders. arXiv preprint 
arXiv:1312.5663, 2013.

 74. Mandic D, Chambers J. Recurrent neural networks for prediction: 
learning algorithms, architectures and stability. Hoboken: Wiley; 
2001.

 75. Marlin B, Swersky K, Chen B, Freitas N. Inductive principles 
for restricted boltzmann machine learning. In: Proceedings of the 
Thirteenth International Conference on artificial intelligence and 
statistics, p. 509–16. JMLR Workshop and Conference Proceed-
ings, 2010.

 76. Masud M, Muhammad G, Alhumyani H, Alshamrani SS, 
Cheikhrouhou O, Ibrahim S, Hossain MS. Deep learning-based 
intelligent face recognition in iot-cloud environment. Comput 
Commun. 2020;152:215–22.

 77. Memisevic R, Hinton GE. Learning to represent spatial transfor-
mations with factored higher-order boltzmann machines. Neural 
Comput. 2010;22(6):1473–92.

 78. Minaee S, Azimi E, Abdolrashidi AA. Deep-sentiment: senti-
ment analysis using ensemble of cnn and bi-lstm models. arXiv 
preprint arXiv:1904.04206, 2019.

 79. Naeem M, Paragliola G, Coronato A. A reinforcement learn-
ing and deep learning based intelligent system for the support 
of impaired patients in home treatment. Expert Syst Appl. 
2021;168:114285.

 80. Niu Z, Zhong G, Hui Yu. A review on the attention mechanism 
of deep learning. Neurocomputing. 2021;452:48–62.

 81. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans 
Knowl Data Eng. 2009;22(10):1345–59.

 82. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, 
Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: An 
imperative style, high-performance deep learning library. Adv 
Neural Inf Process Syst. 2019;32:8026–37.

 83. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 
Scikit-learn: machine learning in python. J Mach Learn Res. 
2011;12:2825–30.

 84. Pi Y, Nath ND, Behzadan AH. Convolutional neural networks 
for object detection in aerial imagery for disaster response and 
recovery. Adv Eng Inf. 2020;43:101009.

 85. Piccialli F, Giampaolo F, Prezioso E, Crisci D, Cuomo S. Pre-
dictive analytics for smart parking: A deep learning approach 
in forecasting of iot data. ACM Trans Internet Technol (TOIT). 
2021;21(3):1–21.

 86. Puterman ML. Markov decision processes: discrete stochastic 
dynamic programming. Hoboken: Wiley; 2014.

 87. Qu X, Lin Y, Kai G, Linru M, Meng S, Mingxing K, Mu L, 
editors. A survey on the development of self-organizing maps 
for unsupervised intrusion detection. Mob Netw Appl. 2019; p. 
1–22.

 88. Rahman MW, Tashfia SS, Islam R, Hasan MM, Sultan SI, Mia 
S, Rahman MM. The architectural design of smart blind assistant 

using iot with deep learning paradigm. Internet of Things. 
2021;13:100344.

 89. Ren J, Green M, Huang X. From traditional to deep learning: 
fault diagnosis for autonomous vehicles. In: Learning control. 
Elsevier. 2021; p. 205–19.

 90. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive 
auto-encoders: Explicit invariance during feature extraction. 
In: Icml, 2011.

 91. Rosa RL, Schwartz GM, Ruggiero WV, Rodríguez DZ. A 
knowledge-based recommendation system that includes 
sentiment analysis and deep learning. IEEE Trans Ind Inf. 
2018;15(4):2124–35.

 92. Sarker IH. Context-aware rule learning from smartphone 
data: survey, challenges and future directions. J Big Data. 
2019;6(1):1–25.

 93. Sarker IH. A machine learning based robust prediction model for 
real-life mobile phone data. Internet of Things. 2019;5:180–93.

 94. Sarker IH. Cyberlearning: effectiveness analysis of machine 
learning security modeling to detect cyber-anomalies and multi-
attacks. Internet of Things. 2021;14:100393.

 95. Sarker IH. Data science and analytics: an overview from data-
driven smart computing, decision-making and applications per-
spective. SN Comput Sci. 2021.

 96. Sarker IH. Deep cybersecurity: a comprehensive overview from 
neural network and deep learning perspective. SN Computer. 
Science. 2021;2(3):1–16.

 97. Sarker IH. Machine learning: Algorithms, real-world applications 
and research directions. SN Computer. Science. 2021;2(3):1–21.

 98. Sarker IH, Abushark YB, Alsolami F, Khan AI. Intrudtree: a 
machine learning based cyber security intrusion detection model. 
Symmetry. 2020;12(5):754.

 99. Sarker IH, Abushark YB, Khan AI. Contextpca: Predicting con-
text-aware smartphone apps usage based on machine learning 
techniques. Symmetry. 2020;12(4):499.

 100. Sarker IH, Colman A, Han J. Recencyminer: mining recency-
based personalized behavior from contextual smartphone data. J 
Big Data. 2019;6(1):1–21.

 101. Sarker IH, Colman A, Han J, Khan AI, Abushark YB, Salah 
K. Behavdt: a behavioral decision tree learning to build user-
centric context-aware predictive model. Mob Netw Appl. 
2020;25(3):1151–61.

 102. Sarker IH, Colman A, Kabir MA, Han J. Individualized time-
series segmentation for mining mobile phone user behavior. 
Comput J. 2018;61(3):349–68.

 103. Sarker IH, Furhad MH, Nowrozy R. Ai-driven cybersecurity: an 
overview, security intelligence modeling and research directions. 
SN Computer. Science. 2021;2(3):1–18.

 104. Sarker IH, Hoque MM, Uddin MK. Mobile data science and 
intelligent apps: concepts, ai-based modeling and research direc-
tions. Mob Netw Appl. 2021;26(1):285–303.

 105. Sarker IH, Kayes ASM. Abc-ruleminer: User behavioral rule-
based machine learning method for context-aware intelligent 
services. J Netw Comput Appl. 2020;168:102762.

 106. Sarker IH, Kayes ASM, Badsha S, Alqahtani H, Watters P, Ng A. 
Cybersecurity data science: an overview from machine learning 
perspective. J Big data. 2020;7(1):1–29.

 107. Sarker IH, Kayes ASM, Watters P. Effectiveness analy-
sis of machine learning classification models for predicting 
personalized context-aware smartphone usage. J Big Data. 
2019;6(1):1–28.

 108. Sarker IH, Salah K. Appspred: predicting context-aware smart-
phone apps using random forest learning. Internet of Things. 
2019;8:100106.



 SN Computer Science (2021) 2:420420 Page 20 of 20

SN Computer Science

 109. Satt A, Rozenberg S, Hoory R. Efficient emotion recognition 
from speech using deep learning on spectrograms. In: Interspeec, 
2017; p. 1089–1093.

 110. Sevakula RK, Singh V, Verma NK, Kumar C, Cui Y. Trans-
fer learning for molecular cancer classification using deep 
neural networks. IEEE/ACM Trans Comput Biol Bioinf. 
2018;16(6):2089–100.

 111. Sujay Narumanchi H, Ananya Pramod Kompalli Shankar A, 
Devashish CK. Deep learning based large scale visual rec-
ommendation and search for e-commerce. arXiv preprint 
arXiv:1703.02344, 2017.

 112. Shao X, Kim CS. Multi-step short-term power consumption fore-
casting using multi-channel lstm with time location considering 
customer behavior. IEEE Access. 2020;8:125263–73.

 113. Siami-Namini S, Tavakoli N, Namin AS. The performance of 
lstm and bilstm in forecasting time series. In: 2019 IEEE Inter-
national Conference on Big Data (Big Data), 2019; p. 3285–292. 
IEEE.

 114. Ślusarczyk B. Industry 4.0: are we ready? Pol J Manag Stud. 
2018; p. 17

 115. Sumathi P, Subramanian R, Karthikeyan VV, Karthik S. Soil 
monitoring and evaluation system using edl-asqe: enhanced deep 
learning model for ioi smart agriculture network. Int J Commun 
Syst. 2021; p. e4859.

 116. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan 
D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. 
In: Proceedings of the IEEE Conference on computer vision and 
pattern recognition, 2015; p. 1–9.

 117. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on 
deep transfer learning. In: International Conference on artificial 
neural networks, 2018; p. 270–279. Springer.

 118. Vesanto J, Alhoniemi E. Clustering of the self-organizing map. 
IEEE Trans Neural Netw. 2000;11(3):586–600.

 119. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, 
Bottou L. Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion. 
J Mach Learn Res. 2010;11(12).

 120. Wang J, Liang-Chih Yu, Robert Lai K, Zhang X. Tree-structured 
regional cnn-lstm model for dimensional sentiment analysis. 
IEEE/ACM Trans Audio Speech Lang Process. 2019;28:581–91.

 121. Wang S, Wan J, Li D, Liu C. Knowledge reasoning with seman-
tic data for real-time data processing in smart factory. Sensors. 
2018;18(2):471.

 122. Wang W, Zhao M, Wang J. Effective android malware detec-
tion with a hybrid model based on deep autoencoder and con-
volutional neural network. J Ambient Intell Humaniz Comput. 
2019;10(8):3035–43.

 123. Wang X, Liu J, Qiu T, Chaoxu M, Chen C, Zhou P. A real-
time collision prediction mechanism with deep learning for 
intelligent transportation system. IEEE Trans Veh Technol. 
2020;69(9):9497–508.

 124. Wang Y, Huang M, Zhu X, Zhao L. Attention-based lstm for 
aspect-level sentiment classification. In: Proceedings of the 2016 
Conference on empirical methods in natural language processing, 
2016; p. 606–615.

 125. Wei P, Li Y, Zhang Z, Tao H, Li Z, Liu D. An optimization 
method for intrusion detection classification model based on deep 
belief network. IEEE Access. 2019;7:87593–605.

 126. Weiss K, Khoshgoftaar TM, Wang DD. A survey of transfer 
learning. J Big data. 2016;3(1):9.

 127. Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H, 
Wang C. Machine learning and deep learning methods for cyber-
security. Ieee access. 2018;6:35365–81.

 128. Xu W, Sun H, Deng C, Tan Y. Variational autoencoder for semi-
supervised text classification. In: Thirty-First AAAI Conference 
on artificial intelligence, 2017.

 129. Xue Q, Chuah MC. New attacks on rnn based healthcare learning 
system and their detections. Smart Health. 2018;9:144–57.

 130. Yousefi-Azar M, Hamey L. Text summarization using unsuper-
vised deep learning. Expert Syst Appl. 2017;68:93–105.

 131. Yuan X, Shi J, Gu L. A review of deep learning methods for 
semantic segmentation of remote sensing imagery. Expert Syst 
Appl. 2020;p. 114417.

 132. Zhang G, Liu Y, Jin X. A survey of autoencoder-based recom-
mender systems. Front Comput Sci. 2020;14(2):430–50.

 133. Zhang X, Yao L, Huang C, Wang S, Tan M, Long Gu, Wang C. 
Multi-modality sensor data classification with selective attention. 
arXiv preprint arXiv:1804.05493, 2018.

 134. Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y. A 
survey on deep learning based brain computer interface: recent 
advances and new frontiers. arXiv preprint arXiv:1905.04149, 
2019; p. 66.

 135. Zhang Y, Zhang P, Yan Y. Attention-based lstm with multi-task 
learning for distant speech recognition. In: Interspeech, 2017; p. 
3857–861.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions
	Abstract
	Introduction
	Why Deep Learning in Today’s Research and Applications?
	The Position of Deep Learning in AI
	Understanding Various Forms of Data
	DL Properties and Dependencies

	Deep Learning Techniques and Applications
	Deep Networks for Supervised or Discriminative Learning
	Multi-layer Perceptron (MLP)
	Convolutional Neural Network (CNN or ConvNet)
	Recurrent Neural Network (RNN) and its Variants

	Deep Networks for Generative or Unsupervised Learning
	Generative Adversarial Network (GAN)
	Auto-Encoder (AE) and Its Variants
	Kohonen Map or Self-Organizing Map (SOM)
	Restricted Boltzmann Machine (RBM)
	Deep Belief Network (DBN)

	Deep Networks for Hybrid Learning and Other Approaches
	Hybrid Deep Neural Networks
	Deep Transfer Learning (DTL)
	Deep Reinforcement Learning (DRL)

	Deep Learning Application Summary

	Research Directions and Future Aspects
	Concluding Remarks
	References




