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Abstract

Since the discovery that certain small viral membrane proteins, collectively termed as
viroporins, can permeabilize host cellular membranes and also behave as ion channels,
attempts have beenmade to link this feature to specific biological roles. In parallel, most
viroporins identified so far are virulence factors, and interest has focused toward the
discovery of channel inhibitors that would have a therapeutic effect, or be used as
research tools to understand the biological roles of viroporin ion channel activity. How-
ever, this paradigm is being shifted by the difficulties inherent to small viral membrane
proteins, and by the realization that protein–protein interactions and other diverse roles
in the virus life cycle may represent an equal, if not, more important target. Therefore,
although targeting the channel activity of viroporins can probably be therapeutically
useful in some cases, the focus may shift to their other functions in following years.
Small-molecule inhibitors have been mostly developed against the influenza A M2
(IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin
to date, with a well-established biological role in viral pathogenesis combined the most
extensive structural investigations conducted, and has emerged as a validated drug
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target. For other viroporins, these studies are still mostly in their infancy, and together
with those for AM2, are the subject of the present review.

1. INTRODUCTION

The field of viroporins was born about 20 years ago from the realiza-

tion that viruses inflict injuries in the membranes of cells during infection,

which results in increased membrane permeability (Carrasco, 1995). This

early observation heralded the current interest in viroporins, along with

the therapeutic opportunities afforded by the modulation of their channel

activity using small molecules (Fischer, Wang, Schindler, & Chen, 2012;

Scott & Griffin, 2015), and the deeper understanding of the roles of vir-

oporin ion channel activity on viral replication and pathogenesis (Nieto-

Torres, Verdia-Baguena, Castano-Rodriguez, Aguilella, & Enjuanes, 2015).

This interest will likely increase with the discovery of new viroporins

along with their ever-growing roles in the virus life cycle. Indeed, the num-

ber of medically important viroporins known is expected to rise as new

human viruses continuously emerge from animal hosts. It is also possible that

new viroporins may have novel features and structural motifs which will

contribute in updating their classifications in terms of topology and number

of transmembrane α-helical domains (Nieva, Madan, & Carrasco, 2012). In

vertebrates alone, the number of viruses was estimated to be around onemil-

lion (Morse, 1993). More recent estimates quantify the viral diversity in

mammals, which are the reservoir hosts of the majority of emerging zoono-

ses, as 320,000 (Anthony et al., 2013). This strongly contrasts with the few

thousand viruses identified to date, which means that more than 99% of

viruses—and their viroporins, if any—are still unknown.

Most viroporins have been identified as virulence factors that lead to viral

attenuation when deleted. This attenuation is attributed only in part to their

channel activity, but nevertheless small-molecule channel inhibitors have

been sought after. The vast majority of these channel inhibitors have been

developed against the influenza A virus M2 (IAV M2 or AM2) protein

(reviewed recently in Du, Cross, & Zhou, 2012; Gu, Liu, & Wei, 2013),

which is the first viroporin discovered. This is not surprising since AM2

is the best characterized viroporin to date, with a well-established biological

role in viral pathogenesis combined the most extensive structural investiga-

tions conducted, and has emerged as a validated drug target. For other
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viroporins, these studies are still mostly in their infancy, although a high-

resolution structure of the hepatitis C virus (HCV) p7 protein has been

recently described (Ouyang et al., 2013) that may be useful for the rational

design of p7 channel inhibitors in the future.

However, attempts to rationally design small-molecule inhibitors against

viroporins will encounter several challenges. One is the potential for

sequence variability in the viroporin. Indeed, it has been argued that since

the number of genes susceptible to deleterious mutations increase with

genome size, mutation rates are higher for small genomes (Drake, 1969).

A related problem is that viral proteins, when compared to prokaryotic

and eukaryotic proteins, have a higher degree of structural flexibility that

may represent adaptation mechanisms to increase resistance to random

mutations, especially in the case of RNA viruses, which mutate and evolve

faster than DNA viruses. A less dense packing, and a concomitant smaller

number of network interactions, translates not only to a smaller difference

in energy between folded and unfolded states, but an also smaller percentual

contribution of each mutation to stability (Tokuriki, Oldfield, Uversky,

Berezovsky, & Tawfik, 2009). Additionally, this enhanced flexibility may

have an impact on the ability of a single protein to perform a variety of

tasks, consistent with the economical use of resources in viruses. Adding

to this intrinsic flexibility, another problem in structure-based drug

discovery concerning viroporins is the strong dependence of the protein

structure on environment. Indeed, solution NMR can be applied to study

small-membrane proteins in membrane-mimicking environments that

allow rapid reorientation, but these artificial systemsmay also alter the intrin-

sic properties of the proteins (Cross, Dong, Sharma, Busath, & Zhou, 2012;

Cross, Sharma, Yi, & Zhou, 2011). Last, some viroporins seem to form a

protein–lipid complex rather than a purely proteinaceous pore, as shown

for the VP4 protein in the triatoma virus (Sanchez-Eugenia, Goikolea,

Gil-Carton, Sanchez-Magraner, & Guerin, 2015), and similar observations

have also been reported for coronavirus envelope proteins (Verdia-Baguena

et al., 2012).

In the quest to discover small molecules targeting viroporins, amantadine

(Amt) can be considered to be the first viroporin channel inhibitor, and one

of the first antivirals licensed for use in humans. Although it was known that

this adamantane was active against IAV (Davies et al., 1964; Wingfield,

Pollack, & Grunert, 1969), the mechanism of inhibition was described only

in 1992 (Duff & Ashley, 1992; Pinto, Holsinger, & Lamb, 1992). The

target itself, AM2, was not known until 1985 (Hay, Wolstenholme,
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Skehel, & Smith, 1985). Even today, Amt, together with its methylated

derivative rimantadine (Rim) which was licensed in the 1980s, are the only

licensed antiviral drugs that target viroporins. This contrasts with the avail-

ability of hundreds of compounds that exert their effects with subnanomolar

affinities on nonviral ion channels. Although this phenomenon could be

explained in principle by a lack of structural data for viroporins, this is

not the case for AM2, where precise structural data has been obtained, even

for some of its Amt-resistant mutants (Pielak & Chou, 2011; Wang, Qiu,

Soto, & Degrado, 2011). Unfortunately, an effective alternative to

adamantanes has not yet been licensed.

2. THE INFLUENZA A VIRUS MATRIX PROTEIN 2
(IAV M2 OR AM2)

With our current knowledge, the AM2 channel provides yet another

paradigm valid for other viroporins. It has a very simple structure compared

to ion channels from higher organisms (such as K+ and Ca2+ channels), but

the mechanism of proton conduction and drugs binding and inhibition are

not yet fully understood. Indeed, the structural and functional properties of

the AM2 protein vary widely in changing experimental conditions, such as

peptide length, drug binding, lipid composition, lipid thickness, or pH

(Acharya et al., 2010; Cady, Wang, & Hong, 2011; Cross et al., 2012;

Kovacs, Denny, Song, Quine, & Cross, 2000; Thomaston et al., 2013;

Zhou & Cross, 2013). An important factor in this sensitivity is the direct

contact of its TM domains with the lipid molecules, in contrast to higher

organism ion channels (eg, K+ channels) (Cuello, Jogini, Cortes, &

Perozo, 2010), where pore-forming α-helices are surrounded and protected
by additional transmembrane helices. However, while the AM2 channel

exists in a variety of conformational states in the apo-form, inhibitor-binding

significantly reduces the conformational flexibility of the channel. The

structural dynamics of the channel represents another drawback in the use

of high-resolution structures for rationally designed drug discovery.

Amantadine is just one of the four antivirals against IAV available: two

neuraminidase inhibitors (oseltamivir and zanamivir) and two AM2 channel

blockers (Amt and Rim) (Vanderlinden & Naesens, 2014). The seasonal flu

caused by IAV is associated with high medical burden (Molinari et al., 2007)

and sudden pandemics with high mortality rates (Hay, Gregory, Douglas, &

Yi, 2001; Neumann, Noda, & Kawaoka, 2009). Currently, most circulating

strains are Amt resistant (Bright, Shay, Shu, Cox, & Klimov, 2006;
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Bright et al., 2005; Deyde et al., 2007; Hayden & De Jong, 2011) and

therefore the use of Amt and Rim has been discontinued for the human

population (Fiore et al., 2011).

The AM2 channel is a homotetramer (Sakaguchi, Tu, Pinto, & Lamb,

1997), where each monomer has 97 amino acids containing one α-helical
TM domain (residues 25–46). The extramembrane C-terminal domain (res-

idues 47–97) is exposed to the cytoplasmic side (Lamb, Zebedee, &

Richardson, 1985) and contains an amphipathic helix (residues 51–59). Four
of these amphipathic helices stabilize the tetrameric channel, forming a base

on the membrane surface almost perpendicular to the TM bundle. The end

of this C-terminal tail is disordered and interacts with the viral matrix protein

1 (M1). The M2 protein performs several critical roles for virus replication

(Pinto & Lamb, 2006). For instance, M2-mediated acidification of the inte-

rior of the virus is required for the uncoating of genetic material inside the

cell (Pinto et al., 1992). M2 is also required to regulate the intralumenal pH

of the Golgi apparatus preventing the premature conformational change of

hemagglutinin (Takeuchi & Lamb, 1994).

Influenza B, the closest relative of the influenza A virus, accounts for

about 50% of all influenza disease in recent years (according to the US Cen-

ters for Disease Control and Prevention website, www.cdc.gov) and has a

similarly essential pH-activated proton channel M2 viroporin, the BM2

(Hatta, Goto, & Kawaoka, 2004; Pinto & Lamb, 2006). Although AM2

and BM2 share almost no sequence identity, both have a single TM domain

and form homotetramers (Paterson, Takeda, Ohigashi, Pinto, & Lamb,

2003; Wang, Pielak, McClintock, & Chou, 2009). In comparison, BM2

is completely insensitive to Amt or Rim (Mould et al., 2003; Pinto &

Lamb, 2006) and no BM2 inhibitors have been identified yet.

The location of the binding site for the adamantanes Amt and Rim in

AM2 was initially controversial. A crystallographic structure suggested a

pore-binding model in the amino-terminal part of the TM (22–46),
ie, the P-binding site (Stouffer et al., 2008) (Fig. 1A–C). In the same and

in the following year, a solution NMR-based structure of a longer con-

struct of AM2 (18–60) (Pielak, Schnell, & Chou, 2009; Schnell & Chou,

2008) proposed a surface-binding site (the S-binding site) for Rim, on

the carboxy-terminal, lipid-facing surface of the helices (Fig. 1D–G),
suggesting an alternative allosteric mechanism of inhibition. In this allosteric

binding site, the adamantane group interacted favourably with the hydro-

phobic side chains of Leu-40, Leu-43, and Ile-42, whereas the positively

charged ammonium group interacted with the polar patch formed by
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Figure 1 P- and S-binding sites for Amt and Rim to IAV M2. (A–C) AM2 TM domain crys-
tallized in detergent, with the most critical residues identified by site-directed mutagen-
esis lining the AM2 pore (A); omit map showing electron density in the Amt binding
region (B); structure of amantadine (nitrogen in cyan (light gray in the print version)
and carbon in white) inside the binding site showing the surface associated with resi-
dues Val-27 (red (light gray in the print version) surface), Ala-30 (green (dark gray in the
print version)), Ser-31 (blue (light gray in the print version)), and Gly-34 (orange (light
gray in the print version)) (C); (D and E), an ensemble of 15 low-energy structures
derived from NMR restraints, with TM α-helices (residues 25–46) and amphipathic heli-
ces (residues 51–59) superimposed separately (D); ribbon representation, showing the
drug Rim (colored in red (light gray in the print version)) (E); (F and G), surface repre-
sentation of the Rim-binding pocket, showing the Asp-44, the indole amine of Trp-
41, and Arg-45, which form the polar patch, as well as the hydrophobic wall composed
of Leu-40, Ile-42, and Leu-43; (H–J) solution NMR structures of the (AM2–BM2)TM chan-
nel in the absence and presence of Rim; ensembles of 15 low-energy structures of drug-
bound chimera channels. Rim is highlighted in red (light gray in the print version)
(H); ribbon representation of drug-free (AM2–BM2)TM tetramer (left), and overlay of
its AM2 and BM2 regions (green (dark gray in the print version)) with the corresponding
regions (yellow (light gray in the print version)) of the AM2 (PDB code: 2RLF) and BM2
(PDB code: 2KIX) structures (right) (I); overlay of the drug-free (white) and the drug-
bound (cyan (light gray in the print version)) chimera structures, showing substantial
differences in helical packing (J). Adapted by permission from Macmillan Publishers Ltd.:
Stouffer, A. L., Acharya, R., Salom, D., Levine, A. S., Di Costanzo, L., Soto, C. S., et al. (2008).
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Asp-44 and Arg-45 from the adjacent subunit (Fig. 1G). A dilemmatic fea-

ture of allosteric sites is that viral mutations at these sites are easily accom-

modated by viruses without dramatic loss of fitness. In HCV, for

example, protease inhibitor monotherapy can rapidly select resistant viral

populations within a few days (Schmidt et al., 2014).

However, clear support for the P-binding site was obtained from solid-

state NMR in lipid bilayers (PDB ID: 2KQT) (Cady et al., 2010); the

inhibitor was found in a hydrophilic pocket formed by Ala-30, Ser-31,

and Gly-34, ie, occluding the AM2 channel. In this case, hydrophobic inter-

actions were detected between the adamantane group and Val-27 side

chains, whereas the ammonium group was hydrogen-bonded to pore-facing

residues and water molecules. The latter work revealed that the S-binding

site was in fact just a low-affinity site, and only observed at high concentra-

tions of the drug in the membrane. Importantly, Amt was found to undergo

significant motion in the N-terminal lumen, suggesting that its structure

can be improved for a better fit to the AM2 channel. This pore-location

(P-binding) was also further validated by Chou et al. by solution NMR

(Pielak, Oxenoid, & Chou, 2011) using an M2 chimeric sample, where

the N-terminal part of the M2 TM domain corresponded to that of the

AM2, whereas the C-terminal part was from the Amt-insensitive BM2

(Fig. 1H–J). In that model, methyl groups of Val-27 and Ala-30 from four

subunits form a hydrophobic pocket around the adamantane, with the

amino group in polar contact with the backbone oxygen of Ala-30. This

ended the controversy, with the acceptance of the initially proposed

P-binding site.

There are 12 structures of the wild-type and drug-resistant mutant M2

channels available in the Protein Data Bank solved by different techniques

and conditions (see summary in Gu et al., 2013). Among these, structure

2RLF solved in micelle (Schnell & Chou, 2008) and structure 2L0J in

the bilayer environment contain, in addition to the TM domain, short

C-terminal intracellular amphipathic helices. In 2RLF, the C-terminal heli-

ces were connected to the transmembrane helices via a short loop (residue

Structural basis for the function and inhibition of an influenza virus proton channel. Nature,
451(7178), 596–599. Copyright (2008); Schnell, J. R., & Chou, J. J. (2008). Structure and
mechanism of the M2 proton channel of influenza A virus. Nature, 451(7178), 591–595.
doi: 10.1038/nature06531. Copyright (2008). Adapted by permission from Elsevier: Pielak,
R. M., Oxenoid, K., & Chou, J. J. (2011). Structural investigation of rimantadine inhibition
of the AM2-BM2 chimera channel of influenza viruses. Structure, 19(11), 1655–1663.
doi: 10.1016/j.str.2011.09.003. Copyright (2011).
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47–51) and were exposed to the solution. However, in 2L0J, the C-terminal

helices were connected to the TM helices through a rigid turn (residue 47)

and were positioned on the bilayer surface (Sharma et al., 2010), and this

conformation was stabilized by extensive hydrophobic interactions among

these helices, and polar residues Asp-44 and Arg-45 were buried by

hydrophobic residues of the intracellular amphipathic helices, making

the S-binding site more hydrophobic than that in micelles. Therefore, the

S-binding site was absent in 2L0J (Sharma et al., 2010).

Molecular dynamics simulations of the M2 proton channel with inhib-

itors binding at different sites have shown that the P-binding site is more

stable for drug binding, but a higher energy barrier needs to be overcome

for binding to occur (Gu et al., 2011). The S-binding site was less stable

for drug binding but it was nearly barrier less and was easily accessed. There-

fore, the P-binding site represents the thermodynamic binding site where

the drug molecule binds slowly and stably and dissociates even more slowly,

whereas the S-binding site is a kinetic binding site where the drug molecule

binds readily but less stably and dissociates easily.

Over the last four decades, systematic studies of amantadine analogues

and library screening have elucidated structure–activity relationships (SARs)

and helped to identify potent wild-type (WT) AM2 channel blockers

(De Clercq, 2006; Lagoja & De Clercq, 2008). Several other molecules

were not based on adamantanes. For example, the spirene guanidine ana-

logue, 2-[3-azaspiro(5,5)undecanol]-2-imidazoline (BL-1743) (Fig. 2A)

was discovered during a high-throughput screen based on the ability of

inhibitors to reverse the toxicity associated with M2 channels expressed

in the yeast Saccharomyces cerevisiae (Kurtz et al., 1995). Based on this non-

adamantane, a SAR study using a combination of viral plaque assays and

two-electrode voltage clamp (TEVC) (Wang, Cady, et al., 2009) gene-

rated 3-azaspiro[5,5]undecane hydrochloride (Fig. 2B), which lacks the

Figure 2 Example of IAV M2 inhibitors not based on the adamantane framework.
(A) BL-1743; (B) spiro-piperidine developed from (A) (Wang, Cady, et al., 2009).
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imidazoline group of BL-1743. This compound showed an IC50 of

0.92�0.11 μM against AM2, ie, more than an order of magnitude more

potent than amantadine (IC50¼16 μM) and more than 45-fold increase

in potency relative to the parental BL-1743.

Compared to Amt, this spiro-piperidine induced a more homogeneous

conformation of the AM2 peptide, reducing dynamic disorder near the

water-filled central cavity of the helical bundle, suggesting a more extensive

binding to the AM2 channel, thus leading to stronger inhibitory potency.

However, this compound was only effective against the wild-type AM2.

This is crucial because of the current prevalence of Amt-resistant variants

of AM2, eg, L26F, V27A, and S31N, which comprise more than 99% of

the reported resistance mutants (Furuse, Suzuki, & Oshitani, 2009;

Suzuki et al., 2003). Of these three mutations, V27A is the only one known

to originate from drug selection pressure (Furuse et al., 2009), and this

mutant is the only one among the three that is completely resistant to

Amt and Rim (Balannik et al., 2009). On the other hand, S31N is found

in more than 98% of the mutated M2 channels in the IAV subtype

H3N2 viruses (Bright et al., 2005), and causes a 10–20 times decrease in

the IC50, from low micromolar to 200 μM (Amt) and more than 2 mM

(Rim) (Wang, Ma, et al., 2013).

The first non-adamantane inhibitor of the V27A mutant was a polycyc-

lic pyrrolidine, a dual inhibitor of WT (IC50 of 3.4 μM) and V27A (IC50

of 0.29 μM) (Rey-Carrizo et al., 2013). Later, a compound with triple

inhibitor efficacy was reported by the same authors, active against the

WT, V27A, and L26F mutants, with IC50 of 18, 0.7, and 9 μM, respectively

(Rey-Carrizo et al., 2014). The inhibitory activity of the compounds was

tested on AM2 channels expressed in Xenopus laevis oocytes using the

two-electrode voltage clamp (TEVC) technique, but most of the com-

pounds were cytotoxic (more than Amt and Rim), as tested in cell-based

antiviral plaque reduction assays. Therefore, despite the encouraging results

obtained in vitro, the toxic properties of these compounds still hinder their

therapeutic potential.

The spiro-piperidine inspired the generation of another compound

(Fig. 3C) that could inhibit not just the WT AM2 (IC50¼18 μM) but also

mutants L26F (IC50¼6 μM) and V27A (IC50¼0.3 μM) (Wang, Ma,

Fiorin, et al., 2011). Direct interaction of this compound with the V27A

mutant was assessed by solid-state NMR, and inhibition was further dem-

onstrated in plaque reduction assays. This compound, however, was inactive

against the S31N mutant. Such observation was rationalized by the fact that
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the S31N mutant is more dynamic and hydrated in the pore than the

corresponding WT protein (Pielak et al., 2009), as shown by NMR studies.

This lead to a disruption in the size and polarity of the pore in precisely the

region that accommodates the adamantane group, thereby hampering the

discovery of inhibitors of S31N. This led to attempts to increase the polarity

or the dimensions of the adamantane core in order to capture more inter-

actions with the backbone of the channel.

A variety of scaffolds have been used to substitute for the hydrophobic

adamantane group (Hu et al., 2010; Wang, Ma, Balannik, et al., 2011).

These compounds showed excellent activity against the WT AM2, and

some were highly active against V27A and L26F (Wang, Ma, Fiorin,

et al., 2011). However, none was better than Amt against S31N. Attempts

to introduce additional groups to the amine to enhance affinity for both

S31N and WT via additional electrostatic interactions led to the discovery

of benzyl-substituted amantadine derivatives (Fig. 3D) as dual WT and

S31N inhibitors (Wang, Ma, et al., 2013) with IC50 of 35 and 59 μM for

S31N and WT, respectively.

The DeGrado group later discovered small-molecule drugs, eg,

M2WJ332, that locked the dynamic S31N mutant into a well-defined con-

formation, enabling high-resolution structure determination by solution

NMR that showed the drug bound in the homotetrameric channel, threaded

between the side chains of Asn-31. These compounds were formed by con-

jugation of a-CH2-heteroaryl group to the amine ofAmt (Fig. 3E and F, IC50

of 16 μM) and inhibited S31Nwith potencies greater than Amt against AM2

(Wang,Wu, et al., 2013). The charged ammonium binds as a hydrate to one

of three sites aligned along the central cavity that might stabilize hydronium-

like species formed as protons diffuse through the outer channel to the

proton-shuttling residue His-37 near the cytoplasmic end of the channel.

Figure 3 Inhibitors for IAV M2. (A) Amantadine (Amt); (B) rimantadine (Rim); (C) com-
pound 9 in Wang, Ma, Fiorin, et al. (2011); (D) benzenediol (Wang, Ma, et al., 2013);
(E and F) compounds with IC50 of�16 μM (Wang, Wu, et al., 2013); (G) compound found
in Wu et al. (2014).
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Based on structural and molecular dynamics data, the DeGrado group

realized that inhibitors that are active against both WT and S31N channels

bind in opposite orientations: the aromatic headgroup faces toward the

C-terminus in WT, and toward the N-terminus in S31N. Investigation

of substitutions led to the identification of halide-substituted thiophene

compounds. The most potent of which, N-[(5-bromothiophen-2-yl)

methyl]adamantan-1-amine (Fig. 3G), inhibited bothWT and S31Nmutant

with comparable affinities as Amt against WT (Wu et al., 2014).

It would be desirable to develop the same paradigm found in IAV AM2

and their inhibitors for other viroporins, so that their channel inhibitors can

be validated. For example, many amantadine-resistant influenza viruses can

be selected in cell culture (Grambas, Bennett, &Hay, 1992; Grambas &Hay,

1992; Hay et al., 1985), and some of these are also found in infected patients

undergoing treatment with amantadine (Shiraishi et al., 2003). In turn,

engineered viruses harboring these pore-lining mutations, while competent

to replicate in mouse (Abed, Goyette, & Boivin, 2005), give rise to atten-

uated viruses that tend to revert to the WT in the absence of drug pressure

(Grambas & Hay, 1992; Suzuki et al., 2003).

3. THE HEPATITIS C VIRUS p7 PROTEIN (HCV-p7)

Another very important viroporin is p7, found in the Hepatitis C virus

(HCV), a member of the Flaviviridae family that has six genotypes (GTs).

HCV is a positive-strand RNA virus that causes severe liver disease and is

the major cause of hepatocellular carcinomas in the developed world.

HCV has chronically infected 170 million people worldwide and is respon-

sible for more than 300,000 yearly deaths, while no prophylactic or thera-

peutic vaccine is available.

HCV infection can be cured with drugs targeting viral enzymes and pro-

teins, as well as host cellular proteins. One host-targeted antiviral agent

(HTAs) is the type I IFN-α (Hoofnagle et al., 1986), which exerts antiviral

activities against both RNA and DNA viruses through IFN-stimulated gene

(ISG) products. Pegylated IFN has been used in combination with ribavirin

(RBV), a synthetic guanosine analogue (Herrmann, Lee, Marinos, Modi, &

Zeuzem, 2003), but this antiviral therapy can only last up to 1 year, associ-

ated with side effects, and is not always effective (Manns, Wedemeyer, &

Cornberg, 2006; Pawlotsky, Chevaliez, & McHutchison, 2007). Other

drugs target HCV proteins with high potency, such as those against the

HCV NS3/4A protease, the NS5A protein or the NS5B RNA-dependent
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RNA polymerase (RdRP) (Sulkowski et al., 2014) [see Pawlotsky, 2014;

Schmidt et al., 2014, for recent reviews]. However, drug resistance creates

a burden for patients, worsened by the rapid turnover of HCV replication,

which produces up to 1012 virions daily (Neumann et al., 1998). This is

compounded by the error-prone activity of the HCV RNA polymerase,

which leads to the high genetic diversity of HCV and the formation of

“quasi-species.” In this complicated context, the clinical niche of p7 inhib-

itors is unclear.

The viroporin HCV p7 is encoded within a single polyprotein precursor

(Simmonds, 2013) processed by host and viral proteases (Moradpour &

Penin, 2013). It separates the structural proteins (core and envelope

glycoproteins E1 and E2) from the nonstructural proteins NS2, NS3,

NS4A, NS4B, NS5A, and NS5B (Lindenbach & Rice, 2005). p7 results

from cleavage of E2-p7-NS2 and E2-p7 by a signal peptidase at the ER

(Lin, Lindenbach, Prágai, McCourt, & Rice, 1994; Mizushima et al.,

1994). The p7 protein is 63 residues long with two TM domains, found

mainly at the ER membrane. Although p7 is not necessary for RNA repli-

cation (Lohmann et al., 1999), it is essential for productive HCV propaga-

tion in vivo (Sakai et al., 2003). However, the precise role of the p7 in virus

production was only determined when it was possible to replicate a geno-

type 2a isolate from a Japanese patient suffering from fulminant hepatitis

(designated JFH-1) (Kato et al., 2003; Wakita et al., 2005). This isolate effi-

ciently replicated in human hepatoma cell lines and produced infectious

virus particles. This was used to demonstrate that p7 is essential for virus par-

ticle assembly and release (Jones, Murray, Eastman, Tassello, & Rice, 2007;

Steinmann et al., 2007). The bovine viral diarrhea virus (BVDV) (Harada,

Tautz, & Thiel, 2000) and the hepacivirus GB virus B (GBV-B) (Takikawa

et al., 2006), HCV’s closest relatives, also have a p7 protein crucial for virus

replication.

The channel activity of p7 was examined more than 10 years ago in

experiments involving artificial lipid bilayers. It was suggested that p7 has

preference for cations vs anions, with permeability ratios in the range

7–11 (Griffin et al., 2003; Montserret et al., 2010; Premkumar, Wilson,

Ewart, & Gage, 2004; Pavlovic et al., 2003) and more recently in Xenopus

oocytes (Ouyang et al., 2013). This selectivity is rather low compared to

other channels, eg, for cystic fibrosis transmembrane conductance regulator

(CFTR)Cl� channels, selectivity for anions over cations is 10–30 (Anderson
et al., 1991; Bear et al., 1992). For potassium channels, which conduct K+

ions near the diffusion limit, the selectivity for K+ over Na+ is about
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10,000–1 (Doyle et al., 1998), and in aquaporins water to ion flux ratio is

about 109 (Pohl, 2004). However, the biological importance of p7 cation

channel activity may be relative, in the light of its recently found role to

permeabilize membranes to protons, and acting to prevent acidification of

intracellular vesicles (Wozniak et al., 2010). This proton channel activity

was found to be crucial for the production of infectious viruses, and was

observed in intracellular vesicles harboring p7. Recently, this proton chan-

nel activity has been directly confirmed in vitro using purified nontagged p7

protein in a liposome-based assay (Gan, Surya, Vararattanavech, & Torres,

2014), where the lipid composition used was the mixture PAESC (PA/PE/

PS/PC 5:2:2:1 w/w) (Gervais et al., 2011).

Several initial papers also reported the inhibition of channel activity

by some compounds. For example, His-tagged p7 from genotype 1b

was inhibited by 1 μM amantadine (Griffin et al., 2003), whereas syn-

thetic p7 from genotype 1a (strain H77) was inhibited by 100 μM
hexamethyleneamiloride (HMA, Fig. 4A), although this peptide was largely

unpurified (Premkumar et al., 2004). Another synthetic p7, also unpurified,

was inhibited by 50–100 μMof the long-alkyl-chain imino sugar derivatives

NN-DGJ, NN-DNJ (Fig. 4B) and N-7-oxanonyl-6-deoxy-DGJ (Pavlovic

et al., 2003). However, the channel activity of purified synthetic p7 HCV-J

genotype 1b in artificial lipid bilayers was inhibited by just 50% in the pres-

ence of 200 μMHMA, whereas Amt did not show any effect even at 1 mM

concentration (Montserret et al., 2010). In fact, the efficacy of Amt in HCV

culture systems is low (Steinmann et al., 2007), and no clinical benefit of

Amt-based combination therapy was found in comparison to standard of

care (peg-IFNα plus ribavirin) (Castelain et al., 2007; Mihm et al., 2006).

Some of these compounds have been studied in infected cells, where they

reduced virus production up to 10-fold in a genotype-dependent manner

(Foster et al., 2014; Gottwein et al., 2011; Steinmann et al., 2007), reducing

Figure 4 Some other inhibitors for viroporins reported in the literature. (A) HMA, (B) NN-
DNJ, (C) BIT225, (D) pyronin-B.
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secretion of HCV particles by inhibition of the acidification of virus-

containing compartments (Wozniak et al., 2010), without impairment of

the infectivity of intracellular virions (Foster et al., 2011; Griffin et al., 2008).

To discover more p7 channel inhibitors, a liposome-based dye (carboxy-

fluorescein, CF) release assay has been proposed that involves the addition of

p7 protein to preloaded liposomes (StGelais et al., 2007). The method has

been claimed to be sensitive to inhibitors such as Amt and Rim, and

proposed as a high-throughput functional assay to test drug sensitivity of

p7 mutants, or to discover new p7 channel activity inhibitors (Foster

et al., 2011; Gervais et al., 2011). These dye release assays have been previ-

ously performed with tagged p7 protein, either with FLAG (Li et al., 2012;

StGelais et al., 2009) or flu-antigen (Foster et al., 2011). However, this

method has been put into question since just the C-terminal half of

p7, p7(27–63) was as efficient as full-length p7 in releasing CF, while a

properly reconstituted α-helical sample of p7 was not able to elicit CF release

(Gan et al., 2014).

Nevertheless, p7 inhibitors may be able to inhibit both the proton chan-

nel activity and dye release if the mechanisms are similar, eg, via an allosteric

effect that increases the rigidity of the C-terminal half (TM2) of p7. This is

supported by the fact that TM2 of p7 interacts with Amt and is the site of

inhibition by adamantanes. Indeed, Amt interacts with leucines 51–57, and
these leucines have been shown unequivocally to be part of a membrane

inserted α-helix (Cook & Opella, 2009; Ouyang et al., 2013). Binding of

Amt to p7 in dihexanoylphosphatidylcholine (DHPC) micelles led to reso-

nance shifts in several residues, some of which are the leucines 51–57 (but

not 53), ie, located in TM2 (Cook & Opella, 2009). Consistent with this,

Leu to Ala mutations at this region produced an Amt-resistant p7 mutant

revealed using the CF release assay (StGelais et al., 2009).

The imino sugar NN-DNJ and Rim inhibited secreted infectivity in

Amt-resistant JFH-1 and CON-1/JFH-1c3 viruses, whereas mutation

L20F conferred resistance to rimantadine (Foster et al., 2011), consistent

with Rim resistance was found in GT1b patients not responding to the triple

therapy IFN/Rib/Amt (Mihm et al., 2006). Using an oligomerization assay

in DHPC gels, the GT1b J4 p7 oligomerization was abolished in presence of

imino-sugars, whereas Rim did not affect oligomerization, suggesting two

different mechanisms of action for these two compounds (Foster et al.,

2011). The p7 of GT3a, but not GT1b, was found to be resistant to

NN-DNJ both in vitro and in culture, and this was attributed to a F25A

mutation (Foster et al., 2011; Griffin et al., 2008). However, direct
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interaction between HMA or imino sugar derivatives with p7 reconstituted

in a detergent or membrane has not been reported. Addition of Rim to

GT1b J4 p7 monomer in methanol (Foster et al., 2014) showed disruption

at several residues, but not especially at Leu-20. Thus, this observation is

either inconsistent with the proposed role of L20F in acquired resistance,

or the methanol environment is not a good system to test this interaction.

Structural data for p7 was obtained initially in solvents and micelles by

solution NMR. For example, solution NMR data was obtained for syn-

thetic p7 (C27A mutant) in 50% of the helix inducer trifluoroethanol

(TFE) (Montserret et al., 2010), and for recombinant p7 (C27S mutant)

in DHPC micelles (Cook & Opella, 2010). The prevalent model for the

p7 monomer according to these studies was that of an α-helical hairpin with
two α-helical TMs kinked in the middle (Cook, Zhang, Park, Wang, &

Opella, 2010; Montserret et al., 2010), where the N-terminal TM helix

(TM1) would face the lumen of a channel (Carrere-Kremer et al., 2002;

Chew, Vijayan, Chang, Zitzmann, & Biggin, 2009; Patargias, Zitzmann,

Dwek, & Fischer, 2006) formed by either six or seven monomers (Clarke

et al., 2006; Griffin et al., 2003; Luik et al., 2009; Montserret et al., 2010).

In a more recently published structural model of p7 (Ouyang et al.,

2013), the oligomeric size is still ambiguous since this data could not be

obtained in the same environment used in electron microscopy. From that

model, the “old” TM1 and TM2 domains would correspond to three helical

segments H1–H3, ie, H1 and first half of H2 (TM1) and second half of H2

and H3 (TM2). There are concerns, however, that this model can be present

in a physiological context since the folding implied is difficult to explain by

our current understanding of protein folding in the cell (Madan &

Bartenschlager, 2015). In the Ouyang et al. paper, the authors systematically

tested p7 amino acid sequences from various HCV genotypes and found that

the sequence from GT5a (EUH1480 strain) generated samples adequate for

structure determination. Although the oligomeric size of p7 in dodecyl pho-

sphocholine (DPC) micelles was not determined, this was combined with

data from negative stain electron microscopy (EM), which showed

hexameric, flower-shaped particles. The latter were similar to those p7

hexamers (of GT2aJFH-1) observed in EM in the presence of DHPC

micelles used earlier for single-particle reconstruction (Luik et al., 2009).

The NMR-based model showed that the C-terminal helix, p7(27–63), is
not the pore-lining sequence but instead forms a “lipid facing” part of the

molecule, whereas the N-terminal half would orient lining the lumen

(Ouyang et al., 2013). This is in agreement with previous models based
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on the partial inhibition of p7 channel activity by Cu2+, but not by Mg2+,

which suggested exposure to a His residue located in the N-terminal half to

the lumen of the channel (Chew et al., 2009). Although this interpretation

may be correct, it is unfortunate that synthetic peptides corresponding to the

N-terminal half “TM1,” eg, p7(1–34) or the C-terminal half “TM2,” eg,

p7(35–63) aggregate easily, such that individual channel activity of these

peptides cannot be properly measured (Montserret et al., 2010). In fact, nei-

ther of these helices separately forms α-helical structure in micelles or mem-

branes, and peptide p7(1–26) was totally insoluble in TFE or in detergent

(Gan et al., 2014), a difficulty also encountered for the N-terminal fragment

of p7(1–34) (Montserret et al., 2010). In contrast, TM domains of other

viroporins are completely α-helical, eg, the IAV M2 (Torres, Kukol, &

Arkin, 2000), severe acute respiratory syndrome coronavirus (SARS-

CoV) E (Torres et al., 2006), or respiratory syncytial virus (RSV) SH

(Gan et al., 2012) produce sharp amide I bands in the infrared spectrum con-

sistent with �100% α-helix.
Nevertheless, the Amt binding site in the p7 channel was determined by

identifying Nuclear Overhauser Enhancements (NOEs) between the pro-

tein backbone amide protons and drug protons (Ouyang et al., 2013)

(Fig. 5). Although the full-scale structure determination of the complex

could not be achieved, Amt (10 mM) showed NOE cross-peaks between

Figure 5 Interaction between HCV subtype 5a p7 and Amt. Left, Amt docked into the
p7(5a) hexamer using restraints from NOEs contacts with backbone amide protons;
right, a close-up view of Amt in the binding pocket. Adapted by permission from
Macmillan Publishers Ltd.: Ouyang, B., Xie, S., Berardi, M. J., Zhao, X., Dev, J., Yu, W.,
et al. (2013). Unusual architecture of the p7 channel from hepatitis C virus. Nature,
498(7455), 521–525. doi: 10.1038/nature12283. Copyright (2013).
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the adamantane protons and the amide protons of Val-26, Leu-55, Leu-56,

and Arg-57, ie, between the pore-forming and peripheral helices, suggesting

a pocket formed by Leu-52, Val-53, and Leu-56 fromH3, and Phe-20, Val-

25, and Val-26 fromH2, with the polar amino group of Amt pointing to the

channel lumen, with similar results also obtained for Rim. Amt and Rim

have also been reported previously to interact with some residues in the

N-terminal half (Cook & Opella, 2009; StGelais et al., 2009). Isothermal

titration calorimetry and NMR chemical shift perturbation analyses of

p7(GT5a)–Rim interaction produced a binding constant (Kd) from 50 to

100 μM at 3 mM detergent concentration. The authors proposed that large

differences in drug efficacies observed between different HCV genotypes are

probably due to variations in the hydrophobicity of the binding pocket

among p7 variants, and that the adamantane derivatives inhibit channel

activity by restricting the structural rearrangement of the channel, ie, an

allosteric mechanism.

Perhaps the most efficient effect for a p7 inhibitor has been reported

for BIT225 (N-[5-(1-methyl-1H-pyrazol-4-yl)-napthalene-2-carbonyl]-

guanidine) (Fig. 4C). This amiloride was identified in a bacterial assay that

involved expression of p7 in E. coli; only in presence of inhibitors the normal

ionic gradients are maintained and cells are able to grow despite the presence

of p7. This compound had antiviral activity against the HCV model

pestivirus bovine viral diarrhea virus (BVDV) with an IC50 of 314 nM.

The addition of 100 μMof BIT225 blocked ion channel activity of synthetic

HCV p7 protein of GT1aH77, although no data was reported in the context

of HCV infection (Luscombe et al., 2010). While some docking efforts have

been performed (Bichmann, Wang, & Fischer, 2014), direct interaction of

BIT225 with p7 has not been proven using biophysical or structural assays,

and therefore rational optimization of the compound is still not possible.

In addition to HCV p7, the human immunodeficiency virus (HIV) vir-

oporin Vpu is also targeted; BIT225 was tested against the Vpu TM domain

using a black lipid membrane (BLM) system, where the target was exposed

to 40 μM of the drug (Khoury, Ewart, Luscombe, Miller, & Wilkinson,

2010). Although direct interaction with Vpu was not observed, this

was assumed since the drug was not active against HIV-2, which has no

Vpu gene.

One early clinical trial (phase Ib/IIa) involving the treatment of 24 naı̈ve

GT1 HCV patients indicated a significant reduction of viral load after

12 weeks treatment with BIT225 in combination with IFNα/ribavirin
(www.biotron.com.au: biotron 2011). Currently, a phase 2a/2 clinical trial
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is in progress and the first results indicate activity against several HCV geno-

types, including the difficult-to-treat GT3a and GT1a (www.biotron.com.

au; May 29, 2015). Since it is also active against the HIV-1 Vpu, BIT225

might be suitable for treatment of HCV/HIV coinfected patients. In a

Jul. 2015 update of a 3-month dosing trial with BIT225, there was a recom-

mendation that future trials would focus on patients infected with HCV

GT3 and to further study BIT225 in combination with other direct-acting

antiviral drugs. In these trials, patients received 400 mg of BIT225 twice

daily for 3 months. A phase 2a trial on HCV demonstrated that 100% of

the patients infected with HCV GT1 who received BIT225 (400 mg) in

combination with current standard of care therapies, IFN/RBV, had unde-

tectable virus after 48 weeks. A phase 2 trial in HIV/HCV coinfected

patients showed that all HCVGT3 patients completing 28 days of treatment

with BIT225 in combination with IFN/RBV have undetectable HCV load

for 12 weeks (sustained viral response, SVR12) after completing all therapy.

BIT225 is also in development for treatment of HIV, and is the pioneer in a

new class of antiviral drugs that may provide a new approach to the eradi-

cation of this virus. It has shown clinical efficacy against HIV in reservoir

cells, and has the potential to be combined with new or existing antiretro-

viral drugs to eradicate long-lived pools of virus that are not successfully

eliminated with current treatments. Despite these promising results, how-

ever, it remains to be demonstrated that BIT225 targets p7 or Vpu in

infected cells.

4. THE CORONAVIRUS ENVELOPE PROTEIN (CoV E)

The most studied viroporin in coronaviruses is the envelope (E) pro-

tein. Coronaviruses (CoV) typically affect the respiratory tract and gut of

mammals and birds. CoVs belong to the subfamilyCoronavirinae in the family

Coronaviridae, and are organized into four genera (Enjuanes et al., 2000): α, β,
γ, and δ. Approximately 30% of common colds are caused by two human

coronaviruses—OC43 and 229E. Of particular medical interest is the virus

responsible for the severe acute respiratory syndrome (SARS), which pro-

duced a near pandemic in 2003 (Holmes, 2003), and the recently emerged

Middle East respiratory syndrome coronavirus (MERS-CoV), which after

3 years has caused hundreds of deaths (Raj, Osterhaus, Fouchier, &

Haagmans, 2014). Other coronavirus viroporins, eg, the SARS-CoV3a

(Lu et al., 2006), a 274-amino acid protein with three putative TM domains,
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are also attracting increasing interest (Chien et al., 2013; Hsu & Fischer,

2012), but no inhibitors or structural data is available so far.

Currently, no effective licensed treatment exist against coronavirus

infection (Kilianski & Baker, 2014; Kilianski, Mielech, Deng, & Baker,

2013; Lou, Sun, & Rao, 2014), although live vaccines consisting of atten-

uated viruses is a promising strategy (Enjuanes, Nieto-Torres, Jimenez-

Guardeno, &DeDiego, 2011; Graham et al., 2012), along with fusion inhib-

itors (reviewed inHeald-Sargent &Gallagher, 2012). Even so, the possibility

of reappearance of virulent phenotypes, drug side effects, and resistance calls

for continued antiviral development.

The envelope (E) proteins are 76–109 residues long with one TM

domain (Li, Surya, Claudine, & Torres, 2014; Parthasarathy et al., 2008,

2012; Pervushin et al., 2009; Torres et al., 2006; Torres, Wang,

Parthasarathy, & Liu, 2005), and most of them have a cytoplasmic

C-terminal domain and a lumenal N-terminus (Corse & Machamer,

2000; Nieto-Torres et al., 2011; Raamsman et al., 2000; Ruch &

Machamer, 2012).

Most CoV E proteins are present at low concentrations in virions (Corse

& Machamer, 2000; Godet, L’Haridon, Vautherot, & Laude, 1992; Liao,

Yuan, Torres, Tam, & Liu, 2006; Yu, Bi, Weiss, & Leibowitz, 1994),

but found abundantly in internal membranes of infected hosts (Corse &

Machamer, 2003; Liao et al., 2006; Raamsman et al., 2000; Tung et al.,

1992), eg, the ER–Golgi intermediate compartment (ERGIC), where

virions assemble (Lopez, Riffle, Pike, Gardner, & Hogue, 2008; Nieto-

Torres et al., 2011).

CoV E proteins have been found to be critical for viral pathogenesis,

while having a protective antiapoptotic effect on infected cells (DeDiego

et al., 2011) which may help the virus evade premature death of host cells,

thereby allowing viral replication. Interestingly, deletion of E protein

reduced pathogenicity and mortality in animal models through a reduced

inflammation (DeDiego et al., 2014)—as discussed later—and this has

led to the development of live attenuated vaccines based on E-deleted

or E-truncated virions (Almazán et al., 2013; Lamirande et al., 2008;

Netland et al., 2010).

The only structural data available for a CoV E protein is for SARS-CoV

E, where the TM domain (E-TM) has been characterized in some detail in

lipid membranes (Torres et al., 2006). Later, solution NMR of the selec-

tively labelled synthetic E-TM (residues 8–38) in DPC micelles produced

a similar pentameric left-handed parallel bundle (Pervushin et al., 2009).
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In these models, Asn-15 is facing the lumen of the channel (Torres et al.,

2006) whereas Val-25 is involved in helix–helix interactions with other

subunits (Pervushin et al., 2009). Mutations at these residues, N15A and

V25F, abolished channel activity in vitro (Torres et al., 2007), and intro-

duction of these mutations in a recombinant SARS-CoV resulted in

in vivo attenuation in a mouse model. The integrity of the TM domain,

and preservation of channel activity, were shown to be important for

inflammasome activation and elevated production of the proinflammatory

cytokine IL-1β (Nieto-Torres et al., 2014). In the same study, revertant

mutants of the channel-inactive E that regained fitness and pathogenicity

also regained channel activity, as measured in black lipid membranes. Both

E-TM and the full-length E protein form homopentameric channels with

poor ion selectivity that can be partially inhibited by the drug HMA

with micromolar affinity (Verdia-Baguena et al., 2012; Wilson, Gage, &

Ewart, 2006).

The NOEs between HMA and E-TM suggested the presence of two

binding sites at both ends of the TM domain. At the N-terminal domain,

Leu-19 exhibited the largest chemical shift, and the relative intensities of

the HMA proton cross-peaks indicated an HMA:E-TM stoichiometry of

1:5 at the N-terminal binding site near Asn-15, suggesting one HMA mol-

ecule per E-TM pentamer. This is consistent with a pore-blocking inhibi-

tion mode similar to Amt in AM2, where in this case the HMA molecule

may be stabilized by a hydrogen bonding network to the Asn-15 side chains

of the SARS-CoVE, with the cyclohexamethylene ring pointing away from

the center of the channel (Fig. 6A). At the C-terminal of the TM domain,

near Arg-38, the HMA:E-TM stoichiometry was 1:2, suggesting for this site

a rapid exchange, in the chemical shift timescale, between E-TM-bound and

micelle-bound forms of HMA. At this location, the amiloride group of

HMA is likely to be involved in interactions with the guanidinium groups

of Arg-38 (Fig. 6B). These results were confirmed using the extended pep-

tide E (8–65) in mixed SDS/DPC (1:4 molar ratio) micelles (Li, Surya, et al.,

2014), where the addition of HMA perturbed residues clustered near the

N-terminal end of the TM domain, eg, Glu-8, Gly-10, Thr-11, Val-14,

Asn-15, and Ser-16. At the C-terminal end of the TM, Leu-37 was the most

affected, suggesting that the interaction of HMA at the Hε of Arg-38

reported previously may have been an artifact due to the use of an E-TM

(8–38) peptide. In any case, these results suggest a similar behaviour

of HMA-to-E protein and Amt-to-AM2 protein, ie, the presence of two

binding sites, one pore-binding and one surface-binding in the TM domain.
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This structure provided a possible rationale for inhibition and a platform for

future structure-based drug design of this potential pharmacological target.

5. THE RESPIRATORY SYNCYTIAL VIRUS SMALL
HYDROPHOBIC PROTEIN (RSV SH)

The small hydrophobic (SH) protein is found in the human respiratory

syncytial virus (hRSV), an enveloped pneumovirus in the Paramyxoviridae

family. hRSV is the leading cause of bronchiolitis and pneumonia in infants

and elderly (Dowell et al., 1996), and the most frequent cause of hospital-

ization of infants and young children in industrialized countries. In develop-

ing countries, hRSV is a significant cause of death, with global estimates of

more than 70,000 deaths in young children. hRSV is the third most impor-

tant cause of deadly childhood pneumonia after Streptococcus pneumoniae and

Haemophilus influenzae (Nair et al., 2010).

Several compounds target the RSV fusion (F) protein, which facilitates

viral entry through the host cell membrane (Zhao, Singh, Malashkevich, &

Figure 6 Binding of HMA to the SARS-CoV E-TM pentameric channel (Pervushin et al.,
2009). (A) Side view of the binding of HMA to the vicinity of Asn-15. The side chains of
amino acids interacting with HMA are shown using a stick representation; (B) binding of
HMA to the C-terminal binding site of the channel, in the vicinity of Thr-35 and Arg-38.
For clarity, one of the E-TM monomers has been removed.
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Kim, 2000) through formation of a 6-helix bundle (Douglas et al., 2005;

Lambert et al., 1996; Pastey, Gower, Spearman, Crowe, & Graham,

2000; Razinkov, Gazumyan, Nikitenko, Ellestad, & Krishnamurthy,

2001; Roymans et al., 2010; Shepherd et al., 2006). Other approaches have

involved gene transfer to expose viral proteins to cells (Kumar et al., 2002),

or siRNA against specific viral proteins (Zhang et al., 2005). Vaccines have

been recently designed based on a stabilized RSV-F form which preserves a

highly antigenic site in its prefusion state, yielding RSV-specific neutralizing

antibodies in mice and macaques (McLellan, Chen, Joyce, et al., 2013;

McLellan, Chen, Leung, et al., 2013). Recently, a vaccine candidate based

on the extracellular domain (C-terminal) of the RSV viroporin, the small

hydrophobic (SH) protein, has been reported (Schepens et al., 2014). In

addition, the prevention of nasopulmonary infection in mice caused

by RSV has been reported using stapled peptides targeting the fusogenic

F-protein 6-helix bundle (Bird et al., 2014). However, despite all these

efforts, new FDA-approved drugs have yet to emerge. The only licensed

drug for use in infected individuals is ribavirin, a nucleoside analogue, but

its efficacy is very limited (Hall et al., 1986).

The hRSV genome transcribes 11 proteins (Collins & Melero, 2011).

One of these is the viroporin SH protein, which is 64–65 residues long

(depending on subgroup, A or B) and has a single α-helical TM domain with

N- and C-terminal extramembrane domains oriented cytoplasmically and

lumenally/extracellularly, respectively (Collins & Mottet, 1993; Gan

et al., 2012). Most SH protein accumulates at the membranes of the Golgi

complex in infected cells, but it has also been detected in the ER and plasma

membranes (Rixon et al., 2004).

RSV that lacks SH (RSVΔSH) is still viable, and still forms syncytia

(Bukreyev, Whitehead, Murphy, & Collins, 1997; Karron et al., 1997;

Techaarpornkul, Barretto, & Peeples, 2001), but is attenuated in vivo. In

mouse, RSV ΔSH replicated 10-fold less efficiently in the upper respiratory

tract (Bukreyev et al., 1997), whereas chimpanzees developed significantly

less rhinorrhea than those infected with wild-type RSV (Whitehead et al.,

1999). Other reports have shown that the lack of SH protein leads to an

attenuated phenotype in children and in rats (Jin et al., 2000; Karron

et al., 1997). Overall, these results indicate involvement of hRSV SH pro-

tein in replication and pathogenesis.

In common to the SARS-CoV E protein, SH protein blocks or delays

apoptosis in infected cells (Fuentes, Tran, Luthra, Teng, & He, 2007), and a

similar antiapoptotic effect of SH protein has been observed for other
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members of the Paramyxoviridae family, eg, J Paramyxovirus (JPV) (Jack,

Boyle, Eaton, & Wang, 2005; Li et al., 2011), mumps virus (MuV), and

the parainfluenza virus 5 (PIV5), formerly known as simian virus 5 (SV5).

In all these systems, the SH protein seems to block apoptosis during infec-

tion—at least in part—through inhibition of the TNF-α pathway (Fuentes

et al., 2007; Li et al., 2011; Lin, Bright, Rothermel, & He, 2003; Wilson,

Fuentes, et al., 2006).

The mutual orientation of the TM α-helices that form the ion channel

was determined in lipid bilayers using site-specific infrared dichroism (Gan,

Ng, Xin, Gong, & Torres, 2008). A description of the full-length RSV SH

protein monomer has been obtained by solution NMR in DPC micelles

(Gan et al., 2012) and later in bicelles, only for the extramembrane domains

(Li, To, et al., 2014). Like SARS-CoV E, the RSV SH protein forms homo-

pentameric channels (Gan et al., 2008, 2012) that have low ion selectivity

(Li, To, et al., 2014). The TM domain of SH protein has a funnel-like archi-

tecture (Gan et al., 2012), as observed in other viroporins, eg, the IAV M2

(Schnell & Chou, 2008), SARS-CoV E (Pervushin et al., 2009) and HCV

p7 (Ouyang et al., 2013). A narrower region (Gan et al., 2012) in the TM

domain is lined with hydrophobic side chains (Ile-32, Ile-36, Ile-40,

and Leu-44) whereas the more open N-terminal region is lined by polar

residues, ie, His-22, Thr-25, and Ser-29. The TM α-helix extends up

to His-51 in the C-terminal region, followed by a loop, whereas the

N-terminal cytoplasmic extramembrane domain forms a short α-helix
(residues 5–14) present both in micelles and in bicelles (Li, To, et al., 2014).

Only one compound, pyronin-B, has been reported to inhibit the

channel activity of the SH protein. This compound was obtained from lipo-

some-based fluorescence assay, and was tested against purified SH protein

reconstituted in planar lipid bilayers (BLM). A concentration of 10 μM
led to a�60% inhibition of channel activity, with a Kd of�7 μM.The effect

of pyronin-B was tested against RSV replication in Vero cells, where the

tissue culture infectivity (50% infective dose, TCID50) was zero at a drug

concentration of 0.25 μM.

In the NMR studies, the binding of pyronin-B to the SH protein rev-

ealed backbone resonance perturbations at both ends of the TM domain.

At the N-terminal cytoplasmic end, residues more affected were Ile-6

and Ile-21. At the lumenal C-terminal end, the residue most affected was

Ala-39, and a group of nearby residues, Ile-38, Ile-40, Leu-41, and

Lys-43 (Fig. 7A). Interestingly, most of these juxtamembrane residues

(residues 38–43) form a conserved motif in the SH protein “A39ILNKL43,”
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which suggests that this is a critical region for SH protein with a high barrier

to resistance. Determination of intermolecular nuclear Overhauser effects

(NOEs) for the drug–protein complex was not possible, probably due to

weak interaction.

Docking studies of pyronin-B to the SH pentameric model obtained in

DPC micelles (Gan et al., 2012) produced two predicted binding sites at

both ends of the TM domain. Indeed, a majority of structures showed

the drug located near residues with largest chemical shift perturbation, ie,

Ile-6, Ile-21, and Ala-39 (Fig. 7). The binding site near the N-terminus

is formed by Phe-14, Ile-21 in one monomer (i+1), and Ile-6 of the pre-

vious (i) monomer. The one near the C-terminus is formed by residues Ile-

40, Leu-41, and Lys-43 in one monomer (i+1) and Ile-38 and Ala-39 of the

previous (i) monomer (Fig. 7A–C). Similar “druggable pockets” on the SH

pentamer surface were identified using DoGSiteScorer (Volkamer et al.,

2012) (Fig. 7D). However, the C-terminal end of the TM domain (residues

38–41) is sufficient for inhibition, since a conservative mutation A39S

almost completely prevented inhibition (�10% inhibition).

Figure 7 Mapping of pyronin-B binding to the RSV SH protein. (A) Chemical shift
perturbation (CSP) values in presence of pyronin-B, mapped onto the structure of
SH protein; larger (CSP�0.07 ppm) and smaller (CSP�0.04 ppm) shifts in red (dark gray
in the print version) and yellow (light gray in the print version), respectively; (B and C)
two predicted pyronin-B binding sites on the SH pentamer, at the N-terminal (B) and
C-terminal (C) ends of the TM domain (dotted circles). Only two monomers of SH protein
pentamer (i and i+1) are shown for simplicity; (D) druggable pockets (green (dark gray
in the print version) mesh) predicted by DoGSiteScorer (Volkamer, Kuhn, Rippmann,
& Rarey, 2012). The main residues that showed largest NMR chemical shift changes
are shown in red (dark gray in the print version). Two monomers have been removed
from the pentamer for clarity.
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6. THE HUMAN IMMUNODEFICIENCY VIRUS VIRAL
PROTEIN U (HIV-1-Vpu)

Vpu is a 81-residue small-membrane protein encoded by the single-

stranded positive-sense RNA human immunodeficiency virus 1 (HIV-1),

and some simian immunodeficiency virus (SIV) isolates. Vpu is one of four

HIV-1 accessory proteins involved in the release of new virions from host

cell membranes (Cohen, Terwilliger, Sodroski, & Haseltine, 1988; Strebel,

Klimkait, & Martin, 1988; Terwilliger, Cohen, Lu, Sodroski, & Haseltine,

1989).Without Vpu, HIV particles fail to detach from the plasmamembrane

and accumulate in large numbers in the cell surface (Klimkait, Strebel,

Hoggan, Martin, & Orenstein, 1990).

The initial structural studies of Vpu were performed more than 20 years

ago by solution NMR in TFE/water using synthetic peptides of various

overlapping lengths, which led to a model of an N-terminal hydrophobic

transmembrane helix (the TM domain) and a C-terminal cytoplasmic

domain with a helix–loop–helix arrangement [reviewed recently in

Opella, 2015]. Structural similarity of Vpu with AM2 suggested that Vpu

could form pores (Maldarelli, Chen, Willey, & Strebel, 1993) and was later

shown to have cation-selective channel activity (Ewart, Sutherland, Gage, &

Cox, 1996; Schubert et al., 1996), but a unique structural model for the Vpu

oligomer cannot be defined [reviewed in Radoicic, Lu, &Opella, 2014]. An

analysis of the Vpu TM (residues 1–40) by solid-state NMR in membranes,

combined with analytical centrifugation measurements in detergent, pro-

duced data compatible with a variety of oligomers coexisting in micelles

and phospholipid bilayers (Lu, Sharpe, Ghirlando, Yau, & Tycko, 2010).

This led to the proposal that regulation of virus release by Vpu might

involve an alteration of the plasma membrane potential, and this was

supported by (i) the reduced rate of HIV-1 virus release after membrane

depolarization (Hsu, Han, Shinlapawittayatorn, Deschenes, & Marbán,

2010), (ii) the observed reduction in viral load and viral pathogenicity when

Vpu TM domain is scrambled in the context of a simian–human immuno-

deficiency virus (SHIV) (Hout et al., 2005), and (iii) the substitution of Ala-

18 by a histidine (A18H) rendered HIV-1 infections susceptible to Rim

(Hout et al., 2006). However, recent studies challenge this model and argue

against a critical involvement of Vpu ion channel activity in Vpu-enhanced

virus release. Indeed, mutations in the Vpu TM domain that affect channel
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activity do not impair the ability to enhance virus release, whereas mutations

that affect virus release retain ion channel activity (Bolduan et al., 2011).

Thus, the functional significance of Vpu ion channel activity for HIV rep-

lication, and the role as a target for channel inhibitors, remains unclear.

7. 6K, AGNOPROTEIN, AND 2B

There are several other viroporins of which only very limited struc-

tural data is available, and no channel inhibitors have been reported. The

following section will briefly describe three of such viroporins: the

alphavirus 6K protein, polyomavirus agnoprotein, and the 2B protein found

in picornaviruses.

7.1 The Alphavirus 6K Protein
The 6K protein is 58–61 amino acids long and has one predicted α-helical
TM domain. This viroporin is found in several members of the alphavirus

genus in the positive-sense RNA family Togaviridae. This includes, for

example, equine encephalitis viruses, Chikungunya virus, Sindbis virus,

Semliki Forest viruses (SFV), Ross River virus (RRV), and Barmah Forest

virus (BFV). In these viruses, structural proteins are translated in the ER

from a subgenomic mRNA as a single polyprotein later cleaved by proteases,

in the order capsid-PE2-6K-E1 (Liljestrom & Garoff, 1991; Strauss &

Strauss, 1994).

The 6K protein was first described as early as 1980 (Welch & Sefton,

1980). Its expression in E. coli caused an increase in membrane permeability,

whereas in eukaryotic cells it promoted viral budding (Sanz, Perez, &

Carrasco, 1994). Further, 6K proteins of RRV and BFV formed cation-

selective ion channels in planar lipid bilayers (Melton et al., 2002). This

suggested a role for viroporins in alphavirus infection, since an increased per-

meability of cells to monovalent cations is followed by budding of virions.

Whatever the mechanism, 6K proteins have an important role in virus

assembly and budding. For example, in Sindbis virus, cysteine-less mutants

dramatically reduced the release of virus particles, leading to aberrant

enveloped particles containing multiple nucleocapsids (Gaedigk-Nitschko,

Ding, Levy, & Schlesinger, 1990). Other results are consistent with an indi-

rect role in the packing of the virus spike glycoproteins; mutation C39S

resulted in defective budding and a revertant contained two additional

mutations at the ectodomain of the virus glycoprotein (Ivanova, Lustig,
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&Schlesinger, 1995). Further, deletion of 6K in a full-length cDNA clone of

SFV resulted in a dramatic reduction in virus release (Liljestrom, Lusa,

Huylebroeck, & Garoff, 1991), and BHK cells expressing a Δ6K strain pro-

duced thermolabile particles, suggesting a disrupted glycoprotein packing

(Loewy, Smyth, von Bonsdorff, Liljestrom, & Schlesinger, 1995). Despite

these investigations, the specific role of 6K channel activity in these processes

is still uncertain.

7.2 The Polyomavirus Agnoprotein
Agnoprotein is a 71-amino acids long membrane protein with one predicted

α-helical TM domain required for the productive replication of the human

polyomavirus JCV (John Cunningham virus). JCV causes progressive

multifocal leukoencephalopathy, a fatal demyelinating disease resulting from

lytic infection of oligodendrocytes. Agnoproteinis also found in other

polyomaviruses, including BK virus, and simian virus 40 (Sariyer, Saribas,

White, & Safak, 2011). Agnoprotein was shown to play important regula-

tory roles in the JCV replication cycle (Ellis, Dang, Norton, & Koralnik,

2012; Ellis, Norton, Dang, & Koralnik, 2013; Saribas et al., 2013), and

possesses properties commonly associated with viroporins (Suzuki et al.,

2013; Suzuki, Orba, Malcino, et al., 2010; Suzuki, Orba, Okada, et al.,

2010). For example, a deletion mutant is defective in virion release and viral

propagation. Also, agnoprotein localizes to the ER during early stages of

infection, but is also found at the plasma membrane late in infection. Finally,

agnoprotein, an integral membrane protein, forms homo-oligomers that

enhance permeability of cells to hygromycin B and induce the influx of

extracellular Ca2+, leading to membrane dysfunction and enhancement

of virus release. Only a solution NMR structure of a synthetic peptide

corresponding to the TM domain (Thr-17 to Glu-55) is available, but with

an uncertain oligomeric size in lipid bilayers (Coric et al., 2014). As with the

6K protein, characterization of this viroporin is still in its infancy.

7.3 The Picornavirus 2B Protein
Protein 2B is a �100 residues long nonstructural protein found in entero-

viruses [see Ao, Sun, & Guo, 2014 for a recent review], eg, poliovirus

(Agirre, Barco, Carrasco, & Nieva, 2002). Enteroviruses belong to the

single-stranded positive-sense RNA Picornaviridae family, and include
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poliovirus, Coxsackie virus and human enterovirus 71 (EV71). The single

open reading frame encodes a peptide chain divided into three regions,

P1 to P3. The 2B protein is one of the products from the polypeptides in

the P2 region, and has two TM domains, one more hydrophobic than

the other (de Jong et al., 2003; Nieva, Agirre, Nir, & Carrasco, 2003).

The C- and N-termini of the poliovirus 2B protein are exposed to the

ER and Golgi lumen when expressed in cells (de Jong et al., 2003), but

the 2B protein in Coxsackie virus adopts an opposite orientation (Abed

et al., 2005, van Kuppeveld, Galama, Zoll, van den Hurk, & Melchers,

1996). Poliovirus 2B protein was found to increase the concentrations of free

calcium in the cytosol, which has been proposed to promote viral replication

and repression of the antiviral immune response of host cells (Aldabe,

Irurzun, &Carrasco, 1997). However, precise structural data is not yet avail-

able for this protein or its oligomers.

8. HOST–CELL RESPONSES TRIGGERED BY VIROPORIN
ACTIVITY

One common, specific effect of viroporin channel activity may be

associated with the observed ability of viruses to activate the host

inflammasome, which activates caspase-1 to produce proinflammatory cyto-

kines, eg, IL-1β. These effects have been shown in many cases to be caused

by the disruption of cellular ion homeostasis by allowing ion leakage from

intracellular organelles into the cytosol, through the expression of viroporins

[reviewed in Guo, Jin, Zhi, Yan, & Sun, 2015]. For example, the IAV acti-

vates the NLRP3 inflammasome as a result of H+ or ion flux from Golgi

mediated by its M2 ion channel (Ichinohe, Pang, & Iwasaki, 2010). The

2B protein from several picornaviruses, including the encephalomyocarditis

virus (EMCV), poliovirus, enterovirus 71, and human rhinovirus

(Triantafilou, Kar, van Kuppeveld, & Triantafilou, 2013) were shown to

induce NLRP3 cytoplasmic relocalization and inflammasome activation

in an intracellular Ca2+-mediated manner (Ito, Yanagi, & Ichinohe,

2012). The channel activity of the SARS-CoV E protein is required for

the processing of IL-1β (Nieto-Torres et al., 2014), which requires

caspase-1 activation. Channel activity of the SH protein may also result

directly or indirectly in activation of the NLRP3 inflammasome (Segovia

et al., 2012; Triantafilou, Kar, Vakakis, Kotecha, & Triantafilou, 2013).

In these cases, therefore, development of channel inhibitors should improve

the pathological effects of host inflammation caused by these viruses.
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9. MODULATION OF PROTEIN–PROTEIN INTERACTIONS
INVOLVING VIROPORINS

Apart from the effects of their channel activity, viroporins are involved

in many protein–protein interactions (PPIs) that are susceptible for thera-

peutic intervention, and may be increasingly important once these interac-

tions are properly characterized [see recent reviews Fischer, Li, Mahato,

Wang, & Chen, 2014; Fischer et al., 2012; Nieva & Carrasco, 2015].

For example, the cytoplasmic regions of AM2 and BM2 are important

for proper virus assembly and interaction with M1 (Chen, Leser, Jackson,

& Lamb, 2008; Imai, Kawasaki, & Odagiri, 2008; Imai, Watanabe,

Ninomiya, Obuchi, & Odagiri, 2004; McCown & Pekosz, 2006), which

can be proposed as an attractive drug target.

Also, the HCV p7 interacts with other viral structural and nonstructural

proteins that are important to promote virus assembly and release (Gentzsch

et al., 2013; Haqshenas, Dong, Ewart, Bowden, & Gowans, 2007;

Pietschmann et al., 2006; Sakai et al., 2003; Yi, Ma, Yates, & Lemon,

2007), and functions related to capsid assembly and localization of several

viral proteins are not affected by either channel-inactivating mutations or

treatment with Rim (Tedbury et al., 2011; Wozniak et al., 2010), eg, the

transfer of HCV core protein from lipid droplets to the ER depends on

the interaction between p7 and NS2 (Boson, Granio, Bartenschlager, &

Cosset, 2011). Therefore, the disruption of such interactions would require

the action of PPI modulators rather than channel inhibitors.

The interaction partners of E and SH proteins have been reviewed

recently (Torres, Surya, Li, & Liu, 2015). In the case of CoV E proteins,

the interaction with M protein has long been reported to contribute to

M localization and virion formation (Corse & Machamer, 2003; Hogue

& Machamer, 2008; Ilk, Egelseer, & Sleytr, 2011; Lim & Liu, 2001; Siu

et al., 2008; Vennema et al., 1996). Recent reports have highlighted inter-

actions with Protein Associated with Lin Seven 1 (PALS1) (Teoh et al.,

2010) and syntenin through PDZ domains of E proteins, which are consis-

tent with alterations of lung epithelia integrity and inflammation observed

during CoV infection. Disruption of these pathways may have clear thera-

peutic implications, since in SARS-CoV-infected patients it is an exacer-

bated inflammatory response that leads to epithelial and endothelial

damage, edema, and acute respiratory distress syndrome (Smits et al.,

2010). Noticeably, several other viruses, eg, human papillomavirus and
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influenza A, have been found to enhance pathogenesis through proteins

containing PDZ binding motifs (reviewed in Javier & Rice, 2011), which

suggests that this is a particular case of a widely used viral strategy.

Vpu is known for its ability to degrade the HIV-receptor CD4 (Bour &

Strebel, 2003), which requires interaction between Vpu and CD4 cytoplas-

mic domains (McNatt, Zang, & Bieniasz, 2013; Singh et al., 2012) and prob-

ably TM domains (Do et al., 2013; Magadán & Bonifacino, 2012) of the two

proteins. This may not even require formation of oligomers, and even less

channel activity. Vpu also affects virus release via interaction with inter-

feron-induced protein tetherin (BST-2) (Miyagi, Andrew, Kao, & Strebe,

2009; Neil, Zang, & Bieniasz, 2008; Skasko et al., 2012; Van Damme

et al., 2008), an interferon-induced host protein that inhibits the release

of many enveloped viruses by tethering virions to the cell surface [reviewed

in Strebel, 2014].

In another case, the interaction between RSV SH and G proteins has

been reported previously in infected cells (Low, Tan, Ng, Tan, &

Sugrue, 2008; Rixon, Brown, Murray, & Sugrue, 2005), although the sig-

nificance is not clear yet. The B-cell receptor-associated protein 31 (BAP31)

has been recently reported to interact with the SH protein (Li et al., 2015).

Although this interaction has not been reported in infected cells, it could

prevent the cleavage of BAP31 and the formation of proapoptotic fragment

p20, thus delaying apoptosis of infected cells. Interaction with BAP31 was

also observed in the E5 viroporin from the high-risk human papillomavirus

HPV-16 and HPV-31, where it is similarly thought to regulate apoptosis

(Regan & Laimins, 2008).

JCV agnoprotein has been shown to interact with a number of cellular

and viral proteins (Gerits & Moens, 2012; Gerits et al., 2015). However,

despite all these intense research, the exact regulatory function of

agnoprotein in viral replication is not fully understood. JCV agnoprotein

specifically interacts with the adaptor protein complex 3 through its delta

subunit. This interaction interrupts adaptor protein complex 3-mediated

vesicular trafficking. The protein is then not targeted to the lysosomal deg-

radation pathway, while allowing transport of agnoprotein to the plasma

membrane. The findings suggest that the viroporins of other viruses may also

be highly regulated by specific interactions with host cell proteins (Suzuki

et al., 2013).

These pathologically relevant interactions between viroporins and their

associated viral and host proteins present an attractive therapeutic target for

disruption by small molecules, as well as peptides stabilized by internal
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covalent linkage (stapled peptides) (Walensky & Bird, 2014). In principle,

both the transmembrane and extramembrane domains of viroporins can

be potential templates for peptide-based modulators. For example, one

could design a stapled peptide mimicking the α-helical cytoplasmic domain

of the SH protein to disrupt the interactions between SH and a variant of the

death effector domain (vDED) of BAP31, which would lead to enhanced

apoptosis and cell death of infected cells. One could also mimic the trans-

membrane domain to disrupt monomer–monomer interactions, as shown

recently for Halobacterium salinarum where efflux by a small multidrug resis-

tance protein was inhibited with peptides targeting its TM domain

(Bellmann-Sickert, Stone, Poulsen, & Deber, 2014). In the case of

viroporins, the disruption of the oligomeric status would abolish channel

activity, a classical strategy revisited with a different approach. However,

more detailed mechanistic information should be available before these con-

ceptual strategies can be widely used.
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