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Acute myeloid leukemia (AML) is the most common adult acute leukemia. Survival

remains poor, despite decades of scientific advances. Cytotoxic induction chemotherapy

regimens are standard-of-care for most patients. Many investigations have highlighted

the genomic heterogeneity of AML, and several new targeted therapeutic options have

recently been approved. Additional novel therapies are showing promising clinical results

and may rapidly transform the therapeutic landscape of AML. Despite the emerging

clinical success of B-cell lymphoma (BCL)-2 targeting in AML and a large body of

preclinical data supporting myeloid leukemia cell (MCL)-1 as an attractive therapeutic

target for AML, MCL-1 targeting remains relatively unexplored, although novel MCL-1

inhibitors are under clinical investigation. Inhibitors of cyclin-dependent kinases (CDKs)

involved in the regulation of transcription, CDK9 in particular, are being investigated in

AML as a strategy to target MCL-1 indirectly. In this article, we review the basis for CDK

inhibition in oncology with a focus on relevant preclinical mechanism-of-action studies of

CDK9 inhibitors in the context of their therapeutic potential specifically in AML.
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INTRODUCTION

In 2018, an estimated 21,380 people in the United States were diagnosed with acute myeloid
leukemia (AML), making AML the most common adult acute leukemia (1). AML accounts for
up to 32% of all adult leukemias and 1.3% of all new cancer cases in the United States (1). Survival
outcomes for patients diagnosed with AML are poor. For patients <60 years of age treated with
conventional chemotherapy, 35–45% achieve long-term survival (2). Older patients (≥65 years of
age) have an even worse prognosis, with long-term survival rates of only 10–15% (2).

Cytotoxic induction therapy (7 days of standard-dose cytarabine and 3 days of an anthracycline
or an anthracenedione, e.g., daunorubicin or idarubicin; also known as 7+ 3), which was developed
in the 1970s, remains the standard of care for most patients with AML undergoing induction
treatment (3, 4); however, recently a novel liposomal formulation of daunorubicin and cytarabine
was approved by the US Food and Drug Administration (FDA) for high-risk and secondary AML
(5, 6). Hypomethylating agents (HMAs), such as azacitidine and decitabine, while not formally
approved by the FDA for the treatment of AML as single agents, have been used as de facto
standard-of-care therapy for elderly patients with AML unfit for induction therapy. Response rates
for azacitidine and decitabine monotherapy are low in elderly patients (10–50%), with a median
overall survival of <1 year (7). Even for patients who achieve a complete remission with standard
therapy, most will ultimately relapse and face a poor prognosis (8). Thus, there is a clear need for
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improved therapeutic options in AML. Since 2013, 65 drugs have
been granted orphan designation specifically for the treatment of
AML (9); however, there were only four US FDA approvals for
new treatments in AML in 2017 (6, 10–16) and another four in
2018 (17–26).

Venetoclax combination therapy in particular has yielded
promising results in elderly patients, with recent clinical trials
showing a 65% complete remission rate in patients ≥75 years
(7). As venetoclax is a selective inhibitor of B-cell lymphoma 2
(BCL-2), these outcomes highlight the importance of targeting
BCL-2 family proteins for the treatment of AML. However,
resistance to BCL-2 inhibition on venetoclax combination
regimens is emerging, and alternative strategies to address
resistance mechanisms are needed. Indeed, increased advances in
the understanding of the role of BCL-2 family proteins and their
interactors in apoptosis and AML pathogenesis have led to the
discovery and clinical development of additional investigational
treatments. Recent functional screens using CRISPR/Cas9
approaches highlight the central importance of mitochondrial
function/architecture in resistance to BCL-2 inhibitor venetoclax
(27, 28). Other BCL-2 family protein members may also play a
role in AML patients refractory/resistant to BCL-2 inhibition,
particularly MCL-1, which is an antiapoptotic multidomain
protein regulated by distinct cyclin-dependent kinases (CDKs) in
both apoptotic and cell-cycling pathways (8, 29–31).

In this review, we will address advances in the clinical
development of CDK inhibitors as a strategy for indirectly
targetingMCL-1 in the treatment of AML.We will briefly discuss
the BCL-2 family of proteins that underlie AML pathogenesis
and treatment resistance, as well as the therapeutic potential
of targeting CDKs that regulate transcription, focusing on
CDK9 inhibition.

BCL-2 FAMILY OF PROTEINS, INCLUDING
MCL-1, IN AML PATHOGENESIS

Many studies have sought to identify critical, pathogenic
mechanisms in AML. However, these efforts are complicated
by the inherent heterogeneity of the disease (32) and its
relatively low mutational load compared with some malignancies
(33). Deregulated expression of one or more of the apoptosis-
controlling BCL-2 family members, central regulators of cell
survival and apoptosis, is common in AML (34). This family of
proteins, which includes more than 20 members, has pro- or
antiapoptotic functions converging on mitochondrial apoptosis,
also commonly known as intrinsic apoptosis (35, 36), a critical
cell-death regulatory mechanism (Figure 1). Impairment of
apoptosis represents one of the postulated hallmarks of cancer
and is highly relevant to AML, as antiapoptotic mechanisms are
upregulated in AML (35, 37, 38).

Based on sequence and structural homologies, BCL-2 family
proteins can be classified into three groups, each containing at
least one BCL-2 homology (BH) domain (BH1-4) (31):

• Proapoptotic multidomain effector proteins (including BAK,
BAX, and BOK), which mediate the release of critical
proapoptotic factors (e.g., cytochrome c, SMAC/Diablo) from

FIGURE 1 | Apoptosis activation in normal and tumor cells. Apoptosis

signaling is normally triggered by multiple death signals. There is a finely tuned

balance between proapoptotic and antiapoptotic proteins that results in

efficient apoptosis induction. MCL-1 and other antiapoptotic proteins block

apoptotic effectors like BAK on the surface of the mitochondria. BH3-only

proteins, such as NOXA, untether BAK from MCL-1, permitting BAK to cause

events that result in cell death.

mitochondria by inducing mitochondrial outer membrane
permeabilization (MOMP).

• Proapoptotic, which contain only the BH3 domain (e.g., BID,
BIM, PUMA, BAD, NOXA, HRK, BIK, BMF, BNIP3, andNIX)
and are activated or induced by cell-death stimuli to promote
cell death. This “BH3-only” group can be further subdivided
into activators and/or sensitizers (39, 40). BH3-only activators
directly and/or indirectly activate effector proteins to induce
MOMP (31), and BH3-only sensitizers bind to antiapoptotic
proteins to allow activator and effector proteins to drive
MOMP (39). BIM has been reported to have the capacity to
act as both sensitizer and activator, making it a powerful BH3-
only protein actively involved in the response to drug therapy
in blood-related malignancies (35, 41–45). BH3-only proteins
and their role in apoptosis have been extensively reviewed
elsewhere (36, 46).

• Antiapoptotic multidomain proteins (including BCL-2, BCL-
XL, myeloid cell leukemia-1 [MCL-1], BCL-W, BCL-2-A1, and
BCL-B) interact with both the multidomain effector proteins
and BH3-only proteins to inhibit MOMP.

Overexpression of MCL-1 is recognized as having a critical
role in several hematologic malignancies including diffuse
large B-cell lymphoma (47), multiple myeloma (MM)
(48), chronic lymphocytic lymphoma (49), and in AML cell
survival and treatment resistance (50–52). Further, increased
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MCL-1 expression is associated with treatment resistance to
myelodysplastic syndrome (MDS) (53, 54), which can evolve
into AML. Preclinical studies support the potential for inhibition
of MCL-1 to attenuate the underlying pathogenesis of AML
(48, 50, 51, 55–59), including when used in combination with
BCL-2 and/or BCL2L1 (also known as BCL-XL) inhibition
(60–64). MCL-1 sequesters mitochondrial BAK, thereby
preventing homo- or hetero-oligomerization, pore formation,
and ultimately, apoptosis. MCL-1 is distinct from other
antiapoptotic BCL-2 proteins as it has a very short half-life,
∼30min (56, 65), and therefore requires active transcription and
translation to maintain functional levels in the cell (66).

Abundant evidence supports the concept that MCL-1
represents an attractive therapeutic target in AML (59, 67,
68). High MCL-1 expression appears to play a critical role
in the survival of leukemic stem cells in patients with AML,
and deletion of MCL-1 resulted in the cell death of murine
AML cells in mice (50, 69). Further, some patients with
AML have shown a ≥2-fold increase of MCL-1 expression
at relapse (70). While initially intuitive to inhibit MCL-1
directly, several MCL-1 inhibitors failed in early preclinical
development because of their toxicity [the development of small
molecule and peptide MCL-1 inhibitors over the past decade
has been reviewed in multiple articles (71–74)]. An alternative
approach is to indirectly inhibit the antiapoptotic function of
MCL-1. Indirect targeting of MCL-1 by inhibition of specific
CDK isoforms that regulate transcription, particularly CDK9 or
CDK7, has shown promising preclinical and clinical outcomes
(8, 29, 30).

CDK INHIBITORS AS CANCER
THERAPEUTICS

CDKs are a family of serine/threonine kinases discovered
in yeast, classically shown to promote cell-cycle transitions
via interaction with various fluctuating cyclins (75, 76). A
plethora of evidence suggest that the classical cell cycle
CDKs, such as CDK1 and CDK2, are targets for treating
various malignancies driven by uncontrolled proliferation
(77, 78). Interfering with CDK function by targeting CDK
regulatory kinases upstream of CDK1/2, such as CHK1 (79)
and WEE1 kinase (80), or their combination (81), has also
shown proof-of-principle activity in AML (79), and other
cancers (82).

The concept of targeting cell-cycle dysregulation as a
therapeutic approach has been a major focus of cancer research
for many decades. Research and development has been centered
around multiple efforts with small molecules directed against
CDKs, including for leukemia and MDS (83–85). Several CDK
inhibitors have been investigated as cancer therapies (29), with
approvals in recent years in solid tumors for palbociclib (86–89),
ribociclib (90, 91), and abemaciclib (67, 92–94).

CDKs have other functions beyond direct cell-cycle regulation
(Table 1) (66, 76, 114, 124–130). Additionally, CDKs that
regulate gene transcription are of increasing interest as potential
therapeutic targets in cancer (130–132).

TABLE 1 | Functions of CDK isoforms.

CDK

isoform

Main function(s) (selected)

CDK1 Control of M phase of cell cycle; myoblast

proliferation (95–97)

CDK2 Control of G1-S phase of cell cycle;

myoblast proliferation; Rb/E2F

transcription (97–99)

CDK3 NHEJ-mediated DNA damage (100)

CDK4 Control of G1 phase of cell cycle; Rb/E2F

transcription (98, 101, 102)

CDK5 Neuronal function (103, 104)

CDK6 Control of G1 phase of cell cycle; Rb/E2F

transcription (98, 102, 105)

CDK7 RNA Pol II transcription; CDK-activating

kinase (66, 106, 107)

CDK8 RNA Pol II transcription (108–111)

CDK9 RNA Pol II transcription (112–115)

CDK10 Ets2 transcription (116, 117)

CDK11 RNA splicing (118–120)

CDK12 RNA Pol II transcription, RNA splicing

(121, 122)

CDK13 RNA Pol II transcription; RNA splicing

(123, 124)

CDK, cyclin-dependent kinase; NHEJ, non-homologous end joining; RNA Pol II, RNA

polymerase II.

Transcriptional CDKs
As gene transcription has been found to be dysregulated in
several cancers, including AML, transcription-associated CDKs
are a natural target for cancer therapy. Inhibition of CDK7,
CDK8, and CDK9 have been of particular interest in AML
(59, 133, 134). These CDKs phosphorylate the carboxyl terminal
domain (CTD) of RNA polymerase II (RNA Pol II), to facilitate
the production of mature transcripts (128, 129, 135, 136). These
transcriptional CDKs have been found to be dysregulated in
AML (58, 137).

CDK8
CDK8 regulates the Mediator complex, a highly conserved
multiprotein complex that functions as a coactivator of
transcription (138, 139). Among its functions, the Mediator
complex interacts with the pre-initiation complex consisting of
RNA Pol II and general transcription factors, such as TFIIH to
initiate the process of transcription (140). A CDK8 subcomplex,
consisting of CDK8, cyclin C, and Mediator complex subunits
Med12, and Med13, prevents re-initiation of transcription after
RNA Pol II promoter clearance (i.e., transcription elongation)
by binding to the Mediator complex in a manner mutually
exclusive with RNA Pol II and independent of CDK8 kinase
activity (140). CDK8 kinase activity is reported to both negatively
and positively regulate transcription, which may be promoter-
specific (141–143). For example, CDK8 phosphorylation of
general transcription factors, such as TFIIH or transcription
factor Notch, promotes disassembly of the pre-initiation complex
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to negatively regulate transcription (141, 142), while CDK8
phosphorylation of histone H3 facilitates cooperative histone H3
acetylation that activates transcription (143) by phosphorylating
cyclin H (139, 140).

SEL120-34A is a novel, potent, and selective CDK8 inhibitor
being evaluated preclinically (144). In AML cell lines, CDK8
inhibition with SEL120-34A was effective in cells expressing high
levels of STAT5 and STAT1 (144). SEL120-34A also showed
in vivo activity in mice with xenografted KG-1 and MV4-11
AML tumors with repression of oncogenic MCL-1 in MV4-11
tumors (144).

CDK7 and CDK9
RNA transcription is catalyzed by both CDK7 and CDK9
working in sequence (Figures 2A,B). CDK9 is the catalytic
subunit of the positive transcription elongation factor b (P-TEFb)
complex that, together with a regulatory subunit (cyclins T or
K), phosphorylates the CTD of RNA Pol II (145). This process is
essential to escape from abortive initiation and facilitate RNA Pol
II elongation to generate mature mRNA/transcripts (113, 146–
148). The CTD of RNA Pol II is first phosphorylated by CDK7 as
part of the transcription factor IIH complex, allowing polymerase
to initiate transcription (76, 125, 149). However, the CTD of
RNA Pol II must be further phosphorylated by CDK9/P-TEFb
for productive elongation of transcription to occur (113, 150).
Application of CDK9 and CDK7 inhibitors modulate the activity
of all RNA Pol II-regulated genes. There are a few preclinical
studies evaluating CDK7 inhibition for AML; however, much
more focus has been on inhibition of CDK9, as upregulation
of CDK9 is associated with MCL-1 synthesis and treatment-
resistance (58, 151).

THZ1 is a CDK7 inhibitor currently in preclinical study
for treatment of AML and peripheral T-cell lymphomas
(152, 153). THZ1 prevents Pol II CTD phosphorylation,
which disrupts pausing, capping, and elongation, thereby
inhibiting transcription (154). In preclinical studies, THZ1
appeared to inhibit transcription factors, such as RUNX1,
a key regulator of hematopoiesis that is involved in the
common t(8, 21) translocation event in AML (152, 154).
Further studies are needed to determine appropriate dosing for
clinical trials.

ICEC0942 is an orally bioavailable CDK7 inhibitor also being
evaluated in preclinical studies (155). Whereas, THZ1 has a
covalent mechanism of action and may interact with other
kinases, ICE0942 has a non-covalent mechanism of action, which
could possibly limit side effects (154, 155). Oral administration of
ICE0942 in mice showed favorable safety with no adverse effects
on liver or kidney function (155).

SNS-032 is an inhibitor of CDK2, CDK7, and CDK9. In vitro
studies of SNS-032 (BMS-387032) alone or in combination
with cytarabine, induced AML cell cytotoxicity through
inhibition of CDK2, CDK7, and CDK9 transcription,
resulting in the attenuation of RNA Pol II-mediated
transcription (156).

Alvocidib, previously described as flavopiridol, is a pan-
CDK inhibitor structurally related to a natural alkaloid derived
from Dysoxylum binectariferum, a plant indigenous to India
(157). The initial clinical use of alvocidib was based on

evidence for the compound as a cell-cycle modulator (157–
160). However, further investigation revealed that alvocidib
is more potent for inhibiting CDKs directly associated with
transcription machinery, most prominently CDK9, to regulate
RNA Pol II as described above. Down-regulation of transcription
by CDK9 inhibition broadly and preferentially affects proteins
with a short half-life, such as MCL-1 (161–163). Consistent with
this evidence, alvocidib treatment has been shown to decrease
MCL-1 levels in AML and chronic lymphocytic leukemia cells
(Figure 2C) (30, 162, 164). Alvocidib induces apoptosis in many
tumor cell lines, including those derived from lymphoma, MM,
and AML (8). Despite exhibiting its own unique toxicities,
alvocidib could speculatively have a more tractable therapeutic
index owing to its transient and reversible reduction of MCL-
1 via CDK9 inhibition, in contrast to other direct inhibitors
of MCL-1. Synergistic therapeutic combinations harnessing
lower doses of alvocidib than what may otherwise not be
effective as monotherapy, are thus also speculatively attractive, as
discussed further in the section Combination Therapy Utilizing
CDK9 Inhibition.

Atuveciclib (BAY 1143572) is a potent, selective P-
TEFb/CDK9 inhibitor (165). Early discovery efforts identified
in vivo activity in both MOLM-13 and MV4-11 xenograft
models of AML with a 14-day continuous oral course of
atuveciclib at the maximum tolerated dose. Oral bioavailability
was improved over the existing lead compound, and atuveciclib
was ultimately selected for phase 1 clinical evaluation on the
basis of the totality of its in vitro and in vivo activity (165).
A phase 1 dose-escalation trial of atuveciclib in subjects with
advanced leukemia has completed, but results have not yet been
reported (NCT02345382).

Dinaciclib is a pan-CDK inhibitor that targets CDK9,
but for which potency is stronger for other CDKs, namely
CDK2 and CDK5 (166). Based on preclinical observations
involving mostly AML cell lines, dinaciclib treatments
resulted in MCL-1 downregulation (167). In vitro and in vivo
antitumor activity of dinaciclib in mixed lineage leukemia
fusion protein AML, regarded as a chemotherapy resistant
and poor-prognosis subtype, lends further support to the
functionality and therapeutic effects of the anti-CDK9 properties
of dinaciclib (168).

LY2857785 is another pan-CDK inhibitor (including CDK7,
CDK8, and CDK9) and also inhibits other kinases (130). As
part of efforts to characterize the relative contributions of CDK9
vs. CDK7 inhibition, this study suggests that inhibition of cell
proliferation was primarily mediated by CDK9. LY2857785 was
shown to confer significant inhibition among all 24 tested
hematologic cancer lines, with AML cell lines found to be
most sensitive. Similarly, an in vivo model (MV4-11 xenograft)
showed that tumor growth was significantly inhibited by
LY2857785 (130).

TG02 (169–171) has exhibited an IC50 < 10 nM for CDK9
and CDKs 1, 2, 3, and 5 along with potent inhibition, albeit
less pronounced relative to CDKs, against other targets that
include JAK1, JAK2, and FLT3 (169). Using ex vivo expanded
AML blast cells (N = 16), more potent inhibition of cell
proliferation was demonstrated for TG02 relative to SNS-032
and the non-CDK-targeted FLT3 inhibitor sunitinib. CDK9
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FIGURE 2 | CDK9 and CDK7 work sequentially to produce mature transcripts. CDK9 is the catalytic subunit of the P-TEFb complex, which is essential in generating

mature transcripts. (A) CDK7 phosphorylates the fifth serine on the carboxyl-terminal domain of RNA Pol II, thereby activating RNA Pol II to begin transcribing RNAa.

(B) CDK9 then phosphorylates the second carboxyl-terminal serine to enable elongation of RNA transcripts (113)a. (C) Inhibition of CDK9 reduces MCL-1 expression

(8). aReprinted from Morales and Giordano (113), with permission from Taylor & Francis. Brd4, bromodomain-containing protein 4; CDK, cyclin-dependent kinase;

MCL-1, myeloid cell leukemia-1; P-TEFb, positive transcription elongation factor b; RNA Pol II, RNA polymerase II.

was identified as the most sensitive target of TG02, effecting
RNA Pol II-mediated transcription at lower concentrations
than those for SNS-032 while downregulation of MCL-1

was confirmed. Findings from MV4-11 and HL-60 AML
models collectively support tumor growth inhibition for
TG02-treated animals.
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Voruciclib is an oral, selective inhibitor of CDK9. Preclinical
data has shown that voruciclib in combination with BCL-2
inhibitor venetoclax enhances cell death in AML cell lines (172).

These preclinical studies have shown that targeted CDK9
inhibition results in down-regulation of MCL-1 and subsequent
cell death in AML cell lines. Clinical trials have been initiated
and further support CDK9 inhibition as a potentially effective
treatment for patients with AML.

Clinical Development of CDK9 Inhibitors in AML
Alvocidib was the first CDK inhibitor to be tested in a clinical
trial (159, 160). As of 2019, ∼65 clinical trials had been
conducted investigating alvocidib alone or in combination with
other antineoplastic drugs. Of these trials, 31 assessed alvocidib
in hematologic malignancies, including AML (173). While an
overview of clinical trial data is beyond the scope of this review,
it is important to note that several clinical trials have been
conducted or are in progress with the purpose of determining
the optimal use of alvocidib in AML. For example, a randomized
phase 2 multicenter study, which compared ACM/FLAM to 7
+ 3 in newly diagnosed adult AML patients with intermediate-
and adverse-risk cytogenetics, reported the activity of alvocidib
when it was used as timed sequential therapy in combination
with cytarabine and mitoxantrone (3). The ACM/FLAM regimen
led to higher complete response rates compared with patients
who received either 7 + 3 alone (46%; P = 0.003) or 7 + 3
followed by an additional dose of cytarabine on days 1–5 and
daunorubicin on days 1–2 (5 + 2; 57%; P = 0.08), and without
an increase in toxicity; however, relapse and overall survival rates
remained similar (3). Final results of the study data (median
follow-up, 1,644 days) confirmed the similar overall survival and
higher CR rates in the ACM/FLAM treatment arm compared
with the 7+ 3 arm (174). Phase 1 trials of atuveciclib in AML and
other acute leukemias (NCT02345382) and TG02 in AML and
other advanced hematologic malignancies (NCT01204164) have
been completed; however, results have not yet been published. A
phase 1 trial of AZD4573 [a CDK9 inhibitor for which preclinical
data have been presented (175, 176) but have not yet been
published] in relapsed or refractory AML and other hematologic
malignancies (NCT03263637) was initiated in October 2017. A
phase 1 trial of voruciclib is currently recruiting patients with
B-cell malignancies or AML (NCT03547115).

Combination Therapy Utilizing CDK9 Inhibition
Experimental evidence suggests that malignant cells, including
leukemias, may be dependent on one or more of the
multiple antiapoptotic proteins for survival (64, 177, 178).
For example, while some cancer cells may depend on MCL-1
for survival, others may depend on BCL-2 or BCL-XL (177).
Analysis of BCL-2, BCL-XL, and MCL-1 protein levels in
primary AML samples (N = 577) showed that MCL-1, BCL-
2, and BCL-XL exhibited variable protein expression levels,
within and across differentiation stages (French-American-
British [FAB] classification subgroups), as well as across
different cytogenetic and molecular defined subgroups (178).
This indicates heterogeneity of antiapoptotic protein expression
in AML (64) and supports the concept of dual or triple targeting

of BCL-2 family proteins in AML and myeloid malignancies.
Conceivably, clonal heterogeneity with regard to antiapoptotic
protein expression/dependence may be also observed within
a single patient and could promote resistance to therapy.
However, for all BCL-2 family members, there is also substantial
interpatient variability. Agents that target MCL-1 may have no
effect on cells dependent on BCL-2 for survival and vice versa.
Thus, combination therapies based on dual-targeting of BCL-2
family members may be attractive strategies for treating AML.

With regard to BCL-2 family inhibition, combination
strategies including CDK9 inhibitors aim to overcome MCL-
1–dependent drug resistance via transcriptional silencing of
MCL-1. CDK9 inhibitors can also overcome intrinsic apoptotic
resistance via induction of pro-apoptotic BH3-only proteins,
such as BIM, possibly occurring through transcriptional down-
regulation of miRNAs that negatively regulate these pro-
apoptotic BH3-only proteins (30, 161, 162, 179). Considering
these premises, potential synergistic partners for CDK9 inhibitors
include small molecules known to inhibit BCL-2 family proteins,
such as navitoclax (ABT-263; AbbVie, Inc., North Chicago, IL,
USA) and venetoclax (30, 62, 172). Pharmaceutical targeting of
BCL-2 alone with venetoclax or BCL-XL/BCL-2 combined with
navitoclax is active in pre clinical models of AML (177) but only
modestly active in the clinic (180). Activity of BCL-2 and/or
BCL-2/BCL-XL inhibition can be further enhanced by knocking
down MCL-1 (45, 177, 181–183). Combination treatment of
voruciclib and venetoclax showed synergistic activity in inducing
apoptosis in both venetoclax-sensitive and venetoclax-resistant
AML cell lines (172). Concurrent treatment with alvocidib plus
venetoclax results in reductions of the half-maximal activity
(EC50) values for venetoclax in both venetoclax-sensitive and
-resistant AML cell lines, and also results in synergy in primary
AML samples treated with the combination ex vivo, as well
as in a mouse xenograft model of AML. The combination of
alvocidib and venetoclax was largely dependent on BIM, and
thus the combination is mechanistically founded in the intrinsic
apoptotic pathway (30). Based on this work, a phase 1b clinical
trial to evaluate combined alvocidib and venetoclax in AML was
initiated in May 2018 and is in progress (NCT03441555). The
combination of dinaciclib and venetoclax is also being actively
evaluated in a phase 1b trial in patients with relapsed or refractory
AML (NCT03484520), which was initiated in July 2018.

Bromodomain and extra-terminal (BET) family proteins,
such as BRD4 interact with cyclin T1 and CDK9 to positively
regulate P-TEFb [(183–186); Figure 2C]. Thus, BET inhibitors
are emerging as a new, additional therapeutic class for
alternatively targeting P-TEFb. Several BET inhibitors, such
as CPI-0610 (Constellation Pharmaceuticals, Cambridge, MA,
USA) (NCT02158858; AML and MDS), MK-8628 (Merck and
Co., Inc., Whitehouse Station, NJ, USA) (NCT02698189; AML,
MDS, and diffuse large B-cell lymphoma), and R06870810
(Roche, Basel, Switzerland) (NCT02308761; AML and MDS) are
being tested in early clinical trials in AML and other hematologic
malignancies, including myelodysplastic syndromes. While BET
inhibitors are being investigated as monotherapy, their use
in combination with CDK9 inhibitors may show even more
promising outcomes for treatment of AML. For example, BET
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inhibitor BI 894999 has shown activity in AML cell lines, primary
patient samples, and xenograft models as a monotherapy and in
combination with CDK9 inhibitors LDC000067 and alvocidib
(186). Combined BET and CDK9 inhibition results in rapid
induction of apoptosis in vivo and in cultured cells, perhaps due
to a global arrest of transcriptional elongation (186). A phase 1
dose-finding clinical study of BI 894999 monotherapy in solid
tumors has been initiated (NCT02516553). It will be interesting
to compare the therapeutic window and efficacy between CDK9
and BET inhibitors in AML, as well as the potential for combined
BET and CDK9 inhibition.

The combination of a CDK9 inhibitor with an immune
checkpoint inhibitor is another intriguing approach for the
treatment of AML. Programmed cell death protein 1 receptor
(PD-1) is expressed in T-cell subpopulations, and increased
PD-1 expression may lead to inhibition of the immune response
as AML progresses (187). In murine syngeneic tumor models,
use of dinaciclib increased immunogeneic properties of tumor
cells, including early expression of type I interferon response
genes, and increased expression of PD-1. When dinaciclib was
combined with an anti-PD-1 antibody, T-cell and APC activation
within the tumor was increased, and antitumor efficacy was
improved as compared with either monotherapy (188). The
combination of anti-PD-1 (pembrolizumab) and dinaciclib is
currently being evaluated in a phase 1 trial in patients with
hematologic malignancies (KEYNOTE-155, NCT02684617).

PROTEOMIC AND BH3 PROFILING AS
PUTATIVE BIOMARKER APPROACHES

In addition to an expanded portfolio of potential treatment
options, patients may benefit from proteomic profiling, which
may predict response to certain treatments. For example,
proteomic profiling of several proteins involved in apoptosis,
differentiation, and signal transduction identified clusters that
correlated with AML FAB subtypes and cytogenetic defined
subgroups. In this large proteomic dataset, differences in BH3-
mimetic and BCL-2 protein expression were found in FAB
and cytogenetic subgroups, supporting a preferential usage of
different molecules within the intrinsic apoptotic pathway in
subsets of AML (178). Proteomic profiling may also reveal
prognostic subgroups that have not been uncovered through
transcriptomic methods. For instance, a study utilizing a reverse-
phase protein array (RPPA) found that increased chromosomal
region maintenance 1 (CRM1) expression in AML is associated
with poor survival. Further, inhibition of CRM1 induces
apoptosis in AML cells in a p53-dependent manner (189) (see
Figure 1). Protein signatures could therefore predict survival
and may be useful in directing therapy, including for BCL-
2 targeting drugs and combinations. RPPA methods may also
provide greater accuracy into protein expression levels and post-
translational modifications in cancer cells, which can lead to
novel therapeutics (190). In conjunction with genomic and
transcriptomic analysis, proteomics can identify commonalities
as well as novel networks in cancer biology (190). However,
there are certain challenges in implementing RPPA into clinical

practice including a centralized database, high-quality patient
samples, and establishment of best practices (191).

BH3 profiling is another approach in predicting response of
novel therapeutics in AML cells. BH3 profiling is a functional
assay for assessing the apoptotic capacity of a cell. This assay
specifically determines how readily cells will undergo apoptosis,
i.e., whether the cells are primed for apoptosis, as well as which
antiapoptotic BCL-2 family proteins may be most important for
survival (192–194). Additionally, BH3 profiling of AML cell lines
can indicate possible cooperativity of agents targeting different
molecules in the apoptotic process, suggesting that BH3 profiling
may function as a potential tool to assess combination therapies
in AML (171). Using BH3 profiling, Bhola et al. found that
AML and other cancer types are highly heterogeneous in regard
to apoptotic priming (192). In primary AML cells and AML
xenograft models, BH3 profiling showed a strong correlation
between the level of apoptotic priming and the relative sensitivity
of the cells to the BCL-2 inhibitor venetoclax (39).

BH3 profiling also has the potential to distinguish clinical
responses to azacitidine in AML (64). Vo et al. used BH3 profiling
to predict responses to targeted BCL-2 inhibition, as well as
to conventional chemotherapy in AML (40). In this study, a
subset of patients with low-primed samples displayed a higher
risk of relapse. In addition, retrospective studies profiling the
BCL-2 family proteins (BCL-2, BCL-XL, and MCL-1) identified
potential biomarkers of clinical response to venetoclax (180).
As the HRK peptide has the highest affinity for BCL-XL and
denotes BCL-XL dependency and the BAD peptide denotes
BCL-2 and/or BCL-XL dependency, a BAD-HRK mathematical
derivation is considered a rough metric for BCL-2 dependency.
It was shown that dependence on BCL-XL and MCL-1 correlated
with a decrease in response after short-term therapy. Addition of
the HRK peptide to BH3 profiling as a post-hoc metric predicted
that longer-term therapy could be used without development of
resistance (180).

NOXA is a pro-apoptotic BH3-only protein that exhibits
the greatest affinity for MCL-1 and is thought to specifically
bind to and disrupt MCL-1 function in vivo (Figure 1) (36,
59). Thus, due to NOXA selectivity for MCL-1, NOXA
peptides are thought to be a specific read-out of MCL-1
dependency. Thus, NOXA as a BH3 profiling metric may
be an ideal biomarker for CDK9 inhibitors given strong
mechanistic links to MCL-1. Mitochondrial profiling in patients
with AML treated with alvocidib followed by cytarabine and
mitoxantrone (ACM, previously FLAM [ACM/FLAM]) revealed
that patients who experienced complete response had higher
NOXA priming in bone marrow samples than non-responding
patients (164, 195). This rationale has also been used in a study
of patients receiving combined vorinostat and gemtuzumab
ozogamicin therapy. Responders displayed significantly higher
MCL-1 dependence (observed as higher NOXA priming) than
non-responders (P = 0.027), with a high correlation also
seen between MCL-1 dependence and overall survival (P =

0.026 per logistic regression) (196). It is unknown which
BH3 profiling metrics may be best for predicting response
to combination therapies, such as BCL-2 combined with
CDK9 inhibition.
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It is important to note that, while BH3 profiling has
demonstrated clinical utility, a lack of standardized protocols
may limit broader clinical applicability. The use of different
platforms, as well as the use of either whole-cell or mitochondrial
preparations, may lead to different conclusions (197). Difficulty
in determining the optimal peptide concentration for profiling
highlights further need for standardization (198). Finally, existing
BH3 profiling techniques are labor-intensive and require a large
volume of starting tissue, which increases error and decreases
clinical applicability (199). Despite these limitations, further
refinement of BH3 profiling is promising for precision medicine-
based treatment.

CONCLUSION

Inhibitors of transcriptional CDKs are potential novel therapies
for AML. While preclinical studies are currently investigating
CDK7 and CDK8 inhibitors, there is abundant preclinical
and clinical evidence to support targeting CDK9 whose
inhibition downregulates, amongst others, the important anti-
apoptotic protein MCL-1. CDK9 inhibitors represent a novel
therapeutic class of small molecules for indirectly inhibiting

MCL-1. Thus, over-expression of MCL-1 could be a predictive

biomarker for treatment response to CDK9 inhibition. BH3
profiling, measuring specific priming for MCL-1 and other
BCL-2 family proteins, also has the potential to serve as
a biomarker for identifying/selecting patients who could
favorably respond to CDK9 inhibition. CDK9 inhibitors have
the potential to be combined with other agents in AML,
and results are awaited from several completed and ongoing
clinical trials.
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