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7Department of Anatomy, University of Port Harcourt, Port Harcourt, Nigeria

Background: Several population-based case-control studies have reported

concurrent presentation of cancer and congenital malformations. Many

associations have beenmade between oral clefting and cancers, though some

of these results are conflicting. Some studies have reported an increased risk

of cancer among 1st-degree relatives of cleft cases and vice versa, and also

an excess risk of cancers of the breast, lung, and brain among those with oral

clefts. This study aimed to determine if the genetic polymorphisms found in

some cancers are also associated with orofacial cleft in an African cohort.

Methods: The study was a case-control and case-triad study in which

cases were 400 individuals clinically diagnosed with non-syndromic cleft

lip and/or palate (CL/P), while controls were 450 individuals without CL/P.

Samples were obtained from three African countries while DNA extraction,

PCR, and genotyping were carried out at the University of Iowa, US. Eleven

SNPs in genes coding for SWI/SNF subunits and 13 GWAS significant SNPs

for cancers associated with orofacial cleft were selected. Case-control

analysis, transmission disequilibrium test (TDT), and DFAM to combine the

parent-o�spring trio data and unrelated case/control data in a single analysis

were carried out using PLINK.

Results: For the case-control analyses that included all the clefts and

for the CLP subtype, none of the SNPs were statistically significant.

Statistically increased risk for the following SNPs rs34775372 (p = 0.02;

OR = 1.54, CI:1.07–2.22), rs55658222 (p = 0.009; OR = 2.64,

CI:1.28–5.45) and rs72728755 (p = 0.02; OR=2.27, CI:1.17–4.45)

was observed with the CL only sub-group. None of these were

significant after Bonferoni correction. In the TDT analyses, a
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significantly reduced risk with rs10941679 (p= 0.003; OR= 0.43, CI:0.24–0.75)

was observed and this was significant after Bonferroni correction. The

rs10941679 was also significant (p = 0.003) in the DFAM analyses as well even

after Bonferroni correction.

Conclusion: The results from this study represent an important starting point

for understanding the concurrent presentation of some cancers in orofacial

clefts, and cancer risks in cleft patients. The associations observed warrant

further investigation in a larger cohort and will set the stage for a more

mechanistic approach toward understanding the risk for cancers in families

with clefts.
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Introduction

Current knowledge about the causes of orofacial cleft

(OFC) points particularly toward genetic risk factors,

though environmental factors such as smoking have

also been implicated [1]. The study of the pathogenesis

of OFC has provided ample opportunities to identify

candidate genes for this disorder [2]. Cancers also have

a multifactorial etiology, with environmental and genetic

factors playing important roles. Recent molecular studies have

identified several genetic susceptibility factors for various

cancer subtypes [3].

Concurrent presentation of cancer and congenital

malformations has been reported in several population-

based case-control studies [4]. An established example of

this includes the basal cell nevus syndrome, which presents

with congenital anomalies and basal cell carcinoma and

medulloblastoma. Many associations have been reported

between orofacial clefts (OFC) and cancers, though some

of these studies are conflicting [5, 6]. Some studies have

reported an increased risk of cancer among 1st-degree

relatives of cleft cases and vice versa, and also an excess risk

of cancers of the breast, lung, and brain among those with

oral clefts [7, 8].

Various epidemiological study designs have been applied

to identify associations between specific cancer entities

and OFC. A study by Bille et al. [9] found a significantly

higher prevalence of: breast cancer in females with cleft

lip and/or cleft palate; brain cancer in females with

cleft palate; and lung cancer in males with cleft lip and

palate (CL/P).

Since both cancer and OFC have a multifactorial etiology

and are sometimes seen together, they both may share genetic

and environmental risk factors. Most published investigations

into a common genetic etiology for OFC and cancer have been

purely descriptive [10]. Many of them have revealed possible

links between OFC and specific cancer subtypes. For example,

chromosomal region 8q24.21 contains several cancer-risk single

nucleotide polymorphisms (SNPs), and it is also a significant risk

locus for non-syndrome cleft lip and palate (NSCL/P)0.1 [10].

Other studies have found mutations in chromatin

remodeling complexes associated with cancers also to be

associated with non-cleft craniofacial deformities [11, 12].

Mutations of theARID1B gene (a gene that provides instructions

for making a protein that forms one subunit of several

different SWItch/Sucrose Non-Fermenting (SWI/SNF) protein

TABLE 1 SNPs selected for genotyping.

Chromatin remodeling complex SNPs

(Associated with cancers and Coffin-Siris syndrome)

rs387906845

rs387907140

rs796052240

rs796052242

rs876657378

rs281875226

rs875989800

rs387906812

rs387906857

rs281875238

rs281875239

GWAS significant SNPs for cancer subtypes

(that are associated with orofacial cleft)

rs11117758

rs13025833

rs6809420

rs34775372

rs10941679

rs10505477

rs6983267

rs7014346

rs11780156

rs55658222

rs72728755

rs3785982

rs138007679
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complexes) was found by Vals et al. in 2014 to be the cause of

Coffin-Siris syndrome. This syndrome is characterized by many

variable signs and symptoms, including craniofacial deformities

such as a wide nose with a flat nasal bridge, a wide mouth with

thick lips, thick eyebrows, and eyelashes. The ARID1B protein

and other SWI/SNF subunits are thought to act as tumor

suppressors. As such, mutations in the ARID1B gene have been

found to be involved in several types of cancer, including breast

cancer, neuroblastoma, and diffuse large B-cell lymphoma [13].

Polymorphisms of another SWI/SNF-related gene, SMARCA2,

have also been found to be associated with Nicolaides-Baraitser

syndrome (which also presents with distinctive facial features)

[12] and lung, and head and neck cancers.

The knowledge of a shared genetic predisposition between

some cancers and OFC will not only advance our understanding

but also give more insight into the functions of culpable

genes and genomic regions that may be identified. Most

studies that have been carried out on this possible relationship

between OFC and cancers have been predominantly on

Caucasians. [9, 10]. This present study aimed to determine

if the genetic polymorphisms found in some cancers are

also associated with orofacial cleft in an African cohort.

Specifically, this study focused onGWAS significantly associated

polymorphisms for cancers and SNPs associated with chromatin

remodeling complexes.

Methods

Study design

The study was a case-control and case-triad study in

which cases were 400 individuals clinically diagnosed with non-

syndromic cleft lip and/or palate (CL/P), while controls were 450

age- and sex-matched individuals without CL/P.

Study location

This study was part of an ongoing study where over

12,000 saliva samples from Africa were obtained for our cleft

projects (AfriCRAN). The samples for cases and controls in

this study were obtained at the Cleft clinic of Oral and

TABLE 2A All clefts –control analyses of GWAS significance SNPs for cancer (all clefts, N = 424 and controls, N = 449).

CHR SNP A1 A2 MAF_A MAF_U OR SE L95 U95 P

1 rs11117758 A G 0.1459 0.1512 0.9092 0.2054 0.6079 1.36 0.64

2 rs13025833 A G 0.3529 0.3669 0.9338 0.1099 0.7528 1.158 0.53

3 rs6809420 T G 0.1945 0.1969 1.053 0.1698 0.7551 1.469 0.76

4 rs34775372 T C 0.2763 0.2298 1.26 0.146 0.9463 1.677 0.11

5 rs10941679 G A 0.1639 0.1962 0.795 0.1758 0.5632 1.122 0.19

8 rs10505477 G A 0.1348 0.12 0.943 0.2403 0.5887 1.51 0.81

8 rs6983267 T G 0.05238 0.04362 1.041 0.4098 0.4664 2.325 0.92

8 rs7014346 A G 0.3866 0.4049 0.9472 0.1042 0.7722 1.162 0.60

8 rs55658222 A G 0.09547 0.06264 1.74 0.3405 0.8928 3.392 0.10

8 rs72728755 A T 0.09308 0.06585 1.501 0.3084 0.82 2.747 0.19

CHR, chromosome; SNP, variant identifier; A1, Allele 1 (usually minor); A, Allele 2 (usually major); MAF_A, Allele freq in cases; MAF_U, Allele freq in controls; SE, Standard error.

TABLE 2B CLP -control analyses of GWAS significance SNPs for cancer (CLP, N = 165 and controls, N = 449).

CHR SNP A1 OR SE L95 U95 P

1 rs11117758 A 1.006 0.2661 0.5971 1.695 0.98

2 rs13025833 A 0.8269 0.1539 0.6116 1.118 0.22

3 rs6809420 T 0.8466 0.2588 0.5098 1.406 0.52

4 rs34775372 T 1.149 0.1992 0.7773 1.697 0.49

5 rs10941679 G 0.6806 0.2773 0.3953 1.172 0.16

8 rs10505477 G 0.9542 0.3335 0.4963 1.834 0.89

8 rs6983267 T 0.9857 0.5794 0.3166 3.069 0.98

8 rs7014346 A 0.9567 0.1413 0.7253 1.262 0.75

8 rs55658222 A 1.411 0.4592 0.5735 3.47 0.45

8 rs72728755 A 1.216 0.4359 0.5173 2.856 0.65
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TABLE 2C CL -control analyses of GWAS significance SNPs for cancer (CL, N = 128 and controls, N = 449).

CHR SNP A1 OR SE L95 U95 P

1 rs11117758 1 1.19 0.27 0.70 2.01 0.52

2 rs13025833 1 1.14 0.15 0.85 1.53 0.39

3 rs6809420 2 1.17 0.23 0.74 1.84 0.50

4 rs34775372 2 1.54 0.18 1.07 2.22 0.02

5 rs10941679 2 0.80 0.28 0.46 1.38 0.41

8 rs10505477 2 1.21 0.30 0.67 2.18 0.53

8 rs6983267 2 1.54 0.46 0.63 3.80 0.34

8 rs7014346 1 0.83 0.15 0.61 1.12 0.22

8 rs55658222 1 2.64 0.37 1.28 5.45 0.009

8 rs72728755 2 2.27 0.34 1.17 4.45 0.02

TABLE 2D CP -control analyses of GWAS significance SNPs for cancer (CP, N = 82 and controls, N = 449).

CHR SNP A1 OR SE L95 U95 P

1 rs11117758 1 0.57 0.5217 0.21 1.59 0.28

2 rs13025833 1 0.92 0.2031 0.62 1.37 0.69

3 rs6809420 2 1.35 0.2473 0.83 2.19 0.23

4 rs34775372 2 1.26 0.2622 0.76 2.11 0.37

5 rs10941679 2 0.97 0.2813 0.56 1.68 0.90

8 rs10505477 2 0.73 0.5287 0.26 2.07 0.56

8 rs7014346 1 1.09 0.1999 0.73 1.61 0.68

Maxillofacial surgery at the Lagos University Teaching Hospital,

Lagos; Yekatit 12 Hospital Addis Ababa, Ethiopia; and Kwame

Nkrumah University of science and technology Ghana. DNA

extraction, PCR, and genotyping for cases and controls were

done at the Butali Laboratory, University of Iowa, USA.

Ethical approval for the study was obtained from the IRB of

each of the participating centers - Lagos University Teaching

Hospital (ADM/DCST/HREC/VOL.XV/321), KwameNkrumah

University of Science and Technology (CHRPE/RC/018/13), and

Yekatit 12 Hospital Addis Ababa, Ethiopia (003/10/surg).

Identification of markers

SNPs near genes coding for SWI/SNF subunits associated

with susceptibility to head and neck cancers and Coffin-Siris

syndrome were selected Eleven SNPs were selected using this

method (Table 1). Furthermore, we searched the GWAS catalog

(https://www.ebi.ac.uk/gwas/) to identify SNPs (markers) that

have been reported to be significantly associated with cancers.

We focused on some cancers that were previously reported to be

associated with orofacial clefts, e.g., breast, lung, and colorectal

cancer (Bille et al.) [9]. Thirteen SNPs were identified using this

method (Table 1). Thus, a total of 24 markers were selected and

used for this study (Table 1).

Sample size and power calculation

Using the power calculation tool developed by [22], the

power estimate for this association study of 400 all cleft cases

and 450 controls was calculated for one-sided tests under an

additive genetic model. For the association of a locus, we chose

an α of 0.05 but adjusted this for the number of SNPs tested. In

this case, we genotyped 24 SNPs but only 13 were informative

and included in the final analyses. This led to an adjusted α

of 3.84 × 10−3 (Bonferroni-adjusted α of 0.05 for 13 tests).

For convenience, we present power estimates for effect sizes

of 2.0 and 1.8, which are at the lower end of the range of

effect sizes of discovery GWAS. For an α of 3.84 × 10−3 and

under an additive genetic model, the study has 93.5% power

at a minor allele frequency (MAF) of 0.10, and 68% power

at an MAF of 0.05, to detect a genotypic relative risk of 2.0.

For a genotypic relative risk of 1.8, the study has 79.3% power

at a MAF of 0.10.

Sample processing

Saliva samples were collected from the cases and controls

using Oragene tool kits. These kits were labeled and assigned

a unique identification number (UNID). Stored saliva samples
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TABLE 3A Transmission disequilibrium test for all clefts (N = 156 triads).

CHR SNP A1 T U OR L95 U95 CHISQ P

1 rs11117758 1 5 12 0.42 0.15 1.18 2.882 0.09

2 rs13025833 1 23 14 1.64 0.85 3.19 2.189 0.14

3 rs6809420 2 10 14 0.71 0.32 1.61 0.6667 0.41

4 rs34775372 2 14 18 0.78 0.39 1.56 0.5 0.48

5 rs10941679 2 5 20 0.25 0.09 0.67 9 0.003

8 rs10505477 2 9 3 3 0.81 11.08 3 0.08

8 rs6983267 2 4 2 2 0.37 10.92 0.6667 0.41

8 rs7014346 1 23 26 0.88 0.50 1.55 0.1837 0.67

8 rs55658222 1 5 3 1.67 0.40 6.97 0.5 0.48

8 rs72728755 2 4 4 1 0.25 4.0 0 1

TABLE 3B Transmission disequilibrium test for CLP (N = 156 triads).

CHR SNP A1 T U OR L95 U95 CHISQ P

1 rs11117758 1 11 8 1.38 0.55 3.42 0.47 0.49

2 rs13025833 1 17 12 1.42 0.68 2.97 0.86 0.35

3 rs6809420 2 7 8 0.88 0.32 2.41 0.07 0.80

4 rs34775372 2 20 10 2 0.94 4.27 3.33 0.07

5 rs10941679 2 7 12 0.58 0.23 1.48 1.32 0.25

8 rs10505477 2 5 5 1 0.29 3.45 0 1

8 rs7014346 1 15 22 0.68 0.35 1.31 1.32 0.25

8 rs55658222 1 6 1 6 0.72 49.84 3.57 0.06

8 rs72728755 2 7 1 7 0.86 56.89 4.5 0.03

from the ongoing genetic studies were used. Consent was

obtained prior to the collection of saliva samples. The stored

saliva samples were anonymized and cannot be traced to any

individual participant.

DNA extraction was carried out at the Butali laboratory

using the Murray Laboratory protocol (genetics@uiowa.edu).

Extracted DNA samples were quantified using Qubit (http://

www.invitrogen.com/site/us/en/home/brands/Product-Brand/

Qubit.html; Thermo Fisher Scientific, Grand Island, NY). Stocks

and working aliquots were made for downstream analyses. For

quality control (QC) analysis, we confirmed the reported sex

using the Taqman XY genotyping.

Pre-amplification of DNA and assay of
amplified products

We created the 0.2X PreAmp cocktail by combining 40X

assay with the low-TE buffer. The 40X assay contained 1.5l

for each of the 24 assay markers. The 0.2X PreAmp cocktail

was combined with the PreAmp Master Mix (Qiagen product)

to make the sample Pre-Mix. This was then added to 2 ng/ul

of DNA before running the amplification program. Positive

controls were included in the wells before the pre-amplification.

The negative controls were not amplified. These controls help to

test the quality of the results of calls. Each well contains 4l of the

sample Pre-Mix and 1.3 lul DNA. TheDNA samples and positive

controls were then amplified. Details of the PCR reaction (used

to amplify the DNA) conditions (denaturing, annealing, and

extending temperatures) are available from Butali laboratories

upon request. Each well is then diluted by adding 2 ul low-

TE buffer.

The assay plate and samples were prepared. Details of these

preparations are available from Butali laboratories upon request.

These samples were then sent to the Iowa Institute of Human

Genetics (IIHG) for the Fluidigm run and generation of the data.

The protocol for this step is available from Butali laboratories

upon request.

The data obtained from the Fluidigm run were

analyzed using the Fluidigm SNP Genotyping Analysis

software. This software produces an SDS plot based on the

genotype of the SNPs (markers) at the loci in each sample

(Supplementary Figure 1). The genotypes at different loci were

called and were included in the association analyses.
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TABLE 3C Transmission disequilibrium test for CL (N = 123 triads).

CHR SNP A1 T U OR L95 U95 CHISQ P

1 rs11117758 1 11 8 1.38 0.55 3.42 0.47 0.49

2 rs13025833 1 17 12 1.42 0.68 2.97 0.86 0.35

3 rs6809420 2 7 8 0.88 0.32 2.41 0.07 0.80

4 rs34775372 2 20 10 2 0.94 4.27 3.33 0.07

5 rs10941679 2 7 12 0.58 0.23 1.48 1.32 0.25

8 rs10505477 2 5 5 1 0.29 3.45 0 1

8 rs7014346 1 15 22 0.68 0.35 1.31 1.32 0.25

8 rs55658222 1 6 1 6 0.72 49.84 3.57 0.06

8 rs72728755 2 7 1 7 0.86 56.89 4.5 0.03

TABLE 3D Transmission disequilibrium test for CP (N = 79 triads).

CHR SNP A1 T U OR L95 U95 CHISQ P

1 rs11117758 1 4 12 0.33 0.11 1.03 4 0.05

2 rs13025833 1 10 9 1.11 0.45 2.73 0.05 0.82

3 rs6809420 2 8 3 2.67 0.71 10.05 2.27 0.13

4 rs34775372 2 11 4 2.75 0.88 8.64 3.27 0.07

5 rs10941679 2 5 8 0.63 0.20 1.91 0.69 0.41

8 rs10505477 2 5 5 1 0.29 3.45 0 1

8 rs6983267 2 1 2 0.5 0.05 5.51 0.33 0.56

8 rs7014346 1 14 11 1.27 0.58 2.80 0.36 0.55

8 rs55658222 1 1 1 1 0.06 15.99 0 1

8 rs72728755 2 1 1 1 0.06 15.99 0 1

Data analysis

All the samples were divided into four categories: “All clefts”,

“Cleft lip alone (CL)”, “Cleft palate alone (CP),” and “Cleft lip

and palate (CLP)” in order to identify the risk of cancers in each

of the cleft phenotypes.

We conducted three association tests (case-control,

transmission disequilibrium test (TDT), and DFAM) to identify

a significant association between cancer GWAS significant

SNPs and clefts using PLINK (www.cog-genomics.org/plink2).

Case-control analyses have increased power to detect significant

statistical association and shows the difference in the MAF

between cases and controls. However, case-control analyses

are prone to population stratification. For this analysis, only

the affected cases and match controls were included. The

transmission disequilibrium test (TDT) is used to determine

over-transmission of the minor allele to detect an association

of the minor allele with the cleft types and it is not prone

to population stratification. This involves only the affected

cases and both parents. Since we have dyads and triads in

the cohort, we then used DFAM to combine both (dyads and

triads) in the association analyses as well as combine related and

unrelated samples.

Results

A total of 24 single nucleotide polymorphisms were

genotyped. Genotypes from 11 SNPs from chromatin

remodeling complexes were not informative since they all

genotyped as homozygotes for either of the alleles in our cohort.

The genotype data for the 13 GWAS significant SNPs were

informative and used for the final analyses (Tables 2–4).

Case-control analyses

For the analyses that included all the clefts and for

CLP subtype, none of the SNPs was statistically significant

(Table 2). However, we observed statistically increased risk

for the following SNPs rs34775372 (54% increased risk for

cancer in CL cases compared to controls), rs55658222 (two-fold

increased risk for cancer in CL cases compared to controls),

and rs72728755 (two-fold increased risk for cancer in cases

compared to controls). None of these were significant after

Bonferroni correction. However, the trend toward significance

is worthy of note and where the sample size is increased might

be clinically relevant.
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TABLE 4A DFAM of all clefts (cases, N = 428 and controls, N = 1444).

CHR SNP A1 A2 OBS EXP CHISQ P

1 rs11117758 1 2 30 40.14 4.90 0.03

2 rs13025833 1 2 95 86.26 1.97 0.16

3 rs6809420 2 1 50 48.15 0.13 0.72

4 rs34775372 2 1 77 71.3 0.98 0.32

5 rs10941679 2 1 33 47.94 8.83 0.003

8 rs10505477 2 1 28 25.21 0.57 0.45

8 rs6983267 2 1 8 7.147 0.21 0.65

8 rs7014346 1 2 113 114.3 0.03 0.85

8 rs11780156 2 1 0 0.5 1 0.32

8 rs55658222 1 2 20 13.35 5.97 0.01

8 rs72728755 2 1 19 13.75 3.64 0.06

21 rs138007679 2 1 0 0.6691 0.75 0.39

TABLE 4B DFAM analyses of CLP (cases, N = 167 and controls, N = 971).

CHR SNP A1 A2 OBS EXP CHISQ P

1 rs11117758 1 2 6 9.5 2.88 0.09

2 rs13025833 1 2 30 26.5 1.26 0.26

3 rs6809420 2 1 13 14.5 0.31 0.58

4 rs34775372 2 1 21 22 0.12 0.73

5 rs10941679 2 1 10 16.5 6.26 0.01

8 rs10505477 2 1 10 7 3 0.08

8 rs6983267 2 1 5 4 0.67 0.41

8 rs7014346 1 2 32 33.5 0.17 0.68

8 rs55658222 1 2 5 4.5 0.11 0.74

8 rs72728755 2 1 4 4.5 0.11 0.74

TDT analyses

For all clefts, we observed a significantly reduced risk for

cancer with rs10941679 (75% reduced risk of cancer in families

with all clefts compared with controls) suggesting that this

locus might be protective. This was significant after Bonferroni

correction.We observed a 7-fold risk for cancer with rs72728755

in families with CLP and CL compared to controls. We also

observed a nominally significant 67% reduced risk for cancer in

families with CP compared with controls for SNP rs11117758

after Bonferroni correction (Table 3).

DFAM analyses

For all clefts, we observed a significant association with

rs10941679 (p = 0.003). This was still significant after

Bonferroni correction. For the CLP sub-group, we observed a

significant association with rs10941679 (p= 0.01) and for the CL

subgroup, we observed a significant association with rs72728755

(p= 0.03). Finally, we observed a nominal significant association

for rs11117758 with CP. None of these SNPs were significant

after Bonferroni correction (Table 4).

Discussion

Recent studies have demonstrated a relationship between

orofacial cleft and cancers, and several genetic alterations have

been found to be associated with NSCL/P and a few cancer

subtypes. Our study explored the relationship between orofacial

clefts and cancers by genotyping for GWAS significant SNPs

associated with cancers in an African cohort of NSCL/P patients

and their parents.

Five SNPs (rs34775372, rs72728755, rs55658222,

rs10941679, and rs11117758) showed significant association

with orofacial clefts in one or two of the different analytical

approaches. In both the case-control and TDT analyses, we

observed an increased risk for CL and CLP for rs72728755. A

nominal significant association was also observed for this SNP
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TABLE 4C DFAM analyses of CL (cases, N = 130 and controls, N = 891).

CHR SNP A1 A2 OBS EXP CHISQ P

1 rs11117758 1 2 14 12.5 0.4737 0.49

2 rs13025833 1 2 23 20 1.2 0.27

3 rs6809420 2 1 11 11 0 1

4 rs34775372 2 1 24 19.5 2.613 0.11

5 rs10941679 2 1 8 12 2.909 0.09

8 rs10505477 2 1 6 6 0 1

8 rs6983267 2 1 1 0.5 1 0.32

8 rs7014346 1 2 25 28 0.9474 0.33

8 rs11780156 2 1 0 0.5 1 0.32

8 rs55658222 1 2 7 4.5 3.571 0.06

8 rs72728755 2 1 8 5 4.5 0.03

TABLE 4D DFAM analyses of CP (cases, N = 82 and controls, N = 787).

CHR SNP A1 A2 OBS EXP CHISQ P

1 rs11117758 1 2 4 8 4 0.05

2 rs13025833 1 2 12 11.5 0.05 0.82

3 rs6809420 2 1 8 5.5 2.27 0.13

4 rs34775372 2 1 14 10.5 3.27 0.07

5 rs10941679 2 1 5 6.5 0.69 0.41

8 rs10505477 2 1 5 5 0 1

8 rs6983267 2 1 1 1.5 0.33 0.56

8 rs7014346 1 2 20 18.5 0.36 0.55

8 rs55658222 1 2 1 1 0 1

8 rs72728755 2 1 1 1 0 1

in the DFAM analyses. These results suggest that the risk for

cancer might be higher in individuals with both cleft types when

they carry the risk alleles at this locus. The fact that this SNP

was identified using three independent approaches provides

evidence of the reproducibility of the outcome. The rs72728755

SNP was previously reported to be significantly (p = 2.70 ×

10–22, OR=2) associated with orofacial clefts in a study by

Yang et al. [14].

While the roles of rs55658222 (8q24.21) and rs72728755

(8q24.21) in orofacial cleft are well documented in the literature,

less is known of their functions in cancer. These SNPs have

not been directly associated with any cancer subtype but have

been found to be in linkage disequilibrium with another SNP

rs72728744 (8q24.21). The rs72728744 SNP is associated with

lung adenocarcinoma [15]. The rs72728744, rs55658222, and

rs72728755 are all located on chromosome 8q24, which several

studies have shown to be associated with multiple cancer types

[16, 17]. Recent studies demonstrate that the 8q24 loci are

within potential enhancers. The enhancers physically interact

with the MYC gene, which has a longstanding history in

cancer biology [17].

In this study, rs34775372 (4p16.2) (which is previously

known to be associated with colorectal and breast cancer) [18]

was found to be associated with an increased risk for cancer

with CL in the case-control analyses. This is the first time this

association is being recorded to the best of our knowledge. The

rs34775372 is an intergenic variant located at the cytogenetic

region 4p16.2 andmapped to be associated with LINC01396 and

STX18-AS1 [18]. These two genes have been reported to play a

role in cleft lip and palate (CLP) through the association of an

intergenic variant, rs1907989, which is also located in the same

cytogenetic region [19]. Therefore, it is possible that rs1907989

and rs34775372 are in linkage disequilibrium and may be

carrying the same risk for clefts and cancer. The rs1907989 has

not been reported to be associated with any cancer subtype.

The rs10941679 was significant after Bonferroni correction

in both the TDT and DFAM analyses with reduced risk for

cancer in clefts. This locus on chromosome 5 may be protective

against cancer in families with clefts. This SNP was previously

reported to increase the risk for breast cancer [20]. Additional

association was observed after DFAM analyses for rs11117758

on chromosome 1. This locus was previously reported for
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increased breast cancer risk [21]. The significant association in

families with all clefts (combination of all the cleft sub-groups)

suggests an increased risk for breast cancer in these families.

Limitations

This study has several limitations and thus the findings

should be interpreted with caution. First, we have a small

sample size for the sub-group analyses. Secondly, we did not

include environmental exposure data since smoking and some

other environmental exposure variables can increase the risk

for cancer and clefts. Though we have questionnaire data on

exposure, this is limited by recall bias and thus we did not

include the data in the analyses.

Conclusion

This study represents an essential addition to understanding

the concurrent presentation of some cancers in orofacial

cleft and cancer risks in cleft patients. The associations

observed warrant further investigation in a larger cohort

and will set the stage for a more mechanistic approach

toward understanding the risk for cancers in families

with clefts.
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