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1  | INTRODUC TION OF PSORIA SIS

Psoriasis is an inflammatory epidermal proliferative dermatosis 
which affects 2%-3% of the world's population.1 Clinically, psoriasis 
is characterized by clear boundaries of skin lesions, erythema and 
scales on the skin.2 Psoriasis was not initially considered as a dis-
ease, but a dysfunction of keratinocytes in the epidermis.3 A large 
number of studies have shown that the innate and adaptive immune 
responses of cells, especially the T-cell–mediated system, play an 
important role in the pathogenesis of psoriasis.4 In addition, the cy-
tokine network is a key element in psoriasis. The expression levels of 
interleukin (IL)-1, tumour necrosis factor (TNF), interleukin-12 (IL-12), 

interleukin-17 (IL-17), interleukin-22 (IL-22) and interleukin-23 (IL-23) 
in psoriatic skin are significantly increased. Among them, IL-17A and 
IL-22 have the most profound effects on keratinocytes.5 In psori-
atic lesions, keratinocytes are activated and proliferate much faster 
than normal keratinocytes.6 Not only do cytokines have a strong in-
fluence on psoriasis but many immune cells also change greatly in 
psoriasis. Inflammatory cells in psoriatic skin are mainly composed 
of dendritic cells (DCs), macrophages, dermal T cells and epidermal 
neutrophils.7 Among these immune cells, dendritic cells increase sig-
nificantly in psoriatic lesions. Although DCs play a central role in the 
pathogenesis of psoriasis, the specific role of each DC is not clear. 
At present, it is believed that psoriasis is caused by the imbalance 
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Abstract
The skin is the main barrier between the human body and the outside world, which 
not only plays the role of a physical barrier but also functions as the first line of 
defence of immunology. Langerhans cells (LCs), as dendritic cells (DC) that play an 
important role in the immune system, are mainly distributed in the epidermis. This 
review focuses on the role of these epidermal LCs in regulating skin threats (such as 
microorganisms, ultraviolet radiation and allergens), especially psoriasis. Since human 
and mouse skin DC subsets share common ontogenetic characteristics, we can fur-
ther explore the role of LCs in psoriatic inflammation.
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of the interaction between innate immunity and adaptive immune 
components of skin cells, and the interconnection between innate 
immunity and adaptive immune system is realized by cytokines, such 
as TNF-α, IFN-γ and IL-1.4

T cells are considered to be key effector cells that have com-
plex interactive feedback with antigen-presenting cells, neutrophils, 
keratinocytes and vascular endothelial cells.8 The production of cy-
tokines can be activated by DCs, such as TNF-α, and after TNF-α 
is activated, it can, in turn, activate some secondary mediators and 
adhesion molecules. These activated mediators and inflammatory 
factors play an important role in the pathogenesis of psoriasis. DCs 
are divided into several types that play different roles in the human 
immune system and perform their respective duties.

2  | THE ORIGIN OF L ANGERHANS CELL S

Dendritic cells play a very important role in the immune system, 
which are divided into three categories to maintain the balance of 
the human body: (a) DCs existed in tissue, such as in the intersti-
tial space or the dermis, are called traditional DCs; (b) Plasmacytoid 
DCs; and (c) Langerhans cells (LCs). LC is a kind of stellate DC lo-
cated at the base of the epidermis and was discovered by Paul 

Langerhans in 1868.9 One hundred and twenty years later, Nobel 
laureates Laureate Ralph Steinman and Gerold Schuler found that 
LCs are derived from dendritic cells that continue to differentiate 
from lymphoid progenitor cells differentiated from pluripotent hae-
matopoietic stem cells.10 However, some recent studies have found 
that LCs are mainly derived from myeloid progenitor cells.11

It is suggested that LCs were originated from primitive yolk 
sac haematopoietic cells, which are the precursor cells of yolk sac 
macrophages (Figure 1). Yolk sac macrophages are produced from 
the primitive red blood cell-myeloid progenitor cell (EMP) after ap-
proximately 16-18 days of pregnancy, and some of the LCs migrate 
to the skin in the form of yolk sac macrophages. Some LCs also 
migrate to the skin in the form of liver monocytes expressed by 
c-myb obtained by late EMP.12 The last portion of the pluripotent 
haematopoietic stem cells (HSCs) produced by LCs through EMP 
will appear in the aorta-gonad-mesonephros (AGM) region of the 
human body since the 32nd day of pregnancy, when it binds to 
flt3 and begin to migrate to the foetal liver and then to the bone 
marrow, enter the skin, where they exist for a long time.13 C-myb 
and flt3 are necessary kinases in the process of HSC formation.14 
Therefore, LCs are considered to be a macrophage that retains 
the function of DCs.15 It is mainly located in the epithelial cells of 
many organs and is first present in the epidermis of the skin.16 LCs 

F I G U R E  1   Occurrence and development of Langerhans cells (LCs). LCs are mainly differentiated from primordial erythrocytes-myeloid 
progenitors (EMPs) in the yolk sac. There are three pathways to induce and migrate LCs to the epidermis. The development of LCs in the 
epidermis depends on CSF-1R, a molecule which could maintain skin homeostasis through combining with IL-34. LCs could be replaced 
by mononuclear progenitors, which could bind to CSF-1, derived from bone marrow during inflammation
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account for approximately 2%-3% of skin cells.17 The development 
of LCs migrate to the epidermis depends on CSF-1R.18 This is also 
different from most DC subsets, which depend on another recep-
tor, the tyrosine kinase FLT3.19 There are two kinds of ligands for 
CSf-1R. (a) IL-34, derived from keratinocytes, and (b) CSF1, derived 
from neutrophils, have different ligands in different skin states. 
CSF1R mainly binds to IL-34 in normal skin.20 During inflammation, 
it will be replaced by bone marrow-derived mononuclear progeni-
tor cells and bind to CSF-1.21 IL-34 is produced in the epidermis of 
embryonic developmental skin. As a ligand of CSf-1R, it plays an 
important role in the development of LCs and the maintenance of 
balance in vivo.22,23

Langerhans cells are epidermal cells characterized by the expres-
sion of Langerin (CD207) and CD1a. LCs play a clear role of anti-
gen-presenting cells in skin inflammation.24 Langerin is a type II type 
c lectin receptor, called Birbeck granule, which is involved in the pre-
sentation of non-peptide antigens to T cells25 and is expressed only 
in LCs in the skin.26 When confronted with pathogens or allergens, 
LCs act as antigen presentation function triggering a series of im-
mune responses by migrating from the epidermis to the lymph nodes 
by presenting antigens to T-regulatory cells. The migration of LCs 
in the epidermis during homeostasis and inflammation comes from 
different progenitor cells, which perform their respective functions.

3  | MIGR ATION OF L ANGERHANS 
CELL S DURING HOMEOSTA SIS AND 
INFL AMMATION

Although LCs in the epidermis are mainly derived from myeloid pro-
genitor cells, they can exist for a long time after migration to the 
epidermis and can renew themselves in a steady state.27 After the 
mature LCs migrate to the epidermis, the hydrophilic E-cadherin 
binds to the surrounding keratinocytes, which can maintain the sta-
bility of LCs in the epidermis.28 E-cadherin is a transmembrane gly-
coprotein that mediates Ca2+-dependent intercellular adhesion. It is 
the main component of adhesion junction and helps to maintain the 
integrity of the epidermal barrier.29 LCs without E-cadherin showed 
significant morphological change: more round cell bodies and fewer 
dendrites. However, the absence of E-cadherin did not affect the 
turnover, maturation, migration and function of LCs, and E-cadherin 
was down-regulated during LCs mobilization and migration from the 
epidermis.28 The non-haematopoietic origin of TGF-β1 is considered 
to play an important role in promoting LC renewal.30 In vivo, TGF-
β1 is secreted by white blood cells and non-haematopoietic cells 
(including keratinocytes). It has multiple effects in the immune sys-
tem.31 There are three isotypes of TGF-β, among which TGF-β1 is 
the main isotype in the immune system. The development of LCs 
does not require haematopoietic-derived TGF-β1. TGFβ-1 from LCs 
directly acts on LCs through the autocrine/paracrine loop, which is 
necessary for LC genesis and survival,32 and it is consistent with the 
ability of keratinocytes to produce M-CSF and TGF-β1.33 The micro-
environment of LCs (for example, keratinocyte signal) can induce a 

large number of resident langerin+ LCs to be proliferated20; there-
fore, it is a crucial element of controlling LC homeostasis.

Exposure to UVB radiation or irritants induces the migration 
of LCs which originally resident in the epidermis and promotes the 
migration of bone marrow-derived Gr-1hi mononuclear cells to the 
epidermis.20 Among them, CCCTC binding factor (CTCF) can pro-
mote the outflow of LCs from the epidermis.34 CTCF plays a variety 
of roles in the haematopoietic lineage, which can regulate the early 
development of thymocytes and participate in the development and 
the operation of macrophages.35,36 Gr-1 (also known as Ly-6c/G) is 
a monocyte with high expression of monocyte markers, and it is the 
precursor of LC in inflammatory epidermis.18 Macrophage inflam-
matory protein (MIP)-3 α, as a chemokine produced by epidermis, 
plays a central role in the summons of LC Precursors to epidermis.37 
Gr-1hi monocytes express the inflammatory chemokine CCR2 recep-
tor, which in turn promotes the secretion of proinflammatory CCR2 
(monocyte chemoattractant protein 1), CCR7 and other chemokines 
in the skin.20,38

4  | THE FUNC TION OF L ANGERHANS 
CELL S IN THE INFL AMMATORY RESPONSE

Previous studies have told us that B cells and CD8+T cells are the 
main effectors of the adaptive immune system, while CD4+T cells 
can regulate the function of other types of lymphocytes.39 The 
CD4+T-cell compartment is particularly complex because it includes 
Th1, Th2, Th17 and T follicle helper (TFH) cells.40,41 Among them, 
TFH cells are very important for the establishment of the germinal 
centre (GC), and they provide help for the expansion, selection and 
affinity maturation of antigen-specific B cells.42 DCs and LCs, as an-
tigen-presenting cells (APCs), present endogenous peptides under 
the background of major histocompatibility complex (MHC) I mole-
cules and exogenous peptides under the background of MHC II mol-
ecules to CD8+ and CD4+T cells, respectively,43,44 lead to induction 
of the adaptive immune response and gain the ability to capture and 
present exogenous antigens through MHC I molecules.45 However, 
the secretion of IL-12 cytokines mediated by DCs and LCs can stimu-
late the activation of NK and γδT cells, thus destroy the target cells 
of MHC I molecules which lack of self-recognition. Meanwhile, NK 
and γδT can provide positive feedback for the maturation of DCs and 
LCs and promote the transmission of innate and adaptive immune 
responses.46

Antigen-presenting cells in the epidermis mainly consist of LCs, 
and their marker langerin mediates recognition by interacting with 
sugar conjugates such as mannan, which has a high mannose struc-
ture, or β-glucan, and expressed on the surface of pathogens.43,47 
Langerin mediates ligand internalization for antigen processing 
and presentation; thus, they can be used to specifically transport 
antigens that bind to polysaccharides or α-langerin antibodies to 
LCs (Figure 2).43 The activation of LCs after the binding of langerin 
to epidermal antigen can directly promote the IL-2-mediated signal 
conditions to induce the proliferation of Treg cells.48 The migration 
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of LCs from the epidermis is controlled by IL-1β, IL-18 and tumour 
necrosis factor-α (TNF-α), which are specifically produced by ke-
ratinocytes.49 At the same time, the expression of TNF-α induces 
the expression of CXCL12 in skin fibroblasts.50 CXCR4 has also 
been shown to play a key role in the maturation and lymph node 
migration of DC.51

Therefore, the CXCR4-CXCL12 axis controls the migration of LCs 
to lymph nodes (DLNs). Other studies have shown that LCs can acti-
vate the LIGHT-LTβR signal axis as well as the CCL21/CCL19 expres-
sion in lymphatic endothelial cells, thus promote LCs' migration.52

At this time, LCs preferentially induce the proliferation of CD4+T 
cells, which differentiate and secrete Th1 and Th2 cytokines, and 
the initiation and cross-activation of immature CD8+T cells become 
apparent.39,53 LCs are also involved in the differentiation of TFH 
cells, which is also very important for the induction of TFH cells and 
the production of germinal centres.54 At the same time, LCs derived 
from CD34+ progenitor cells cultured in vitro can effectively pro-
mote the proliferation of CD8+T cells after internalization of soluble 
peptides.39 LCs are also equipped with membrane-spanning Toll-like 
receptors (TLRs) to recognize pathogen-related molecular patterns 

(PAMPs).55 TLR2 signalling is mediated by MyD88-dependent Toll-
mediated pathways, including phosphorylation of IL-1R-associated 
kinase (IRAK), which eventually leads to the activation of transcrip-
tion factors such as NF-κB.56 These processes promote the matura-
tion of LCs and increase the expression of costimulatory molecules 
and MHC II, thus enhancing the ability antigen presentation ability 
of LCs. The cells also participate in the synergistic release of proin-
flammatory chemokines, including T-cell–stimulating factor and 
IL-6, IL-18 and TNF-α, the expression of adhesion molecules and 
the interaction between immature T cells and cells migrate to lymph 
nodes, inducing the differentiation of Th17.57,58 At the same time, 
after the skin is triggered by microbial-derived ligands (such as lipo-
polysaccharide [LPS] or bacterial cell wall compound peptidoglycan 
[PGN]) or stimulated by toxins or stimulants (risk-related molecular 
model, DAMP),59 the expression levels of the LCs maturation mark-
ers CD40, CD80, HLA-DR and CCR7 and the release of IL-1β and 
IL-23 are greatly enhanced. These factors are potential Th17-driven 
cytokines.58 In the epidermis, TLR-2 detects the composition of 
mycobacteria and Gram-positive bacteria with its related receptors 
TLR-1 and TLR-6. Exposure to bacterial antigens also leads to the 

F I G U R E  2   The role of Langerhans cells (LCs) in the occurrence and development of psoriasis. KCs stimulated by stress stimulation (such 
as cytokines) can stimulate the self-nucleotide and antimicrobial peptide LL-37 complex to activate epidermal LCs, inducing keratinocytes 
to specifically produce a variety of cytokines to promote the migration of LCs to lymph nodes (DLNs) and T-cell activation. LCs can also 
activate the LIGHT-LT β R signal axis to activate the expression of CCL21/CCL19 in DLN. At the same time, epidermal LCs can produce IL-2, 
IL-23 and TLR2. Among them, IL-2 can promote the proliferation of Treg cells; TLR2 signal mediates the activation of the transcription factor 
NF-κB, promotes LC maturation and migration to lymph nodes and induces Th17 differentiation. The cytokines produced by LCs promote 
Th17 and Th22 to activate the expression of IL-17, IL-22 and TNF-α and promote the proliferation of keratinocytes and other features of 
psoriasis. Proliferated KCs once again release cytokines, antimicrobial peptides and chemokines to infiltrate immune cells, further enhancing 
the role of activated T cells and forming a positive feedback loop between psoriatic epidermal cells and the immune system
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phosphorylation of the MAP kinase ERK, which promotes LCs mat-
uration, which may contribute to the tolerance of LCs.55 To further 
study LCs, scientists have identified LC-like cells that can be cultured 
in vitro.

5  | DIFFERENCES BET WEEN LC S AND LC-
LIKE CELL S IN EPIDERMIS

According to the expression of CD11c and CD1a, the first two spe-
cies of DCs in human peripheral blood were identified as CD11c+DC, 
composed of the main CD1a+/CD11c+ component (group 1) and a 
small amount of a CD1a−/CD11c+ component (group 2). The CD11c 
components are monocyte-like and have GM-CSF receptors; the 
third species is composed of CD1a−/CD11c− dendritic cells (group 
3), which are similar to plasma cell-like T cells and do not express 
GM-CSF receptors. Among them, CD1a+/CD11c+/CD14−DC is con-
sidered to be the direct precursor of LCs.60 CD34 peripheral blood 
monocytes cultured in GM-CSF, IL-4 and TNF-α differentiate into 
mature DCs.61-63 If TGF-β1 is added to the culture medium, LCs may 
be formed.64 As a substitute for human skin, many functional stud-
ies of LCs use the above-mentioned LCs derived from CD34+ hae-
matopoietic progenitor cells and compare epidermal LCs and LC-like 
cells.

Thymic interstitial lymphopoietin (TSLP) is an interleu-
kin-(IL)-7-like cytokine. Human LCs treated with TSLP experience 
phenotypic and functional maturation.65 Epidermal LCs treated 
with TSLP can induce CD4 helper T cells to produce inflammatory 
TH2 cytokines and thymus and activation-regulated chemokine 
(TARC)/CCL17.66,67 Unlike epidermal LCs, TSLP stimulation does not 
enhance the survival and maturation of LC-like cells derived from 
CD34+. In addition, TSLP does not increase the immunostimulatory 
ability of these cells, does not induce them to produce TARC/CCL17 
and cannot promote the expression of inflammatory Th2 cytokines 
in CD4+helper T cells.63 Therefore, LC-like cells cannot completely 
replace epidermal LCs in research. However, there is also a view 
states that TSLP does not play a major role in controlling the pro-
liferation of LCs in the process of development and inflammation.

6  | THE ROLE OF L ANGERHANS CELL S IN 
PSORIA SIS

6.1 | Patients with psoriasis

Since 1970, research data on the number of LCs in psoriasis have 
been debated, and different reports have detected an increase,68,69 
decrease70,71 or stability72,73 of LCs in the epidermis of patients 
with psoriasis. However, there is a great difference in the num-
ber of LCs between normal subjects and patients with psoriasis, 
and the results of different experiments are different, which may 
related to the redistribution of LCs and the common surfacers of 
inflammatory DCs.74 The onset of psoriasis has two different age 

groups. Early onset occurs before the age of 40, accounting for 75% 
of cases, while late onset occurs after the age of 40, with a peak 
between 55 and 60 years old. Although these two types of psoria-
sis look very similar clinically, their pathogenic genes are different. 
The HLA-CW6 allele is associated with early-onset psoriasis but has 
little association with late-onset psoriasis.75 The mobilization and 
migration of LCs in the epidermis of patients with early-onset pso-
riasis were seriously impaired, and the impaired migration is closely 
related to bone marrow-derived LCs.76 Among them, early-onset 
chronic plaque psoriasis (CPP) is strongly linked to the inhibition of 
LCs migration in epidermal. LCs migration damage can be detected 
in both guttate psoriasis and CPP lesions. LCs migration returned to 
normal after remission of guttate psoriasis, but LCs will be severely 
damaged and unable to recover if migrated by guttate psoriasis pro-
gressed to CPP.77,78 The significant decrease or completely absent 
of LC migration in early-onset psoriasis is mainly caused by IL-1β, 
TNF-α and contact allergen.77 In late-onset psoriasis, keratinocytes 
do not secrete cytokines that inhibit LC migration.79 This may due to 
the fact that LCs respond to IL-1β rather than TNF-α. The failure of 
exogenous TNF-α to mobilize LCs does not necessarily reflect the 
non-response to TNF-α. Since LC migration needs to receive signals 
from both TNF-α and IL-1β, unresponsiveness in this case may be 
a secondary factor in the production of IL-1β, biological activation 
and/ or impaired signal transduction.80

It was reported that LCs induce the proliferation of CD4+T cells 
under inflammatory conditions, while CD4+T cells, CD8+T cells and 
γδT cells produce IL-17, IL-17A, IL-17F, IL-21 and IL-22 as cytokines of 
Th17 cells.81 As described in Figure 2, the increased activity of p38α 
mitogen-activated protein kinase is related to human susceptibility 
to psoriasis.82 The activity of p38 was also increased in KCs stimu-
lated by stress stimulation (such as cytokines and ultraviolet radia-
tion).83 The p38α signal in LCs rather than DCs specifically promotes 
the production of IL-17 in γδT and CD4+T cells by secreting IL-23 and 
IL-6, which are essential for the development of the psoriasis.84

In addition, studies have shown that the activation of Stat3 in 
keratinocytes may affect the activation of LCs at least partly through 
IL-1 α stimulation, and their existence is related to the occurrence or 
aggravation of psoriasis, called the Koebner phenomenon, which is 
caused by IL-23.85,86 This activation leads to the intraepidermal cir-
cuit of KC-LCs and the activation of the IL-23/IL-17 axis, which leads 
to the occurrence and development of psoriasis. Human β-defensin 
3 (HBD3) is a small antimicrobial peptide that has a chemotactic ef-
fect on immune cells and plays a small role in promoting the devel-
opment of psoriasis by inducing the increase of IL-23 produced by 
epidermal LCs.87,88

Moreover, LCs can induce whole peripheral T cells and imma-
ture CD4+T cells to produce IL-22, a cytokine that mainly acts on 
epithelial cells. In the skin, it produces antimicrobial proteins, such 
as HBD3, indicating that this cytokine is involved in the defence of 
early hosts against microbial pathogens,89 and mediates keratino-
cyte proliferation and epidermal hyperplasia, which is thought to 
play an important role in inflammatory diseases with obvious epider-
mal acanthosis, such as psoriasis.89 It has been shown that not only 
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Th17 cells but also T helper cells can produce IL-22, and the type of T 
helper cells that only produce IL-22 is called Th22.90 It is considered 
that the DCs in the skin, especially the IL-22 cytokines induced by 
LCs to penetrate into the skin, are produced by Th22 cells.91 Because 
there are still many differences between LCs and human epidermal 
LCs in experiments performed in vitro, more people choose to create 
mouse models to study LCs.

6.2 | Mouse model of psoriasis

Human skin is different from mouse skin in terms of its anatomy. 
Human skin is divided into epidermis and dermis, while the epidermis 
is divided into four layers: a stratum corneum, a transparent layer, a 
granular layer and a germinal layer, all composed of lamellar flat epi-
thelium. The dermis is divided into two layers: a papillary layer and 
a reticular layer, and mainly composed of dense connective tissue. 
The mouse skin has only 2-3 layers, covered under dense hair folli-
cles.92 The DCs of mouse skin can be divided into LCs, Langerin+DCs 
and Langerin-DCs. Dermal DCs consist of two main subgroups: 
Langerin-DC (CD103+CD11b−) and Langerin-DC (CD103−CD11b+). 
The difference between LCs and dermal Langerin-DCs lies in the high 
expression of CD11b and epithelial cell adhesion molecule (EpCAM) 
as well as the low expression of CD103.93 At present, the study of 
LCs mainly uses langerin-diphtheria toxin A (DTA) or diphtheria toxin 
receptor (DTR) mice with LC gene defects to establish the model 
of psoriatic dermatitis. In addition, three independent mouse lines 
have been designed to effectively ablate the endogenous Langerin 
site introduced by LCs; thus, the primate diphtheria toxin receptor 

(DTR) and the Langerin-DTR (muLangerin-DTR) mouse strain were 
established94 using human genomic BAC DNA, human Langerin-DTA 
(huLangerin-DTA) and huLangerin-DTR transgenic mice containing 
Langerin loci expressing active Diphtheria toxin or DTR.95

The mouse psoriatic dermatitis models have been generated by 
different ways, such as local administration of IL-23, topical appli-
cation Imiquimod (IMQ) as ligands of TLR7 and TLR8, and the dele-
tion of cre recombinant enzyme in keratin 5 expressing cells (Junf/f 
JunBf/f K5creER = DKO * mice) induced by tamoxifen (TX) lead to ac-
anthosis, hypokeratosis and mixed inflammatory infiltration in mice 
with common psoriasis96-98 (Figure 3). The severity of dermatitis in-
duced by IMQ in LC gene-deficient mice is significantly lower than 
that in wild-type mice. It is considered that LCs play a very important 
role in the inflammatory response of psoriatic dermatitis induced by 
IMQ.99 The development of these three common psoriatic dermatitis 
models is very dependent on IL-23/IL-17/IL-22 axis.96,100,101

In the comparison of the skin transcriptional group of the pso-
riasis mouse model, the transcriptional group in the IL-23 injection 
model was most similar to the gene expression pattern found in pso-
riatic skin.102 Subcutaneous injection of IL-23, together with IL-12 
and TNF produced by LCs and DCs, activates αβT and γδT cells to 
produce IL-22 and IL-17A/F, which stimulate keratinocyte prolifera-
tion, release S100 protein and β-defensin, and promote the produc-
tion of growth factors and chemokines in psoriasis.100

The accumulation of LCs in the epidermis of psoriatic skin le-
sions induced by IMQ is mainly related to the local proliferation of 
the LC pool. Local treatment with IMQ for 5-7 days can induce the 
increase of LC, the production of IL-23, and γδT cells which pro-
duce IL-17A in mice.103 These γδT cells can migrate to the epidermis 

F I G U R E  3   The three kinds of way to 
establish Psoriasis-like Mouse Model. 
The first type of psoriasis-like mouse 
model was intradermal injection of 
500 mg of IL-23 every other day for 
15 days; the second kind was to smear 
62.5 mg of imiquimod on the back every 
day for 6 days; and the third kind was 
intraperitoneal injection of tamoxifen for 
three consecutive days of 1 mg in DKO* 
mice, which could lead to acanthosis, 
incomplete keratosis and mixed 
inflammatory infiltration after 14 days
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of IMQ-treated skin through CCR6 to further develop psoriasis 
dermatoses.104 CCR6 was demonstrated to be expressed on all 
peripheral T cells expressing IL-17A/F and IL-22.105 Other studies 
have shown that Langerin-DTR mice could reduce the inflamma-
tion of psoriasis-like dermatitis induced by IMQ and reduce the 
number of γδT cells produced by permeable IL-17A. In the mouse 
model, it was found that CD1a, a lipid-presenting molecule heavily 
expressed on LCs, could amplify the inflammatory response me-
diated by Th17 cells in response to self-lipid antigens.106 The role 
of Langerin epidermal LC in inducing the TFH-cell response was 
confirmed in huLangerin-DTR mice.54 The mouse model of pso-
riasis induced by IMQ mentioned above is only used to study the 
early stages of the disease.107 Some studies have adjusted the IMQ 
treatment time to 14 days to better simulate human conditions and 
study the late stages of the disease. Langerin-DTR mice can induce 
IMQ-induced psoriatic dermatitis and promote a large number of 
epidermal neutrophils in the late stage.108 However, it is still con-
troversial whether this method can really represent the late stage 
of psoriasis.

Interestingly, the third type of psoriatic model using DKO* 
mice showed chronic inflammation, remained stable over a long 
period of time and was thought to mimic the chronic phase of 
human disease. Studies have shown that in this mouse model, 
bone marrow-derived LCs decreased significantly, while IL-23 
content increased, but did not affect the expression levels of IL-17 
and IL-22.109 The chronic development of this psoriatic dermati-
tis model may depend on the direct action of IL-23 on keratino-
cytes.110 Therefore, the proliferative and activated LCs found in 
the epidermis In melanoma, the decrease in the number of LC is 
due to the loss of the antigen presentation function of LC, which 
promotes the continued survival of tumour cells' immunomodula-
tory effect in the late stage.

7  | CONCLUSION

As immune cells of the epidermis, LC is essential for sensing danger 
and triggering congenital and adaptive protective responses in the 
body. In other skin diseases, such as Atopic dermatitis, LC depletion 
can help to relief the disease.111 In melanoma, the decrease in the 
number of LC is due to the loss of the antigen presentation func-
tion of LC, which promotes the continued survival of tumour cells.112 
However, the role and function in psoriasis are controversial; it is 
possible that there is a certain heterogeneity of LC, there are new 
functional subsets have not been found, which is also an important 
content of future research on the role of LC in psoriasis.
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