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Stem cells with the capability to self-renew and differentiate into
multiple cell derivatives provide platforms for drug screening and
promising treatment options for a wide variety of neural diseases.
Nevertheless, clinical applications of stem cells have been hindered
partly owing to a lack of standardized techniques to characterize
cell molecular profiles noninvasively and comprehensively. Here,
we demonstrate that a label-free and noninvasive single-cell Raman
microspectroscopy (SCRM) platform was able to identify neural cell
lineages derived from clinically relevant human induced pluripotent
stem cells (hiPSCs). By analyzing the intrinsic biochemical profiles of
single cells at a large scale (8,774 Raman spectra in total), iPSCs and
iPSC-derived neural cells can be distinguished by their intrinsic phe-
notypic Raman spectra. We identified a Raman biomarker from gly-
cogen to distinguish iPSCs from their neural derivatives, and the
result was verified by the conventional glycogen detection assays.
Further analysis with a machine learning classification model, utiliz-
ing t-distributed stochastic neighbor embedding (t-SNE)-enhanced
ensemble stacking, clearly categorized hiPSCs in different develop-
mental stages with 97.5% accuracy. The present study demon-
strates the capability of the SCRM-based platform to monitor cell
development using high content screening with a noninvasive and
label-free approach. This platform as well as our identified bio-
marker could be extensible to other cell types and can potentially
have a high impact on neural stem cell therapy.
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Neurological disorders are critical causes of mortality, which
are reported as the second-leading cause group of deaths,

resulting in ∼9.4 million or 16.8% of global deaths (1). In ad-
dition to death, these diseases lead to considerable economic
costs due to both the treatment cost and productivity loss arising
from these diseases. Due to their proven efficacy on cell re-
placement, neuroprotective effects, activation of endogenous
neurogenesis and angiogenesis, and modulation of inflammation
and immune responses, neural stem cell (NSC)-based therapies
have emerged as a promising strategy for treating neurological
diseases which currently lack treatment options (2, 3). NSCs can
be derived from human induced pluripotent stem cells (hiPSCs),
which have become one of the most appealing cell sources for
autologous cell therapy (4, 5). Although considerable research has
shown potential clinical applications of NSC therapies for neu-
rological diseases, such as stroke (6), Parkinson’s disease (7), and
multiple sclerosis (8), a few major challenges still remain, specif-
ically, identification, isolation, and enrichment of an appropriate
and homogeneous population of NSCs prior to transplantation,
namely, quality control, which is crucial for clinical practice. A
failure to deliver an appropriate cell phenotype could lead to tu-
morigenesis, failure of host integration, and other pitfalls (9, 10).
To identify cell populations, conventional methods, such as

immunochemical staining, fluorescence-activated cell sorting,
qRT-PCR, and Western blotting, have been widely used to de-
fine and monitor cell differentiation status (11). However, most

of these methods require destructive fixation or lysis steps and
are generally time consuming (12), limiting their applications
toward cell monitoring for clinical transplantation. Other draw-
backs include a prerequisite of known selective biomarkers or
probes. Depending on the choice of the targets, this might lead
to a biased result. In addition, qRT-PCR and Western blotting
are unable to capture differences at the single-cell level. Aver-
aging bulk analysis could result in loss of information on
cell-to-cell heterogeneity, particularly during the process of cell
differentiation (13).
Raman microspectroscopy is a label-free technique which has

been applied to study phenotypes of single cells (13–15). It is a
nondestructive vibrational spectroscopy based on inelastic scat-
tering of light, reflecting the intrinsic biochemical profiles of cells
(16). After Raman detection, individual cells are still intact and
viable for subsequent use (17, 18). Previously, single-cell Raman
microspectroscopy (SCRM) has been used to discriminate neural
progeny in different developmental stages. Raman spectroscopy
analysis using principal component analysis (PCA) and linear
discriminant analysis were able to discriminate mouse NSCs from
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glial cells based on a higher concentration of nucleic acids in un-
differentiated NSCs (19). Rat hippocampal NSCs have also been
examined by Raman spectroscopy to investigate maturation of the
developing neural system, where four developmental stages were
identified based on PCA (20). Neuronal subtypes, such as excitatory
and inhibitory neurons, were also distinguishable through examina-
tion of Raman spectroscopy with partial least squares regression-
discriminant analysis (12). These previous reports have demon-
strated the utility of Raman analysis for phenotypic discrimination
in neural cells.

In this study, we developed an in vitro hiPSC-derived neural
system and analyzed its biochemical changes using SCRM during
the process of differentiation at the single-cell level. In total, we
obtained 8,774 single-cell Raman spectra (SCRS) of three dif-
ferent hiPSC lines and their neural derivatives at different de-
velopmental stages. By exploiting a generic data analysis pipeline
including assessment of intrinsic biomolecules and multivariate
visualization via t-distributed stochastic neighbor embedding
(t-SNE), we were able to visualize and distinguish different de-
velopmental stages of clinically relevant human neural systems.

Fig. 1. Generation and characterization of hiPSC-derived neural systems. (A) Experimental scheme for neuronal differentiation of hiPSCs (NBM, Neural Basal
Medium). (B) Immunostaining was performed with different protein markers in hiPSCs (Left), hiPSC-derived NSCs (Middle), and hiPSC-derived neurons (Right).
(Scale bars, 100 μm.) (C−F) Gene expression in hiPSCs and hiPSC-derived neural lineages were analyzed by qRT-PCR, including sets of (C) pluripotency genes
(NANOG, POU5F1, and SOX2), (D) neuroepithelial genes (FOXG1, PAX6, and SOX1), (E) neural genes (GFAP, NES and OLIG2), and (F) neuronal genes (SLC17A7,
SLC6A11, TH, MAP2, and SYP). Circles represent line 010S-1; squares represent line 014S-10; triangles represent line SB-AD3-1. One-way ANOVA with post hoc
Tukey’s test was used. All experiments were performed with three biological replicates comprising three technical replicates (n = 9). The results represent
means ± SEM; * represents P < 0.05, ** represents P ≤ 0.01, *** represents P ≤ 0.001, n.s. = not significant.
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The SCRS analysis revealed a Raman biomarker associated with
glycogen to distinguish hiPSCs from NSCs. This result was verified
by conventional glycogen detection assays and histology images.
We also developed a machine learning classification model based
on t-SNE to enhance the efficiency of data analysis and classifi-
cation for SCRM-based platforms. This SCRM-based classifica-
tion model has the potential to be extended to other cell types and
can be valuable for automated cell phenotype identification and
classification for cell sorting, quality control, and quality assurance
of clinical-grade cells.

Results
Generation and Characterization of Neural Differentiation in hiPSC
Cultures. The hiPSC cultures (line SB-AD3-1, line 010S-1, and
line 014S-10) were differentiated into neuroectoderm by dual-SMAD
signaling inhibition when cells reached confluency (Fig. 1A) (21).
These neural precursors were identified by their self-proliferation
and neural rosette structures, characteristic features during hiPSC
neural development (22). While expanding hiPSC-derived differ-
entiated neural cultures, the concerns of nonneural cell contami-
nation remained. Previously, polysialic acid-neural cell adhesion
molecule (PSA-NCAM) was employed as a marker for purifying
neuronal-restricted precursors from neural rosettes (23, 24). By
isolating PSA-NCAM−positive NSCs, a highly homogeneous, ex-
pandable population of NSCs could be achieved without con-
tamination of undifferentiated iPSCs as well as other undefined
derivatives. To monitor neural differentiation in our system, we
chose three developmental stages, 1) undifferentiated iPSCs, 2)
induced PSA-NCAM−positive NSCs isolated via magnetic-activated
cell sorting (MACS), and 3) neurons differentiated from the purified
PSA-NCAM−positive NSCs. Cell lineage progression was charac-
terized at different developmental stages using the traditional qRT-
PCR method.
Accurate normalization of gene expression data is required to

identify differentially expressed genes. Hence, six candidate genes,
ACTB, B2M, GAPDH, HPRT1, TBP, and YWHAZ, have been
selected, as they have been used as normalizers in previous studies
involving stem cells and neuronal differentiation (25–28). Using
the geNorm option in qBase, the reference target stability (M
value) for these genes was calculated after omitting the least stable
gene (SI Appendix, Fig. S1A). The lowest M value indicated the
most stable candidate reference gene. Subsequently, the pairwise
variation (V value) was calculated to determine the optimal
number of reference genes for normalization in this experiment (SI
Appendix, Fig. S1B). A V value below 0.15 indicates no additional
genes need to be included for normalization factor calculations. As
such, the optimal normalization factor in this experiment was cal-
culated as the geometric mean of the most stably expressed ref-
erence genes TBP and YWHAZ.
Upon neural differentiation, the cells lost expression of the

pluripotency markers, including NANOG and POU5F1 (coding
for OCT4), with significantly lower expression levels in the NSCs
and derived neurons compared to the iPSCs (Fig. 1C). Although
SOX2 is known to be expressed in pluripotent stem cells, it is also
expressed in the nervous system at early developmental stages (29).
We confirmed that cells were differentiated into neural lineage
cells, by identifying the significant increases in neuroepithelial stem
cell-related gene expression levels, including FOXG1, PAX6, and
SOX1 compared to the iPSCs (Fig. 1D). The high expression levels
of these genes in the differentiated neuron samples indicated that
there were undifferentiated NSCs present in the cell culture. We
next examined their neural gene expression levels, probing an
astrocytic marker, glial fibrillary acidic protein (GFAP), a neural
marker, NES, and an oligodendrocyte marker, OLIG2 (Fig. 1E).
While there were trends of higher expression levels of these genes in
the NSCs and neurons compared to the iPSCs, only the GFAP
expression level in the NSCs was significantly higher than that in the
iPSCs. It has been reported that a group of radial-glia-like NSCs

express GFAP and NES, generating daughter cells characterized by
various proliferation capacities, specific morphology, and their in-
creased neuronal differentiation capacity (30). As astrocytes appear
at later developmental stages when neurogenesis decreases in favor
of gliogenesis (31), it is likely that the observed higher expression
level of GFAP originated from the NSCs instead of differentiated
astrocytes. Finally, we examined a number of diverse neuronal
markers for specific neuron subtypes and mature neurons (Fig. 1F).
While there were no significant expression differences in neuronal
subtype-specific markers (SLC17A7, SLC6A11, and TH), the NSCs
and neurons exhibited significantly higher expression levels of ma-
ture neuron markers, including MAP2 and SYP, compared to the
iPSCs. These data confirmed neuronal differentiation in our system.
While there were significant differences in the iPSCs and their
neural progenies in general, the NSCs and neurons were more likely
to be a mixed coculture of various percentages of NSCs and neu-
rons at different developmental stages.
Since the messenger RNA transcript and protein levels within

a sample might not correlate well, we further characterized and
validated cell identity at different stages using immunostaining.
The hiPSCs expressed an abundance of pluripotency markers,
such as NANOG, OCT4, and SOX2 (Fig. 1B and SI Appendix,
Fig. S2A) (21). The transcription factor PAX6 and Nestin, an
intermediate filament protein, are key regulators of NSC self-
renewal and neurogenesis (30). For characterization, cells express-
ing PAX6 and/or Nestin were regarded as hiPSC-derived NSCs.
These cells were maintained at the proliferative stage to keep their
differentiation potential and could be further differentiated in
response to specific stimuli. After neuronal differentiation for 2
wk, the populations of hiPSC-derived neurons were examined with
immunostaining of βIII-tubulin (TUBB3), which is a structural
protein expressed in neurons contributing to microtubule stability
in cell bodies and axons (32). While NSCs could be identified by
Nestin expression, differentiated neurons were recognized by ex-
pression of TUBB3 (Fig. 1B).
In addition to the gene and protein expression of differenti-

ation and maturation markers, whether a neuron is able to de-
velop synaptic activities and further generate action potentials is
critical during neural development (33). Therefore, we employed
Ca2+ imaging to examine the functionality of the generated
neurons (SI Appendix, Fig. S2 B and C). After 7 wk of differen-
tiation, the differentiated neurons could generate and transmit
calcium transients by spontaneous activity, indicating that the
derived neurons in our system were functionally active and able to
simulate their in vivo compartments. Similar to the qRT-PCR
results, the immunostained NSC and neuron populations exhibi-
ted a developmental transition with the presence of both self-
renewing, multipotent NSCs and differentiated neurons. Assess-
ment of Ca2+ imaging demonstrated the hiPSC-derived neurons
acquired physiological function over cell maturation, and our cell
model system was capable of recapitulating representative char-
acteristics at different stages of neural development.

Raman Profiling of hiPSC-Derived Neural Cells. After the generation
and characterization of cells at different developmental stages,
we examined the potential of using the label-free SCRM tech-
nique to study single-cell phenotypes using their intrinsic bio-
chemical profiles. Three undifferentiated hiPSC lines and their
neural derivatives were examined, and their SCRS were pooled
and analyzed (Table 1 and Fig. 2A).
The fingerprint region (320 cm−1 to 1,800 cm−1) of an SCRS

captures most of the vibrational modes of biomolecules within a
single cell, representing the unique observable characteristics or
Raman phenotype of a cell. The fingerprint region contains 443
Raman bands (based on a spectral resolution of ∼3.3 cm−1 in a
spectral range of 320 cm−1 to 1,800 cm−1) in current acquisition
settings. Due to the high dimensionality of SCRS, multivariate
dimension-reducing techniques, such as PCA and t-SNE algorithms,
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were used to highlight the intrinsic differences and to visualize the
data in a lower dimension. We have compared the visualization
results of SCRS by t-SNE and PCA and found a much better dif-
ferentiation of t-SNE for depicting differences among hiPSC-
derived neural lineages (SI Appendix, Fig. S3). The t-SNE plots
combing three different cell lines with three technical replicates in
each cell line (8,774 spectra in total) are shown in Fig. 2B. The
t-SNE plots permitted us to distinguish, to some extent, between the
datasets of the hiPSCs and the hiPSC-derived neural progenies.
This shows the ability of SCRS and t-SNE to discriminate cell
populations at different developmental stages, particularly hiPSCs
and their neural derivatives.
While clusters of hiPSCs are relatively tight and homogeneous

(especially in cell lines 010S-1 and 014S-10), high cellular het-
erogeneity was observed in the hiPSC-derived neural progenies
at the single-cell level. A certain degree of overlap between the
clusters of hiPSC-derived NSCs and neurons in the t-SNE score
plots correlated well with the results previously acquired by qRT-
PCR and immunostaining, confirming that the cell populations
in these samples are likely to be a mixed coculture of NSCs and
neurons, where cells matured at different speeds. This suggests a
great level of single-cell heterogeneity during stem cell differentiation,

highlighting the importance of single-cell−level analysis for charac-
terization and quality control.

Identification of Potential Biomarkers for Cell Quality Control. Dur-
ing the progression of neural differentiation, several changes in
Raman bands for major cellular components and metabolites
were observed (Fig. 3A). Similar to the t-SNE visualization, the
most prominent differences were found between the SCRS of
hiPSCs and their neural lineages, including Raman bands at 400 and
417 cm−1 (saccharides), 480 cm−1 (glycogen), 746 cm−1, 1,125 cm−1,
and 1,580 cm−1 (cytochrome c), 720 and 780 cm−1 (DNA/RNA),
1,003 and 1,030 cm−1 (phenylalanine), 1,295 and 1,440 cm−1 (lipids),
and 1,660 cm−1 (proteins) (Table 2).
In order to confirm the variations of biomolecules at different

cell stages, we further performed semiquantification of biomol-
ecules by integrating relevant Raman band areas (Fig. 3 B–G).
Some of the SCRS features revealed that structural differences
between neuron chromatin and iPSC/NSC chromatin were evi-
dent at this level of analysis. The intensity of 780 cm−1 nucleic
acid band, resulted from the ring-breathing modes of uracil (U),
cytosine (C), thymine (T), and the O−P−O stretching, was sig-
nificantly lower in neurons compared to iPSCs (P ≤ 0.0001) and
NSCs (P ≤ 0.0001) (Fig. 3B). While there was no significant dif-
ference between iPSCs and NSCs in 780 cm−1 intensity, NSCs
exhibited a significantly lower intensity at 726 cm−1 compared to
iPSCs. These bands likely reflect changes in the content of nucleic
acids and can relate to changes in the cell cycle. The bands at
780 cm−1 and 1,440 cm−1 showed an increased standard deviation
in the differentiated neuronal progenies. As the production of
DNA/RNA and lipids is associated with cell cycle regulations, this
could imply an increased heterogeneity of cell phenotypes across
neural development, where the differentiated neuronal cells do
not proliferate and the cell cycle is arrested.
The Raman band intensity of polysaccharides/glycogen at

480 cm−1 was significantly decreased following the progression of

Table 1. Numbers of SCRS obtained for the three
developmental stages during neuronal differentiation in hiPSCs

Cell lines iPSC NSC Neuron Total no. of SCRS

010S-1 1,026 979 1,128 3,133
014S-10 1,117 697 1,513 3,327
SB-AD3-1 1,173 666 753 2,592
Total no. of SCRS 3,316 2,342 3,116 8,774

Note: All experiments were performed with three biological replicates
comprised of three technical replicates; n = 8774 spectra in total.

Fig. 2. Identification of Raman signatures in the hiPSC-derived neural system from three different hiPSC lines. (A) Averaged SCRS (n = 8,774) acquired from
the hiPSCs (n = 3,316), NSCs (n = 2,342), and neurons (n = 3,116) from different hiPSC lines. (B) Multivariate visualization of the SCRS via t-SNE depicts the
differences between hiPSCs and their neural lineages. (The red, purple, and blue colors represent iPSCs, NSCs, and neurons, respectively.)
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Fig. 3. Identification of potential biomarkers using SCRS. (A) Average Raman spectra acquired from the hiPSCs (red), NSCs (purple), and neurons (blue) from
three different hiPSC lines annotated with Raman bands identified in cell lineage commitment. (B−G) Comparisons of the Raman band intensity between
different cell populations were quantified for (B) nucleic acids (726 and 780 cm−1), (C) glycogen (480 cm−1), (D) cytochrome C (746 and 1,125 cm−1), (E)
saccharides (400 cm−1), (F) proteins (1,003 and 1,030 cm−1), and (G) total lipids (1,440 cm−1). One-way ANOVA with post hoc Tukey’s test was used. All ex-
periments were performed with three biological replicates comprising three technical replicates with 8,774 Raman spectra acquired from the hiPSCs (n =
3,316), NSCs (n = 2,342), and neurons (n = 3,116). The results represent means ± SEM; * represents P < 0.05, *** represents P ≤ 0.001, **** represents
P ≤ 0.0001.
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neural differentiation (Fig. 3C). The results also showed that
iPSCs exhibited significantly more cytochrome c (bands at 746
and 1,125 cm−1) compared to NSCs and neurons (Fig. 3D), and
there was a significantly higher intensity of the saccharide band
at 400 cm−1 in the iPSCs (Fig. 3E). Protein-related band intensi-
ties at 1,003 cm−1 (i.e., phenylalanine symmetric ring breathing)
and 1,030 cm−1 (CH2/CH3 bending modes) were significantly
lower in the undifferentiated iPSCs (Fig. 3F). A noticeable dif-
ference was observed at 1,440 cm−1 lipid (i.e., C−H deformation),
where there was a significant increase in differentiated neural
lineage cells in the progression of differentiation (Fig. 3G).
Since there is still a lack of information on the energy me-

tabolism during neuronal differentiation in stem cells, we were
particularly interested in the significant decrease of glycogen
Raman band intensity found in differentiated neural progenies
compared to iPSCs. Due to immature and inactive mitochondria
at the stage of iPSCs, it is likely that glycolysis is the main source
of energy for iPSC proliferation and the initiation of differenti-
ation (39, 40). Upon neural differentiation, glycogen runs out
and mitochondria become functional, regulating the metabolic

transition to oxidation and the shift of the source of energy (39).
To validate our SCRS results, we performed periodic acid−Schiff
(PAS) histological staining, which is commonly used to detect
glycogen deposits. Evidently, the immunohistochemical staining
exhibited a higher intensity of the magenta color in iPSCs com-
pared to NSCs and neurons, indicating that more glycogen was
present in the iPSCs (Fig. 4A). We also confirmed our results with
a commercially available glycogen detection assay (Fig. 4 B–D).
Our results showed that iPSCs acquired significantly higher gly-
cogen concentrations (iPSC: 0.336 ± 0.048 μg/μL; NSC: 0.037 ±
0.006 μg/μL; Neuron: 0.121 ± 0.026 μg/μL) as well as significantly
higher glycogen content normalized to both protein content
(iPSC: 0.107 ± 0.011 μg/μg protein; NSC: 0.020 ± 0.005 μg/μg
protein; Neuron: 0.045 ± 0.008 μg/μg protein) and total cell
number (iPSC: 7.925 ± 0.960 pg per cell; NSC: 0.984 ± 0.228 pg
per cell; Neuron: 3.339 ± 0.668 pg per cell). These population-
based results are consistent with the single-cell Raman analysis.
Collectively, the study demonstrates the potential of glycogen as a
reliable biomarker to discriminate cells in different neural devel-
opmental stages for quality control and lineage differentiation.

Table 2. Assignment of specific Raman bands to vibrational modes and biological molecules

Raman Wavenumber (cm−1) Biomolecule assignment Molecular vibration Refs.

400 Saccharides Skeletal modes of carbohydrates (34)
417 Saccharides β(COC); β(CCC), β(CCO), β(OCO) (34)
480 Glycogen ν(C1−O−C4); Ring breathing (34)
720 Adenine Ring breathing (35)
746 Cytochrome C ν(pyr breathing); ν(C−C) (36)
780 DNA/RNA Ring breathing of C, T and U (35)
1,003 Phenylalanine Phe symmetric ring breathing (35)
1,030 Phenylalanine C−H in plane bend (35)
1,124 Cytochrome C ν(C−N) (36)
1,250 Proteins Amide III (37)
1,440 Lipids δ(CH2, CH3) (38)
1,660 Proteins Amide I (37)

Fig. 4. Confirmation of glycogen as a potential biomarker for cell quality control and lineage specification. (A) PAS staining of hiPSCs, hiPSC-derived NSCs,
and hiPSC-derived neurons is shown in magenta color and counterstained with hematoxylin in deep blue-purple color. (Scale bars, 100 μm.) (B−D) Quanti-
tative comparisons of the glycogen concentration in different cell lineages using a commercially available glycogen detection assay. One-way ANOVA with
post hoc Tukey’s test was used. All experiments were performed with three biological replicates comprising at least three technical replicates (iPSC: n = 14;
NSC: n = 9; neuron: n = 9). The results represent means ± SEM; ** represents P ≤ 0.01, *** represents P ≤ 0.001, **** represents P ≤ 0.0001, and there was no
statistical significance between the other groups.
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Comparative Study of Cells Derived from Three hiPSC Lines. The
hiPSC technology provides an invaluable platform for the de-
velopment of patient-specific cell sources for disease modeling
and regenerative therapies. In addition to the intrinsic variability
between different subjects, genetic and epigenetic variations in
iPSCs have also been reported during iPSC generation and
maintenance (41). We looked into the differences between dif-
ferent cell lines using the previous qRT-PCR and immunos-
taining image analysis (SI Appendix, Fig. S4, and the results for
statistical analyses of qRT-PCR are shown in SI Appendix, Figs.
S5–S8). For the gene expression levels, cells at the same devel-
opmental stages possessed similar profiles among three different
cell lines (SI Appendix, Figs. S4 A–D and S5–S8). Although NSCs
from line 010S-1 exhibited a lower gene expression level for
FOXG1 and significantly higher expression levels for GFAP (SI
Appendix, Figs. S4 B and C, S6, and S7), there was no noticeable
difference between the expression levels of neuronal genes
among different cell lines (SI Appendix, Figs. S4D and S8). To
verify the gene expression data, we also examined the cell line
differences in protein expression level via image analysis of
immunostaining, particularly focusing on specific cell markers
related to neuronal differentiation and NSC proliferation. We
analyzed the differences in the percentage of βIII-tubulin+ cells
and the percentage of Nestin+ cells in the total cell population
after neuronal differentiation for 2 wk (SI Appendix, Fig. S4 E
and F). There was no significant difference in neuronal differ-
entiation between the three cell lines. Interestingly, line SB-
AD3-1 exhibited a significantly higher proliferative Nestin+ cell
population (55.2 ± 4.3%) compared to line 010S-1 (24.0 ± 3.2%)
and line 014S-10 (22.5 ± 2.8%).
We further explored the differences between cell lines derived

from different subjects at the single-cell level, by SCRS visuali-
zation using t-SNE (Fig. 5). Overlapping clusters were observed
between hiPSCs derived from three different cell lines. However,
with the progression of neural differentiation, while there were
still overlapping spectra, the variances between cell lines in-
creased. While iPSCs were maintained in a synchronized plu-
ripotent status, after neural induction, the cells were primed for
differentiation with heterogenous time schemes. Although we
have preselected the NSC populations with MACS using PSA-
NCAM, the difference in the degrees of variance, particularly in
the differentiated neuronal populations, could result from the
intrinsic variance in the rate of differentiation and maturation
between different cell lines. It is worth noting that the results from
SCRS analysis could provide a more comprehensive and detailed
analysis, revealing differences in the cells’ biochemical profiles
compared to targeted, biased gene or protein biomarkers.

Machine Learning Classification Models. In the previous Results sec-
tions, we indicated that iPSCs and their derived neural progenies
could be distinguished based on their distinct phenotypic SCRS.
Besides feature extraction from SCRS to find informative bio-
variables, classification based on their spectra is often desirable for
diagnostic purposes. As manual generic data analysis could be
difficult and time consuming when handling a complex problem or
a large and complex dataset, we explored the application of ma-
chine learning in constructing classification models to classify
different developmental stages of cells based on their SCRS.
A total of 8,774 spectra were divided into a training set (n =

6,581 spectra) and a testing set (n = 2,193) to evaluate the
performance of a particular model. A number of classifiers were
constructed and evaluated (SI Appendix, Table S2). Previous
studies using t-SNE−transformed datasets in building a classifi-
cation model have found significant improvement in its model
performance, especially in the field of medical sciences (42–44).
Here, we also introduced t-SNE to preprocess our SCRS data-
sets and used the outputs of t-SNE as additional inputs into
different classifiers. Performances of various models with the

original datasets and the t-SNE−transformed datasets were listed
and compared (SI Appendix, Table S2). The best model perfor-
mance was achieved in a t-SNE−transformed stacked stochastic
gradient boosting (SGB) model, in which a high accuracy of 97.5%
was reached. In this model, the SCRS dataset was initially trans-
formed by t-SNE into a lower-dimensional space. Then, five
models were trained individually, namely k-Nearest Neighbor
(kNN), SGB, random forest (RF), linear support vector machine
(SVM), and SVM with radial basis function (RBF) kernel. Five
learning curves that correspond to individual models were plotted
to illustrate the effectiveness of the size of the dataset (8,774
spectra/536 cells) (SI Appendix, Fig. S9A). A different data split-
ting method, which splits the dataset by three biological replicates,
was also evaluated to achieve better clinical relevance. The com-
parison between the two data splitting methods is summarized in
SI Appendix, Fig. S9B. These models were subsequently combined
to train a stacking classification model to achieve better classifi-
cation power and accuracy by using the output of these models as
inputs into another SGB algorithm.
Table 3 presents the classification results of the stacked model

in classifying the independent testing set (n = 2,193) which did
not participate in the process of training the model. The perfor-
mance of the classification test achieved a sensitivity of 98.7%,
95.8%, and 97.2% for iPSCs, NSCs, and neurons, respectively, and
a specificity of 99.5%, 98.6%, and 98.2% for iPSCs, NSCs, and
neurons, respectively (Table 3). The overall accuracy rate is as
high as 97.5%. Generally, high sensitivity usually comes at the
expense of reduced specificity with more false positives, and, vice
versa, high specificity accompanies lower sensitivity with more
false negatives. In our case, specificity is more important for the
quality control of stem cell transplants, where no single undiffer-
entiated pluripotent stem cell should be transplanted into the
human body to reduce or eliminate the risk of developing tumors.
With the use of the SCRS platform in combination with the
stacked classification model, we were able to achieve high sensi-
tivity, high specificity, and high accuracy of cell classification
during different stages of neural development.

Discussion
This study employs Raman spectral analysis to distinguish cells
from different cell donors and various differentiation stages in
clinically relevant human neural systems. The SCRS of undif-
ferentiated iPSCs and their neural lineage descendants showed
distinct characteristics, and different cell phenotypes were visualized
as clear clusters using t-SNE multivariate analysis. These results,
along with noninvasive Raman-activated cell sorting techniques
(45), such as the recent development of a high-throughput Raman
flow cytometer (17, 46), demonstrate the potential of transforming
our platform into a noninvasive and label-free cell sorting platform
to facilitate clinical uses of stem cell-related interventions and
therapies. While biomolecular profiles of Raman spectra are com-
plex, it can be challenging and time consuming to collect, process,
and analyze a huge number of data manually. To transform this
method into a faster and more efficient process, we explored the
application of machine learning to process and interpret our Raman
data, where a machine learning classification model was built upon
the t-SNE−transformed SCRS using ensemble learning of various
classifiers.
Our SCRS analysis indicated that differentiated hiPSCs (i.e.,

NSCs and neurons) were clearly dominated by protein (1,003,
1,030, 1,250, and 1,660 cm−1) and lipid bands (1,295 and
1,440 cm−1), similar to a previous report indicating that spon-
taneously differentiated human pluripotent stem cells acquired
dominating protein and lipid bands, and these changes could be
attributed to changes in cellular metabolism (47). It is known
that aromatic amino acids (e.g., tryptophan, tyrosine, and phe-
nylalanine) are precursors for neurotransmitters, such as dopa-
mine, serotonin, and norepinephrine, which play major roles in
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transducing chemical signals among neurons and their target
cells (48). The increased protein contents, particularly phenyl-
alanine and other aromatic amino acids, could be regulated by
intrinsic biosynthesis pathways for supporting cell lineage tran-
sitions from pluripotent cells into appropriate neuronal identi-
ties. We identified a decrease in the nucleic acid bands (726 and
780 cm−1) in the differentiated neural progenies. Previously, a
similar decrease in the cytoplasmic RNA concentration was
observed using Raman spectroscopy when mouse neural pro-
genitor cells differentiated into glial cells (19). It is known that
neuroepithelial progenitor cells in the ependymal layer initially
build up a high level of cellular RNA content at early stages of
differentiation (49). However, as the cells progress toward the
endpoint of differentiation, the RNA content drops distinctly.
The accumulation of RNA is usually associated with protein
synthesis activity. Presumably, cells in the differentiated states
are no longer involved in a significant level of protein synthe-
sis. Small wavenumber shifts were present between iPSCs and
their neural progenies, including the 1,003 cm−1 phenylalanine
band. It has been suggested that differences in recurrent protein

secondary structures might result in a shift of Raman bands (50).
For example, the phenylalanine bands shifted between 997 cm−1

and 1,007 cm−1 in different types of collagen, and similar struc-
tural motifs also occur in actin (51). During neural development,
cytoskeletons, including actin filaments and microtubules, dy-
namically remodel to adopt morphological transitions or to drive
cell migration and the development of axons, dendrites, and their
branches (52). It is possible that the observed shifts demonstrate
the structural remodeling of cytoskeletal proteins, which possess
drastic changes during neural development. There was signifi-
cantly more cytochrome c present in hiPSCs (bands at 746 and
1,125 cm−1) compared to NSCs and neurons. It was known that
single-cell dissociation of human pluripotent stem cells disrupts
E-cadherin−mediated cell−cell interactions, causing ROCK-
dependent hyperactivation of actomyosin network, resulting in cell
apoptosis where cytochrome c was released from mitochondria
(53). The observed up-regulated cytochrome c in hiPSCs could
result from the effects of single-cell dissociation. Future work in-
corporating ROCK inhibitors before cell characterization using
SCRS might reveal detailed regulations of cytochrome c during
neural development.
Glycogen, a storage form of glucose, acting as the principal

energy source rapidly available for several organs, exhibits at low
concentrations in the brain (54). Previously, it was reported that
hiPSCs acquire a prevalent glycolytic state compared to differ-
entiated fibroblasts (39). Although characterization of neural
development in hiPSCs has been widely explored using genome-
wide profiling and biochemical analysis (55–57), there is very
little research conducted focusing on the changes related to
cellular metabolism, and none of them were performed at the
single-cell level with a quantitative measure (58). Our study
demonstrates that SCRM is able to provide semiquantitative
glycogen content in situ at the single-cell level (59). The SCRS
results revealed that hiPSCs possessed significantly more glyco-
gen (480 cm−1), which was consistent with the results acquired

Fig. 5. Comparison of Raman signatures in neural systems derived from different hiPSC lines. (A) Comparison of Raman spectra of cell lineages from various
hiPSC lines, including line 010S-1 (green; n = 3,133), line 014S-10 (orange; n = 3,327), and line SB-AD3-1 (lavender; n = 2,592). (B) Multivariate analysis of the
Raman spectra of different hiPSC lines at various differentiation stages. (The green, orange, and lavender colors represent lines 010S-1, 014S-10, and SB-AD3-
1, respectively.)

Table 3. Classification of hiPSCs and hiPSC-derived neural
lineage cells by the ensemble machine learning model (overall
accuracy at 97.5%)

Ground truth

iPSC NSC Neuron

Model prediction
iPSC 587 4 3
NSC 4 530 19
Neuron 7 19 750

Sensitivity (%) 98.7 95.8 97.2
Specificity (%) 99.5 98.6 98.2
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from PAS histological staining and commercially available gly-
cogen detection assays. As the change in glycogen content was
significant in both SCRS and conventional assays, we suggest
that glycogen can be used as a biomarker to distinguish hiPSCs
from their differentiated neural progenies. Previously, evidence
of glycogen variations has been reported during maintenance of
human embryonic stem cells (hESCs) and hESC differentiation
using Raman microspectroscopy (60–63). While glycogen increased
during hESC differentiation into pancreatic insulin-positive cells
(60), interestingly, our results demonstrated a different trend where
a decrease of glycogen was found in differentiated neural lineages.
These inconsistent results on the glycogen concentration were more
likely attributed to different cell lineages instead of differences
between hESCs and hiPSCs (47, 64), suggesting the importance of
tracking the progression of lineage-specific differentiation and ac-
knowledging the differences among cell types.
Glycogen serves as one of the major forms of energy source

in vivo; however, with respect to cellular glycogen metabolism,
there is very little information on this important topic over the
course of stem cell differentiation. Conventional methods to
assess glycogen storage and turnover include electron micros-
copy, histochemical PAS reaction, immunostaining with specific
antibodies against glycogen, or biochemical methods analyzing
glycogen contents in cell or tissue homogenates via degradation
or hydrolysis of glycogen (40). However, each of these techniques
has drawbacks. While electron microscopy highly relies on the
expertise and is both time consuming and costly, immunocyto-
chemical techniques generally require sample fixation, which
might result in up to 70% glycogen loss due to its predominantly
soluble form in the cytoplasm (65). Glycogen biochemical assays
require a certain amount of sample and a range of tedious steps
with oxidation and glucose background subtraction, making them
challenging and confounding if proper background controls are
not included in the assay. Most important of all, all these methods
require cell fixation or lysis, which makes them not translational
for clinical applications. SCRS acquires the advantage of detecting
glycogen directly as well as noninvasively, and it has previously
been used to quantify absolute glycogen contents in situ (59).
Although the cells were fixed before examination in this study, it
has been demonstrated that live cells could be used in similar
studies (66–68). To fulfill the need of live cell characterization and
detection in clinical settings, in the future, the phototoxicity of the
Raman laser irradiation on cell viability and functionality should
be evaluated. A longer wavelength of laser can also be employed
to avoid potential cell damage (69). With this platform, we can
probe glycogen content with a more feasible and accurate ap-
proach in real time and can potentially provide insights into gly-
cogen metabolism in live cells at the single-cell level.
It is known that the equilibrium between utilization of glucose

and glycogen synthesis is regulated by the phosphatidylinositol-3-
kinase (PI3K)-AKT signaling pathway via glycogen phosphorylase
and glycogen synthase (70). Although there are many aspects that
await elucidation, an earlier study indicated that glycogen syn-
thesis in human pluripotent stem cells could be modulated by
differentiation-dependent bone morphogenetic protein 4-related
pathways or differentiation-independent and pluripotent state-
dependent glycogen synthase kinase 3 (GSK-3)-related pathways
(71). The equilibrium between glycogen accumulation and glyco-
genolysis in pluripotent stem cells was proposed as a metabolic
switch, which can further regulate pluripotent state transitions in
stem cells as well as cell differentiation. Although it is well known
that glucose is the main energy source in the brain and glycogen
generally is not present in neurons but only present in astroglial
cells (54), the changes of glycogen metabolism over neuronal
differentiation remain unexplored. GSK-3, a serine/threonine
protein kinase with two isoforms, GSK-3α and GSK-3β, and
having the ability to phosphorylate glycogen synthase and regulate
glycogen metabolism, is able to regulate neural cell differentiation

(72). GSK-3 inhibition activates the Wnt/β-catenin pathway, en-
hancing proliferation and expansion of neural progenitors and
suppressing neuronal differentiation. In contrast, Wnt3a has been
indicated to increase neurogenesis independent of the Wnt/
β-catenin transcriptional activity (73). In the central nervous sys-
tem, GSK-3β is developmentally regulated, but its role in regu-
lating neural differentiation remains controversial. While GSK-3β
was shown to facilitate neurite outgrowth by preventing E2F1
from inhibiting the transcription of cyclin-dependent kinase in-
hibitors p21 and p15 (74), inhibition of GSK-3β also resulted in
the expression of nonphosphorylated collapsin response mediator
protein 2 and the enhancement of axonogenesis and axon growth
(75). Furthermore, accumulation of glycogen or glycogen-like in-
clusions has been reported in several neurological diseases, such as
Parkinson’s disease, Huntington’s disease, and Lafora disease
(76). With the proven feasibility and accuracy of Raman spec-
troscopy, this approach would be of considerable benefit for in-
vestigating and elucidating the correlations between glycogen
levels not only during neural development but also during neu-
rodegeneration in the future.
In this study, we are particularly interested in the quality

control of stem cell transplants for treating neurological diseases.
It has been shown that transplantation of early-stage NSCs or
immature neurons resulted in the greatest neural tissue and
functional repair compared to transplantation of more mature
neurons (77). Thus, we chose to examine undifferentiated hiPSCs,
NSCs, and neurons differentiated for 2 wk (immature neurons) in
this study. We explored the use of machine learning methods for
automated identification of cells’ developmental stages based on
their SCRS. By acquiring 8,774 SCRS of iPSCs, NSCs, and neu-
rons, different classification models were constructed and com-
pared. By training a t-SNE−transformed stacked model, a high
accuracy rate of 97.5% was achieved. For the purpose of stem cell
therapy, it is of the greatest importance to avoid transplantation of
any undifferentiated iPSCs into the human body. Although it is
nonessential to distinguish NSCs from neurons in clinically rele-
vant settings, it is technically feasible to include distinct mature
neurons with functional synapses (generally differentiated for
more than 7 wk from NSCs) to understand the properties of mature
neurons and their differences from these earlier stages of neural
cells (78). It is also worth noting that, in the present study, we used
machine learning models for classification, where the original data
were preprocessed and inputted manually. However, we have fur-
ther established a complete pipeline which includes automated data
processing as well as cell classification to maximize the automation.
Our SCRM platform demonstrates the potential of classifying

neural developmental stages of clinically relevant human plu-
ripotent stem cells with high accuracy and automation and is
extendable to other cell types. Probing the biomarker, glycogen,
using SCRS could also provide valuable insight into neural de-
velopment as well as an understanding of glycogen-related
neurological diseases.

Materials and Methods
Cell Culture. The hiPSC lines, line SB-AD3-1 (from a 32-y-old female healthy
subject), line 010S-1 (from an 18-y-old female healthy subject), and line 014S-
10 (from a 15-y-old male healthy subject) were used in the study. The cells
were maintained on Matrigel (Corning)-coated culture plates with the use of
mTeSR1 media (STEMCELL Technologies) and Essential 8 media (Thermo
Fisher Scientific) and were passaged using 0.5 mM (ethylenedinitrilo)tetra-
acetic acid (EDTA; pH 8.0; Thermo Fisher Scientific) in sterile phosphate
buffer solution (PBS) when they reached 80 to 90% confluence. Neural
differentiation was based on previously published protocols (33, 79, 80).
Briefly, hiPSCs were used for neural conversion when they reached confluency.
Neural Basal Mediumwas prepared by mixing 1:1 ratio of [Advanced DMEM/F-
12 medium (Thermo Fisher Scientific), 1% vol/vol N-2 supplement (Invitrogen),
0.2% vol/vol B27 Supplement (Invitrogen), 1% vol/vol GlutaMAX (Invitrogen),
1% vol/vol penicillin/streptomycin (Invitrogen)] and [Neurobasal Medium
(Thermo Fisher Scientific), 2% vol/vol B27 Supplement (Invitrogen), 1% vol/vol
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GlutaMAX (Invitrogen), 1% vol/vol MEM Non-Essential Amino Acids (Thermo
Fisher Scientific), 1% vol/vol penicillin/streptomycin (Invitrogen)]. The cells
were differentiated via dual SMAD signaling inhibition (21), using neural
induction medium [Neural Basal Medium supplemented with SB431542 (10
μM; Calbiochem) and InSolution AMPK Inhibitor, Compound C (2 μM;
Calbiochem)] for 7 d to 10 d. After enzymatic dissociation, NSCs were
passaged and plated down on laminin from mouse sarcoma basement
membrane (Sigma-Aldrich)-coated plates in the Neural Basal Medium.
After 3 d to 5 d, hiPSC-derived NSCs proliferated and formed neural ro-
sette structures, and the cell culture medium was changed into F20 Me-
dium [Neural Basal Medium supplemented with 20 ng/mL Recombinant
Human FGF-basic (PeproTech)]. NSCs were passaged every 5 d to 7 d on
laminin for the first two to three passages and on Matrigel for later pas-
sages. Further differentiation of the NSCs into neurons was performed in
Neural Basal Medium supplemented with 10 ng/mL brain-derived neuro-
trophic factor (PeproTech), 10 ng/mL glial cell-derived neurotrophic factor
(PeproTech), and 10 μM forskolin (Sigma-Aldrich).

RNA Extraction, Reverse Transcription, and qPCR. Samples were collected after
2 d in culture for iPSCs and NSCs or 14 d after differentiation initiation for the
neurons. Cell pellets were lysed and stored at −80 °C in TRIzol reagent
(Thermo Fischer Scientific) until total RNA was extracted as described before
(26). In short, 1-bromo-3-cholopropane (Sigma-Aldrich) was used to extract
the RNA. Subsequently, the RNA was purified with phenol/chloroform/iso-
amyl alcohol (125:24:1, Sigma-Aldrich) and precipitated with 2-propanol
(Sigma-Aldrich). After washing in 75% EtOH, the RNA pellet was dissolved in
RNase/DNase free water (Thermo Fisher Scientific). RNA quantity was de-
termined using a Nanodrop One spectrophotometer (Thermo Fisher Scien-
tific) before quality assessment on an Agilent 2100 bioanalyzer (Agilent
Technologies). All measurements indicated intact and good-quality RNA
with RNA integrity numbers greater than 9. The QuantiTect Reverse Tran-
scription kit (Qiagen) was used to convert 0.5 μg to 1 μg of RNA into com-
plementary DNA (cDNA) per manufacturer’s instructions, including a
genomic DNA wipe-out step. Final cDNA sample volumes of 20 μL were di-
luted fourfold in RNase/DNase free water and stored at −20 °C until used for
qRT-PCR.

All cDNA samples, standards and no-template controls were measured in
triplicate in a 96-well plate covered with adhesive seals. For all measure-
ments, 1 μL of cDNA template per 20 μL of final reaction volume was used
on a StepOnePlus Real-time PCR System (Applied Biosystems) based on the
SyGreen intercalating dye and a passive reference ROX (PCR Biosystems).
All primers (Sigma-Aldrich; SI Appendix, Table S1) had a final concentra-
tion of 400 nM each. Reactions started with 3 min at 95 °C, followed by 40
cycles of 15 s at 95 °C and 30 s at primer melting temperature (Tm) (SI
Appendix, Table S1). This reaction was followed by a melting curve,
stepwise increasing temperature each 15 s by 0.5 °C, ranging from 65 °C to
95 °C. LinRegPCR (81) version 2016.1 was used for baseline correction (82),
and quantification cycle values were loaded into qBase Plus version 3.2
(83) for relative quantity analysis. Amplification efficiencies were calcu-
lated for all primer sets and indicated 91 to 107% efficiency. Six genes
were assessed for their suitability as reference genes using geNorm (84),
identifying the optimal number of reference genes to use for gene ex-
pression normalization. The selected reference genes were used for
further analysis.

Immunostaining and Fluorescence Microscopy. For cell characterization, cells
were fixed in 3.7% vol/vol paraformaldehyde (Sigma-Aldrich) for 15 min,
permeabilized with 0.2% vol/vol Triton X-100 (Sigma-Aldrich) for 10 min, and
blocked with 3% vol/vol goat serum (Sigma-Aldrich) for 30 min. Cells were
then incubated for 1 h with primary antibodies, NANOG (1:200; Invitrogen),
OCT4 (1:200; Invitrogen), SOX2 (1:200; Invitrogen), Nestin (1:500; Millipore),
PAX6 (1:200; Sigma-Aldrich), and βIII-tubulin (1:1,000; Sigma-Aldrich), fol-
lowed with NucBlue Live ReadyProbes Reagent (Invitrogen) or Hoechst
33342 staining solution (Thermo Fisher Scientific) and Alexa Fluor secondary
antibodies (Thermo Fisher Scientific) for 30 min. For iPSCs, Alexa Fluor 488
Phalloidin (Thermo Fisher Scientific) was also incubated with the nuclear
stains and the Alexa Fluor secondary antibodies for visualizing cell outlines.
Each step described above was followed by three washes with PBS. The
stained samples were stored at 4 °C. Images for cell characterization were
acquired with a Nikon Eclipse Ti-E inverted fluorescence microscope (Nikon
Instruments, Inc.).

MACS. Expanded hiPSC-derived NSCs were dissociated using Accutase
(STEMCELL Technologies) into single cells. The cells (∼1 × 107 cells) were then
tagged with Anti-PSA-NCAM MicroBeads (Miltenyi Biotec) for MACS

according to the manufacturer’s instructions. Briefly, the cells were blocked
in MACS buffer [0.5% vol/vol BSA (Sigma-Aldrich) in PBS supplemented with
2 mM EDTA (Sigma-Aldrich)] for 10 min at 4 °C. The cells were then incu-
bated with Anti-PSA-NCAM MicroBeads for 15 min at 4 °C. After extensive
washing with MACS buffer, the cell suspension was loaded into a separation
column (LS column) which was initially attached to a magnetic stand. Neg-
atively labeled cells passed through the column after three washes with
MACS buffer. Positively labeled cells which remained in the column were
finally eluted to another tube with F20 Medium after removing the column
from the magnetic stand.

Measurements and Analysis of SCRS. Cells were dissociated into single cells and
fixed in 4% vol/vol paraformaldehyde for 15 min and were washed three
times with PBS. Before Raman measurements, the fixed cells were dropped
onto an aluminum-coated Raman substrate to be air dried. SCRS were ac-
quired using an HR Evolution confocal Raman microscope (Horiba Jobin-
Yvon) equipped with a 532-nm neodymium-yttrium aluminum garnet laser.
The laser power on cells was 12 mW after attenuation by neutral density
filters. An objective with a magnification of 50× was used to focus single
cells with a laser spot size of ∼1 μm2, and Raman scattering was detected by
a charge-coupled device cooled at −70 °C. The spectra were acquired in the
range of 320 cm−1 to 3,400 cm−1 with a 300 grooves per mm diffraction
grating. A mapping mode was used to characterize single cells pooled from
three biological replicates, and the acquisition parameters were 5 s per
spectrum, at least 20 spectra per cell, and 20 single cells per technical rep-
licate, resulting in a total number of 8,774 SCRS from 536 cells (three bi-
ological replicates and 180 cells per biological replicate, 540 cells in total,
but discarding the data from 4 cells due to the poor data quality). Each
sample was performed in three biological replicates and three technical
replicates. All SCRS were preprocessed by comic ray correction and polyline
baseline fitting with LabSpec 6 (Horiba Scientific). Spectral normalization
was done by vector normalization of the entire spectral region. The choice
of vector normalization was made to correct general instrumentation
fluctuation as well as sample and experimental variables (e.g., thickness of
the sample) without strongly interfering with the nature of the biological
content. Normalization using a particular biocomponent, such as nucleic
acids or Amide I peak, was not used here, to avoid any presumptions
of specific biomolecular changes. Data analysis, statistics, and visualiza-
tion were done under an R 3.3.3 environment using in-house scripts (SI
Appendix).

t-SNE and Machine Learning Classification Models. Due to the high dimen-
sionality and collinearity of SCRS, t-SNE was used to embed the high-dimensional
SCRS in a two-dimensional space by minimizing the Kullback−Leibler divergence
between the two probability distributions in respective dimensional spaces (85).
In this study, t-SNE was implemented by “Rt-SNE” in R 3.3.3, built based on 8,774
SCRS of the hiPSCs and neural derivatives derived from three hiPSC lines (SB-AD3-
1, 010S-1, and 014S-10), including 3,316 SCRS of iPSCs, 2,342 SCRS of NSCs, and
3,116 SCRS of neurons.

Machine learningmodels were applied to classify the developmental stage
of single cells with the use of their SCRS. Classification based on different cell
lines was not performed, due to the little difference found among different
donors. The dataset was split into a training set and a testing set with a ratio
of 0.75:0.25 (6,581 and 2,193 SCRS, respectively). While the training set was
used to train a classification model, the testing set was used to evaluate the
model performance. Either raw SCRS or t-SNE−transformed SCRS were used
as the inputs into various models, and the performances from the two ap-
proaches were compared. Tenfold cross-validation with five repetitions was
used during model construction. First, single classifiers were employed,
and, second, a stacked ensemble model was built upon the results from
the single classifiers. The single classifiers include kNN (86), SGB (87), RF
(88), and SVMs (89). The kNN is a nonparametric and simple algorithm
based on calculating Euclidean distance and feature similarity. SGB is a
boosting technique to achieve better classification results by combining
several weak classifiers. RF is an ensemble-learning method combining
several decision trees. SVMs use hyperplanes to separate the data in a
high-dimensional space. Both linear SVM and SVM with RBF kernel were
used in our study. After establishing and evaluating the classification
models based on the five classifiers, five models were stacked together to
build a two-layer machine learning model for a better classification result.
The prediction outcomes of the five models (kNN, SGB, RF, linear SVM, and
RBF-kernel SVM) from the first layer were used as features for the second
layer, which used the SGB algorithm. All models were constructed in an R
3.3.3 environment.
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Performance measures for all models were computed as sensitivity and
specificity for each class as well as an overall accuracy rate.

Sensitivity = TP=(TP + FN)

Specificity = TN=(TN + FP)

Accuracy = (TP + TN)=(TP + TN + FP + FN),
where TP is the number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of false negatives.

Glycogen Assay. The intracellular glycogen of cells was measured using the
glycogen assay kit II (catalog no. ab169558; Abcam) according to the man-
ufacturer’s instructions. Briefly, the cells (∼106 cells per replicate) were
washed with cold PBS and homogenized in 200 μL of ddH2O on ice. The
homogenates were boiled for 10 min to inactivate enzymes in the sample,
centrifuged for 10 min at 4 °C at 18,000 × g to remove any insoluble ma-
terial, and stored at −80 °C for the glycogen assay. The absorbance was
measured using a SpectraMax i3x Multi-Mode Microplate Reader System
(Molecular Devices) at 450 nm.

PAS Staining. Fixed cells were incubated in 1% vol/vol periodic acid
(Sigma-Aldrich) for 5 min, then stained with Schiff’s reagent (Sigma-Aldrich)
for 15 min, followed by counterstaining with hematoxylin (Sigma-Aldrich)

solution for 2 min. All steps were performed at room temperature, and the
samples were rinsed with distilled water after each step. The samples were
imaged under a microscope, and the cytoplasm of positive cells was stained
purple-red.

Statistical Analysis. Data are presented as mean ± SEM, and sample size (n)
indicates replicates from representative experiments. Experiments were
performed with three biological replicates comprising at least three tech-
nical replicates, and one-way ANOVA with post hoc Tukey’s test was used
throughout the study unless specified otherwise in the figure legends. A P
value of <0.05 was considered statistically significant (in the diagrams, *
represents P < 0.05, ** represents P ≤ 0.01, *** represents P ≤ 0.001, ****
represents P ≤ 0.0001, and n.s. = not significant).

Data Availability.Data and code have beenmade available in SI Appendix and
on the Open Science Framework (https://osf.io/9env5/).
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