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Abstract: Keratoconus (KC) is a bilateral, asymmetric, corneal disorder that is characterized 

by progressive thinning, steepening, and potential scarring. The prevalence of KC is stated 

to be 1 in 2000 persons worldwide; however, numbers vary depending on size of the study 

and regions. KC appears more often in South Asian, Eastern Mediterranean, and North 

African populations. The cause remains unknown, although a variety of factors have been 

considered. Genetics, cellular, and mechanical changes have all been reported; however, 

most of these studies have proven inconclusive. Clearly, the major problem here, like with 

any other ocular disease, is quality of life and the threat of vision loss. While most KC cases 

progress until the third or fourth decade, it varies between individuals. Patients may 

experience periods of several months with significant changes followed by months or years 

of no change, followed by another period of rapid changes. Despite the major advancements, 

it is still uncertain how to treat KC at early stages and prevent vision impairment. There are 

currently limited tissue engineering techniques and/or “smart” biomaterials that can help 

arrest the progression of KC. This review will focus on current treatments and how biomaterials 

may hold promise for the future. 
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1. Introduction 

Keratoconus (KC) is a bilateral degenerative non-inflammatory corneal disorder with prevalence of 

1 in 2000 people worldwide, although this number varies considerably between studies [1–10]. While 

KC is observed in populations throughout the world, it is reported more frequently in certain ethnic 

groups such as South Asians, Eastern Mediterranean, and North Africans [11–13]. The incidence is 

believed to be as high as 1 in 500 [2] but difficulties with differential diagnosis causes uncertainty as to 

its prevalence. KC is known to typically initiate at puberty and progress until the third or fourth decade 

when it usually arrests [14–16]. The rate of the progression varies significantly between individuals and 

not everyone will experience severe stages of the disease. It is estimated that 10%–15% of KC diagnosed 

patients will reach severe stages and require corneal transplantation in order to have functional  

vision [1–16].  

At early stages, patients typically experience minor blurring with the symptoms being identical to 

refractive defect and irregular astigmatism [3,17–19]. As KC progresses, vision deteriorates. The degree 

of vision impairment depends on the rate of progression. At mid-stages, KC is easily diagnosed and 

patients experience trouble with their night vision, photophobia, eye strain, and eye itching [20–23]. 

Most of the time, advanced KC stages develop corneal scarring which contributes to further vision loss 

and ultimately makes corneal transplantation necessary.  

This disease has a profound effect on patients and may result in significant difficulties with 

conducting every day activities. Previous reviews have concentrated on management of the disease and 

clinical/surgical options [3,24–30] and will be discussed briefly here. The reality is that most of the 

treatments are available to improve the quality of life but not necessarily to treat the disease. Even with 

the recent success of collagen cross-linking with riboflavin (or CXL), there are still questions with regard 

to its long-term efficiency. CXL was first introduced in Europe about 10 years ago and is currently in 

clinical trials in USA [31–35]. Time will only tell whether this technology arrests the disease for life or 

just delays the process.  

The purpose of this review is to outline current techniques to arrest KC disease and discuss promising 

tissue engineering techniques and biomaterials that are available but have never been tested on KC.  

2. Pathophysiology and Etiology 

It is widely believed that genetics, the environment, and the cellular mechanism all play a role in  

KC [9,36–49]. However, the exact contribution of each of the above to the etiology of KC is unknown. 

It is almost certain that KC is a multifactorial disease and the onset is still a mystery. KC has its onset at 

puberty and it can progress until the third or fourth decade of life; however, it can arrest at any  

point [3,50]. While multiple reports have associated KC with other disorders, it is more commonly seen 

as an isolated condition. The most common disorders associated with KC are Down syndrome and 

Leber’s congenital amaurosis [40,51–54]. Rabinowitz’s 1998 review discussed these studies [3]. In some 

cases, KC appears to have a familial association. However, in a study at the Cedars-Sinai Medicine 

Center, authors found that 99% of the 300 KC patients had no association with genetic diseases [3,54,55]. 

In terms of sex preference of the disease, it seems to affect both male and female [56]. In fact, female 

or male dominance is unclear based on data reported from various studies. Some studies report a 
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preponderance of men over women and others report the exact opposite [5,7,56–63]. It is known, 

however, that higher numbers of KC disorders are seen in the South Asian region.  

One of the most common associations of KC is eye rubbing [59,64–68]. This environmental cause 

was first introduced by Ridley who discovered the relationship between KC and atopic disease [69].  

In Ridley’s study, more that 70% of KC patients vigorously rubbed their eyes [69]. Further support of 

this theory was provided by subsequent studies [70]. Other environmental factors include poorly fit 

contact lenses and allergies [70–73]. The relationship between KC and contact lenses or allergies is still 

questioned by scientists and further studies are needed. In both cases, however, eye rubbing is a possible 

confounder. 

Cellular dysfunction and biochemical abnormalities are almost certain to play a role in KC onset as 

well as progression. Various authors have suggested abnormalities in collagen fibers within the cornea 

and their cross-linking. Others have reported abnormalities in proteoglycans and proteoglycan 

metabolism of the cornea [41–49]. One recent discovery is the abnormal processing of superoxide 

radicals in KC corneas and the involvement of oxidative stress in KC [74–77]. This is now linked to the 

quality of tears and the disruption on collagen structure due to the creation of harmful byproducts of cell 

metabolism. 

Overall, there are many potential candidates for the onset and progression of the KC disease. These 

candidates (genetic, environmental, cellular, or other factors) may be acting alone or in combination, 

leading to a vision threatening condition. 

3. Clinical Characteristics and Management 

The disease may progress very fast or very slow or may even stop at early stages without any further 

complications. In any scenario, patients that reach severe stages require some kind of clinical 

intervention. Below, we briefly discuss the three main options available to patients. Other options are 

available and have been reviewed elsewhere [1,40,78–103].  

3.1. Penetrating Keratoplasty (PKP) 

It is estimated that approximately 10%–15% of KC cases will progress to an extent which requires 

surgical intervention [1,100,101,104]. Once the cornea becomes excessively ectatic, thin or scarred, no 

correction can help the patient. Contact lenses cannot be worn or will not improve visual acuity and 

therefore corneal transplantation is required. Overall, penetrating keratoplasty (or PKP) is the most 

common procedure (Figure 1) for individuals with severe KC [105]. Generally, PKP is a successful 

procedure for KC patients, with favorable results [1,106–109]. Niziol (2013) [108] recently reported a 

90% success rate for 5–12 year-old grafts. There have been multiple studies with various populations 

and number of patients, such as from Lim and co-authors [110], reporting a success rate of 95.7% from 

a total of 93 eyes receiving PKP [110,111]. From the recent literature, it seems that graft survival is 

improving. In 1972, Keates et al. [111] reported a success rate slightly over 80%. A little later, Troutman 

and co-authors reported an 88.4% success rate [112]. The acute recovery of someone receiving PKP is 

anywhere between 4 and 6 weeks, but stable vision is not achievable for at least a year post-op [101,105]. 

Any complications following PKP are related to vascularization and rejection of the donor cornea. Other 

known but rare complications, are cataract, loose suture, glaucoma, and severe astigmatism [113–117]. 
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Overall, this is a safe surgical option which is heavily used by surgeons. The huge drawback is the 

availability of donor corneas, especially in under-developed countries. 

Figure 1. Penetrating keratoplasty. (A) Distorted cornea removed; (B) Corneal graft placed 

in recipient bed; (C) “Stay sutures” placed; (D) Single running suture in place at end  

of surgery. 

 

3.2. Deep Anterior Lamellar Keratoplasty (DALK)  

Deep anterior lamellar keratoplasty (DALK) is a relatively new technique and so far it has been very 

promising [118]. In DALK (Figure 2), surgeons remove the corneal epithelium and stroma, but not the 

endothelium, from the host cornea. This is a major advantage over PKP since preservation of host 

endothelium reduces the risk of graft rejection. The actual surgery is challenging and requires expertise. 

In fact, a variety of DALK modifications have been reported and recently reported by Fogla [119], 

including “peeling technique” [120], intrastromal air injection [121], and hydro-delamination [122]. Our 

data on DALK is rather premature since it was only introduced to keratoconus patients in the  

mid-90s [123–126]. However, the post-op results so far have been promising. An average of 80% of KC 

patients showed 20/40 visual acuity after receiving DALK [127–129]. For many surgeons, DALK is the 

“next big thing” and an alternative to PKP. DALK significantly minimizes common PKP complications 

such as wound leakage and endothelial graft rejection, but Descement membrane perforation [122,129–132], 

secondary anterior chamber formation [133], and interface keratitis [134] can develop as a result  

of DALK. 
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Figure 2. Deep anterior keratoplasty (DALK). (A) After partial trephination, a cannula is 

inserted deep in the corneal stroma; (B) Air injection through the cannula separating 

Descemets membrane from stroma; (C) Manual dissection ensuring that only the recipient’s 

Descemets membrane is preserved; (D) Lamellar donor graft sutured in place at end of surgery. 

 

3.3. Intrastromal Ring Segments (INTACS) 

Intrastromal ring segments (INTACS) are polymethyl methacrylate and acrylic polymer inserts that 

were originally designed for myopia correction purposes [135–140]. Currently, they are used as an 

effective treatment for mild to moderate keratoconus [135,141–159]. The major function of INTACS is 

to reshape KC corneas to a more regular cornea surface and allow better contact lens fitting and therefore 

improve vision [141,160]. During an INTACS operation, no cornea tissue is removed and overall, the 

surgery is less invasive. INTACS are placed within the cornea (one on each side) to lift the inferior or 

superior ectasia and flatten the bulged cornea area of KC [141,160]. Colin and co-authors [161] were 

the first to apply INTACS to KC patients. Since then, there have been a number of studies reporting 

results on INTACS [135,143,144,146–159,162]. Overall, INTACS are a good option in order to 

temporarily improve contact lens fitting and vision (Figure 3). INTACS are not used as a treatment to 

arrest KC disease, but they hold a lot of promise in delaying the need for PKP and other invasive  

surgical solutions. 
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Figure 3. Intracorneal ring segments. Scheimpflug image inserts show keratoconic cornea 

before and after insert of one intracorneal ring segment. Color images show corneal power 

before and after a segment insert and the change in corneal power. Note that corneal power 

after segment implantation is more regular.  

 

3.4. Corneal Crosslinking (CXL)  

The potential of ultraviolet-A light (UVA) to crosslink tissues in the presence of riboflavin has been 

known for some time. However, it was not until 1998 that this strategy was proposed as a therapeutic 

corneal treatment. Since then, interventions have been performed in Europe, while in the USA clinical 

trials were initiated in 2008 and are awaiting FDA approval. The procedure is relatively easy and well 

documented. Briefly, CXL is achieved via application of riboflavin solution (Figure 4) over 30 min on 

the de-epithelialization cornea, followed by UV-A illumination for approximately 30 min or  

less [163–167]. Activated riboflavin results in the formation of new bonds across adjacent corneal stroma 

collagen strands and ground substance, ultimately leading to strengthening of corneal stroma mechanics. 

In case of KC, this is currently used routinely in Europe and the treatment in most cases arrests the 

disease progression [168–174]. The routinely used technique is performed with the epithelium layer 

removed from the corneal stroma in order to ensure better riboflavin penetration. Currently, there are a 

number of studies looking into riboflavin penetration with epithelium intact and how this may improve 

CXL [163,165,167,174–178]. These have been previously reviewed and will not be discussed  

here [163]. Overall, CXL is a promising technique to arrest the disease, but we still lack long-term  

data [167–174].  
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Figure 4. Application of riboflavin drops during corneal cross linking procedure. 

 

4. In Vitro Strategies 

The World Health Organization (WHO) reported that corneal diseases are a major cause of vision 

loss and blindness, second only to cataracts in overall importance [10]. The only acceptable method for 

treating corneal blindness is by transplantation with matched donor tissue. It is easily understood that 

the demand for donor corneas exceeds the supply and therefore other strategies have been studied. One 

of them is in vitro models. Can corneas be grown in the lab from human cells and then be transplanted 

to a patient with trauma or blindness? Despite recent advancements in designing those tissues in vitro, 

there are very few that have come close. This is not a surprise, considering the complex nature of the 

corneal tissue. An in vitro tissue would have to have at least the stromal layer in place, if not the stroma 

and epithelium, the right thickness, with the correct organization, immune properties, and optical 

characteristics. Of the models developed so far, probably the most promising was the model by the 

Laboratoire d’Organogenese Experimentale (LOEX) [3,6]. The authors used the self-assembly approach 

where cells were stimulated with ascorbic acid to induce ECM production. They were able to stack 

multiples of those 3D ECMs and seed an epithelium on top and an endothelium at the bottom. This was 

well received with good tensile strength, but no optical data was reported [3,6]. In KC, an approach like 

this would not be necessary since the endothelium normally remains intact and what needs to be restored 

are the stroma and/or epithelium. In a recent study, corneal stromal cells derived from KC donors were 

isolated and stimulated with ascorbic acid [4] in order to characterize ECM secretion and assembly. The 

authors reported major differences from healthy corneal cells including the inability to secrete large 

amounts of ECM, higher number of myofibroblasts, and fibrotic ECM [4]. This confirmed the 

dysfunction of KC stromal cells and the need for replacement or reprogramming. It is therefore clear 

that the 3D in vitro models hold great potential for KC transplantation, but more refinement and studies 

are necessary before those can be transplanted. Other in vitro models of KC disease are concentrating 

on 2D studies and cell–cell interactions [2,5–9,11–16]. While these are invaluable and provide a better 

understanding on mechanism, the more clinically oriented models are the ones that can possibly provide 

a future treatment of the KC defects.  
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5. Tissue Engineering Materials 

Tissue engineering strategies have been very important in a variety of therapeutic approaches [179–184]. 

The ultimate goal is to repair or replace portions or whole tissues using these strategies. KC is a corneal 

dystrophy that currently lacks animal model for detailed studies and interestingly enough not many tissue 

engineering strategies have been attempted. It is important to keep in mind a few rules about using tissue 

engineering solutions for corneal tissue. An artificial cornea would have to adhere to several basic rules 

in order to be successful. (1) Integrate into the recipient tissue and the surroundings, (2) allow epithelial 

layer formation and tear film, (3) allow corneal innervation without side effects, (4) avoid immunologic 

reactions and infections, and (5) adopt corneal functions such as optical refraction. The next section of 

this review will discuss some of the most popular and widely used biomaterials that can be important 

for KC treatment. 

5.1. Acellular Corneal Stroma 

The most successful and widely accepted treatment for KC is corneal transplantation where the 

damaged tissue is replaced with a human donor cornea. While this is popular, there are a several 

limitations as discussed above. Recently, developments in bioengineered corneal substitutes have been 

designed, including acellular matrices [185–191]. Corneal ECM is mainly collagenous and the obvious 

choice would be an acellular collagen ECM which can be successfully implanted. This has been 

developed and tested mainly in animals [187,188,191,192] where the ACS relies on repopulation by host 

cells to restore corneal function and therefore vision. Griffith and co-authors reported ACS 

transplantation in humans [193] with the highest corrected visual acuity of 0.4 achieved. However, there 

were problems with these constructs, such as post-surgical astigmatism developed by 60% of the patients 

due to degradation of the biomaterial. Fish-scale collagen ECM is a different type of ACS and it has 

only been recently investigated in ocular research [194–198]. Briefly, it is a naturally occurring collagen 

Type I obtained from scales of the tilapia fish. Their scales consist of highly organized, parallel arranged 

collagen fibers that are packed in layers oriented approximately 90 degrees, mirroring a human  

cornea [194–196]. It has been shown that this ECM can support the growth of corneal cells in vitro with 

high levels of oxygen permeability [197]. In addition, the fish-scale ECM is shown to have minimum 

inflammatory responses in vivo [198]. Recently, van Essen and co-authors [194] reported promising 

results when the fish-scale ECM was used in a rat anterior lamellar keratoplasty. One of the latest 

technologies is the supramolecular 4-arm-PEG-(POG) biomaterial which shows great promise as a drug 

carrier in corneal diseases and defects [199]. While the ACS solution is by no means ready, it represents 

an interesting option for KC patients that require transplantation. With a shortage of corneal donor tissue 

it is vital that we consider alternative solutions.  

5.2. Collagen Equivalents  

There is a huge variety of collagen models for corneal applications. Collagen has been used for years 

in many applications and holds great potential for many diseases. In KC, it is obvious to consider a 

partial transplantation with a collagen ECM. Here, we review some of the most promising systems 

available that might help in the KC treatment in the future. In its simplest form, a cornea equivalent 
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consists of a collagen stromal ECM with corneal keratocytes seeded in it and covered with an epithelium 

layer [200–203]. Parnigotto et al. [201] mixed keratocytes with collagen extracted from rat tails and 

seeded a layer of epithelial cells on top, letting the co-culture grow for 7 days. The results showed a 

good epithelial layer with expression of known differentiation markers such as AE5. Germain [202,203] 

constructed a corneal equivalent with 4–5 layers of epithelium following culture for 3 days on top of 

collagen ECM with keratocytes. In that study, staining of anti-integrin β1 was shown in the basal cells, 

mimicking normal corneas in vivo. Other integrins reported included α3, α5, and α6. As an alternative 

to the rat tail collagen ECM, Orwin and Hubel [200] developed a co-culture model using bovine Type I 

dermal collagen. In that study, both epithelial-stroma and endothelial-stroma equivalents were reported. 

As natural development, several attempts have been made to develop a more reliable corneal 

equivalent that mimics the entire human cornea in vivo and consist of all layers: corneal epithelium, 

stroma, and endothelium. So far, three-dimensional corneal equivalents with primary bovine corneal 

cells [204–206], primary rabbit corneal epithelial and endothelial cells, immortalized mouse corneal 

endothelial cells [207], primary corneal pig cell [208–211], primary human corneal epithelial cells and 

fibroblasts, immortalized human endothelial cells [212], and immortalized human corneal cell  

lines [213–215] have been reported. Whole corneal replacement is not necessary for KC treatment, and 

almost certainly an epithelium-stroma co-cultured ECM is the most likely target for KC transplantation. If 

developed, this could provide ways for treating KC defects and at least partially replace corneal 

transplantation. Clearly, there are questions about the viability of the constructs, such as survival of the 

cells once transplanted, cell type to be transplanted, cell source, and graft failure. These are only a few 

of the concerns that need to be addressed before a clear solution can be found. 

5.3. Polymers  

The ECM is a critical part of every tissue/organ and it provides physical support to tissues and defines 

cellular behaviors and tissue functions. The other popular approach in tissue engineering is the use of 

polymers. There are two main categories: biopolymers and synthetic polymers [216]. The main 

difference between the two is in their structure [217]. Biopolymers are polymers produced by living 

organisms and their structures are predetermined based on their physical characteristics [216,218,219]. 

On the other hand, the synthetic polymers are human-made and their properties are well  

controlled [217,220]. They have superior mechanical and physical properties and because they are 

human-made, are easy to produce in large batches and maintain reproducibility. The problem with them 

is that they tend to lack biocompatibility and therefore result in inflammatory responses, rejections by 

the host, and fibrosis. In cornea, the most well-known synthetic product is keratoprostheses  

(KPros) [221–227] which are designed to replace the central portion of an opaque cornea. KPros have 

been used for many years with relatively high success rates. A recent alternative has been the  

AlphaCor [228–230]. AlphCor is a transparent poly9hydroxyethyl methacrylate (pHEMA) sponge that 

allows cellular ingrowth. While this is a promising polymer, and it could potentially be used for KC 

treatment to replace cornea thickness and allow cell migration, there are significant problems, such as 

the non-existing re-epithelialization and nerve regeneration. Perhaps, the most promising report of polymers 

with adequate transparency for corneal repair and good cell ingrowth are from Bruinning et al. [231] who 
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reported a free-radical polymerization of butyl methacrylate, hexaethyleneglycolmethacrylate, and a 

dimethacrylate cross-linker.  

In human cornea application, the most dominant biopolymers are collagen I and collagen V, which 

are the base of most bioscaffolds developed today. Griffith et al. [232,233] fabricated stromal ECM from 

glutaraldehyde cross linked collagen/chondroitin-6-sulfate hydrogels. The authors reported acceptable 

morphological characteristics; however, the physical properties of the material were inadequate for 

transplantation. As an improvement to their original model, the authors later reported a terpolymer named 

poly(N-isopropylacrylamide-co-acrylic acid-co-acryloxysuccinimide) or PNiPAAm-co-AAc-co-ASI [187,234]. 

These resulting hydrogels were adequate for transplantation and when tested in pigs, allowed epithelial 

overgrowth, stromal cell ingrowth, and functional nerve plexus [187]. 

6. Future 

Biomaterials are expected by scientists to function as cell scaffolds to replace damaged or injured 

tissue/organ. The composition and properties of biomaterials used for tissue engineering varies 

significantly between individuals and tissues. Ultimately, the goal is to replace or regenerate the 

damaged tissue without any complications for the host. In the cornea, the major challenge is to replace 

and maintain the transparency properties of the original tissue. The complex structure of a dense and 

highly organized collagen ECM in the human cornea is a challenge for biomaterials. In KC, there are 

three main characteristics of the disease: (1) cornea thinning, (2) corneal bulging, and (3) corneal 

scarring. In order to apply tissue engineering techniques, there are several characteristics that the new 

biomaterial should provide. It should have similar mechanical and physical properties to the host tissue, 

replaces the stroma thickness while it allows for host keratocytes to migrate and repopulate it, and at the 

same time be friendly to the epithelial cells so they can grow on top of the graft. Of course, cell-seeded 

biomaterials are also possible and could be transplanted with keratocytes and epithelial cells. In this 

case, the main challenge would be to avoid graft rejection and any immunological responses by the host 

tissue. Conventional biomaterials are designed and fabricated relatively easily these days and have found 

applications in a variety of tissues. One of the most popular collagen-based ones is the animal-derived 

collagen and poly(glycolic acid) (PGA). Despite the progress, however, further refinement of current 

biotechnology and tissue engineering techniques is necessary. In order for our biomaterials to mimic the 

native tissue or organ at the nanoscale level and be able to provide biocompatibility, further more 

intelligent biomaterial development is necessary. In KC and in any ocular trauma defect, such a 

biomaterial would instantly find space in surgical rooms. Being able to restore vision is vital for quality 

of life. Corneal transplants are currently available and have great success; however, the cornea donor 

shortage is a major problem. This is especially true for third world countries or places where they do not 

have access to these tissues due to legislation, logistics, or religion.  

One area of research that remains to be explored further is the area of embryonic stem cells (ESC). 

Whether we are talking about injecting these cells or combining them with a substrate for transplantation, 

these cells have properties that can be proven vital in tissue engineering advancements. In KC, stem cells 

have not been employed or tested yet. Can these cells differentiate to keratocytes? Can they repair the 

lost corneal thickness? Can they restore its physical properties? Can they do it on their own or is a 

substrate is required? If yes, which substrate is the best for these cells to thrive? Autogenous ESCs would 
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be ideal in order to minimize chances of host rejection and immune responses; however, this is not 

always available due to harvesting techniques and phenotype control. Use of xenogeneic or allogeneic 

cells requires even more attention since it is vital to shut down immunological avenues before 

transplantation.  

Still, great interest and potential remains for developing new, “smart” biomaterials that can be used 

with or without cells as implants to stimulate and enhance regeneration. Based on the composition of 

the cornea, the obvious choice of a biomaterial would be collagen based. However, any advancement 

would be well-received in combination or with modifications for promoting corneal regeneration.  

7. Conclusions 

The systematic study of the physical and biochemical effects and capabilities of the available 

biomaterials as corneal replacement demonstrates their potential for future use in KC disease as well as 

in other corneal defects. The availability of an easy obtainable, cost-effective, and biocompatible 

biomaterial can have a high impact on treating KC and reduce the shortage of donor corneas. The arrival 

of CXL has definitely changed the KC treatment standards; however, there is still a large number of 

people that will require corneal transplantation and can benefit from the development of a biomaterial. 
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