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Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells 
in the adrenal cortex. It regulates a variety of physiological responses including those to 
oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its 
actions on various tissues including the kidney, heart, and the central nervous system. 
Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and 
adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure 
largely by increasing Na+ re-absorption in the kidney through regulating transcription and 
activity of the epithelial sodium channel (ENaC). This review focuses on the signaling 
pathways involved in aldosterone synthesis and its effects on Na+ reabsorption 
through ENaC.
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INTRODUCTION

Aldosterone is a mineralocorticoid steroid hormone first isolated and characterized in 1954 
which functions mainly to raise blood pressure (Simpson et  al., 1954). Aldosterone has been 
a topic of extensive research due to its crucial role in the regulation of fluid homeostasis. 
The secretion of aldosterone from glomerulosa cells (GC) located in the cortex of the adrenal 
glands is regulated by numerous factors, but the most prominent are extracellular K+ concentration 
and the renin–angiotensin system (RAS; Bravo, 1977; Tremblay and LeHoux, 1993). Kidneys 
play a vital role in the initiation of RAS (Figure  1). Lowered blood pressure triggers the 
release of renin into the circulation from juxtaglomerular cells (JGC) in the afferent arteriole 
of the nephron (Friis et  al., 2013). Renin release can also be  triggered by the sympathetic 
nervous system and by decreased NaCl delivered to the distal tubule. Macula densa cells 
located in the juxtaglomerular apparatus sense low NaCl concentration of the filtrate and 
release paracrine signals that stimulate JGC (Peti-Peterdi and Harris, 2010). Renin is an aspartic 
protease that hydrolyzes liver-released proenzyme angiotensinogen creating angiotensin I, which 
undergoes further cleavage by carboxypeptidase angiotensin-converting enzyme (ACE) to create 
active angiotensin II (ANG II; Crisan and Carr, 2000). ANG II directly stimulates GC to 
secrete aldosterone. Multiple other factors are also able to regulate aldosterone synthesis, such 
as Klotho protein (KL), ACTH, natriuretic peptides (NPs), and circadian clock.

The nephron, the functional unit of the kidney, is the main target of aldosterone (Figure  1). 
Aldosterone exerts its action on the aldosterone-sensitive distal nephron (ASDN) comprising 
the late distal convoluted tubule (DCT2), the connecting tubule (CNT), and the collecting 
duct distal segments of the nephron (Bachmann et  al., 1999; Reilly and Ellison, 2000). ASDN 
governs unidirectional Na+ transport from the filtrate into the circulation and bi-directional 
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K+ transport (Gumz et  al., 2015; Roy et  al., 2015). There are 
two cell types in these segments: principal cells (PC) and 
intercalated cells (IC). PC are involved in Na+ and K+ transport 
while IC predominantly regulate acid–base homeostasis (Loffing 

and Kaissling, 2003; Roy et  al., 2015). Aldosterone binds its 
mineralocorticoid receptor (MR; Shibata and Fujita, 2011). 
Almost all cells express MR, but whether they are affected 
by aldosterone depends on the presence of 11-β-hydroxysteroid 
dehydrogenase type-2 (11β-OHSD2), an enzyme that catalyzes 
11-hydroxy-glucocorticoids to glucocorticoid metabolites 
(Funder et al., 1988). Mineralocorticoids and glucocorticoids 
have a common chemical structure and have equal binding 
affinity for MR (Arriza et al., 1987). To maintain the binding 
specificity in aldosterone-sensitive cells, 11β-OHSD2 
catabolizes glucocorticoids rendering MR free to bind 
aldosterone. Both PC and IC express MR and 11β-OHSD2; 
however, PC has significantly higher levels of both proteins 
(Naray-Fejes-Toth et  al., 1994; Kyossev et  al., 1996). Ligand-
bound MR translocates to the nucleus, where it regulates 
expression of its target genes (Naray-Fejes-Toth et al., 1994). 
Nevertheless, aldosterone also affects its target tissue through 
rapid non-genomic pathways (Arima et  al., 2003; Funder, 
2005; Funder, 2006).

Chronic elevation of aldosterone via intravenous injection 
has been demonstrated to increase arterial and mean 
circulatory filling pressure and resulted in significant water 
and sodium retention in dogs (Pan and Young, 1982). 
Aldosterone produces these effects by affecting electrolyte 
transport in both PC and IC. In PC, aldosterone regulates 
the expression and activity of epithelial sodium channel 
(ENaC) leading to increased Na+ reabsorption from the 
filtrate into the circulation. Aldosterone also has significant 

FIGURE 1 | Hypotension-induced activation of the renin-angiotensin-aldosterone system. As blood pressure drops, juxtaglomerular cells receive signals from 
macula densa cells and the sympathetic nervous system and secrete renin into the circulation. Renin hydrolyzes liver-synthesized angiotensinogen into inactive ANG 
I. ANG I is converted to active ANG II by ACE. ANG II stimulates glomerulosa cells in the adrenal cortex to secrete aldosterone and the anterior pituitary gland in the 
brain to secrete the ACTH, which also results in aldosterone production. High K+ concentration stimulates aldosterone secretion from glomerulosa cells. Aldosterone 
increases Na+ reabsorption, K+ and H+ secretion in ASDN leading to an increase in blood pressure. ANG I, angiotensin I; ANG II, angiotensin II; ACE, angiotensin-
converting enzyme; ASDN, aldosterone-sensitive distal nephron.

Abbreviations: ACE, Angiotensin-converting enzyme; ACTH, Adrenocorticotropic 
hormone; ACTHR, Adrenocorticotrophic hormone receptor; ADH, Antidiuretic 
hormone; ADS, Aldosterone synthase; ANG II, Angiotensin II; APA, Aldosterone-
producing adenomas; ASDN, Aldosterone-sensitive distal nephron; AT1, Angiotensin 
receptor type I; CaMK, Ca2+/Calmodulin-dependent protein kinase; CEH, Cholesterol 
ester hydrolase; CKD, Chronic kidney disease; CREB, cAMP-response binding 
element-binding protein; Cul3, Cullin 3; CYP21-21, Hydroxylase; DAG, 
Diacylglycerol; DOCP, Desoxycorticosterone pivalate; Dot1, Disruptor of telomeric 
silencing 1; EGFR, Epidermal growth factor receptor; EKODE, 2,13-epoxy-9-
keto-10(trans)-octadecenoic acid; ENaC, Epithelial sodium channel; ERAD, 
Endoplasmic reticulum-associated degradation; ET-1, Endothelin 1; GC, Glomerulosa 
cell; GPCR, G protein-coupled receptor; HSB3D-3β, Hydroxysteroid dehydrogenase; 
ICL, Intercalated cells; IHC, Immunohistochemistry; IP3, Inositol 1,4,5 triphosphate; 
JGC, Juxtaglomerular cells; KCNJ5, Inward rectifier potassium channel; KCNSK3/9, 
Potassium channel subfamily K members 3 and 9; KL, Klotho protein; Kelch3, 
Kelch-like 3; MAPK, Mitogen activating protein kinase; MR, Mineralocorticoid 
receptor; Nedd4-2, Neural precursor cell expressed developmentally downregulated 
gene 4; PC, Principal cells; PDK1, Pyruvate dehydrogenase kinase 1; PH, Primary 
hyperaldosteronism; PHA, Pseudohypoaldosteronism type 1; PIP2, 
Phosphatidylinositol 4,5-bisphosphate; PKA, Protein kinase A; PKC, Protein kinase 
C; PKD, Protein kinase D; PM, Plasma membrane; PMA, Phorbol 12-myrstate 
13-acetate; PLC, Phospholipase C; P450scc, Cholesterol side-chain cleavage enzyme; 
RAS, Renin angiotensin system; RT-PCR, Reverse transcription-polymerase chain 
reaction; SER, Smooth endoplasmic reticulum; SF1, Steroidogenic factor 1; StaR, 
Steroid acute regulatory protein; Tom22, Mitochondrial translocase receptor; WNK, 
With no lysine kinase; 11DCS-11, Deoxycorticosterone; 11β-OHSD2-11, 
β-hydroxysteroid dehydrogenase type-2.
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effects on IC. There are two main types of IC: A-type and 
B-type; however, non-A type and non-B type have also been 
described (Teng-umnuay et al., 1996). Secretion of H+ occurs 
in all types of IC through H+ ATPase and H+/K+-ATPase. 
H+/K+-ATPase exchanges H+ for K+ and consists of two 
catalytic subunits HKα1 and HKα2 (Gumz et  al., 2010b). 
H+/K+-ATPase is located on the apical side of A-type IC 
and non-A and non-B IC and on basolateral side of B-type 
IC (Verlander et  al., 1994; Roy et  al., 2015). The expression 
of pendrin, a Na+ independent Cl−/HCO3

− exchanger is also 
observed in non-A and non-B IC as well as in B-type IC 
(Tsuruoka and Schwartz, 1999). Mineralocorticoids influence 
both H+ K+-ATPase and pendrin. Mineralocorticoid excess 
increases the expression of HKα2 mRNA levels, blood K+, 
and Cl− and decreases blood Na+ and HCO3

+ levels (Greenlee 
et  al., 2011). Aldosterone upregulates pendrin expression 
partially through regulated IC-specific MR phosphorylation 
(Shibata et  al., 2013a; Hirohama et  al., 2018). MR has an 
IC-specific phosphorylation site at S843. S843 phosphorylation 
prevents activation of MR. ANG II stimulates MR S843 
dephosphorylation to increase its binding with aldosterone 
(Shibata et  al., 2013a).

Due to its crucial function in the regulation of blood 
pressure, aldosterone imbalance is implicated in many diseases. 
Hyperaldosteronism (Crohn’s disease) is a disease in which 
adrenal glands produce an excess of aldosterone leading to 
hypokalemia, hypertension, and chronic kidney disease (CKD; 
Papadopoulou-Marketou et  al., 2000). In contrast, 
hypoaldosteronism is characterized by significantly low levels 
of aldosterone in the blood (DeFronzo, 1980). These two 
conditions represent both ends of the spectrum of diseases 
caused by aldosterone imbalance. Old age and obesity are 
part of this spectrum as they are risk factors of hypertension. 
Even though the principal targets of aldosterone are the 
epithelial cells of the kidney, it also exerts its action on 
non-epithelial cells of the heart, brain, and vasculature. Thus, 
imbalance in aldosterone levels result in cardiovascular diseases 
(Rocha and Funder, 2002; Yoshimoto and Hirata, 2007; Funder 
and Reincke, 2010; He and Anderson, 2013).

The goal of this article is to describe the recent understanding 
of aldosterone synthesis and its effect on electrolyte balance. 
Although aldosterone produces a variety of effects in multiple 
tissues, we focus on mechanisms by which aldosterone regulates 
sodium transport through ENaC in ASDN.

MECHANISMS OF ALDOSTERONE 
SECRETION

As mentioned above, ANG II, ACTH, and K+ are the main 
signaling molecules that regulate the production of aldosterone. 
These inputs can have two modes of action: acute and chronic. 
The acute response happens within minutes and results in the 
rise of aldosterone due to activation of enzymes involved in 
the biosynthetic pathway and mobilization of cholesterol, while 
chronic effect takes place hours after the signal and involves 
alterations in gene expression.

Aldosterone Biosynthesis Pathway
The adrenal cortex is divided into three functionally distinct 
regions: zona glomerulosa (production of mineralocorticoids), 
zona fasciculata (production of glucocorticoids), and zona 
reticularis (production of androgenic hormones; Vinson, 2016). 
Aldosterone biosynthesis occurs solely in the mitochondria of 
zona glomerulosa cells, which was demonstrated in the late 
1980s where only isolated mitochondria of zona glomerulosa 
synthesized aldosterone (Ohnishi et  al., 1988). This division 
of the adrenal cortex is crucial as adrenal steroid hormones 
are derived from cholesterol, thus functional zonation is one 
way to control the production of steroid hormones.

Like all other steroid hormones, aldosterone is derived from 
cholesterol (Figure 2). The first step in aldosterone biosynthesis 
is the transport of cholesterol to the inner mitochondrial 
membrane, where the cytochrome P450scc (cholesterol side-
chain cleavage enzyme, encoded by CYP11A1), is located 
(Farkash et  al., 1986). Through series of hydroxylation and 
cleavage, P450scc converts cholesterol into pregnenolone (Hume 
et  al., 1984). 3β-hydroxysteroid dehydrogenase (HSD3B) and 
21-hydroxylase (encoded by CYP21 gene) convert pregnenolone 
to 11-deoxycorticosterone (11DCS). Electron microscopy and 
immunohistochemistry (IHC) demonstrated that these two 
enzymes reside on the membrane of the smooth endoplasmic 
reticulum (SER; Ishimura and Fujita, 1997). The last steps of 
the synthesis occur in mitochondria where aldosterone synthase 
(ADS), encoded by the CYP11B2 gene, accomplishes 

FIGURE 2 | Aldosterone biosynthesis pathway. Cholesterol is transported to 
the inner mitochondrial membrane, where it is hydroxylated and cleaved by 
cytochrome P450scc to produce pregnenolone. Pregnenolone is relocated to 
the membrane of smooth endoplasmic reticulum, where it is oxidized by 
HSB3D to produce progesterone. Eleven deoxycorticosterone is generated 
by CYP21-mediated hydroxylation of progesterone and moves back to the 
inner mitochondrial membrane, where it is subject to ADS-catalyzed 
sequential 11-hydroxylation, 18-hydroxylation, and 18-oxidation, producing 
corticosterone, 18-OH corticosterone, and finally aldosterone, respectively. 
P450scc, cytochrome P450 side chain cleavage enzyme; HSD3B, 
3β-hydroxysteroid dehydrogenase; CYP 21, 21 hydroxylase; ADS, 
aldosterone synthase.
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11-hydroxylation, 18-hydroxylation, and 18-oxidation of 11DCS 
to produce aldosterone (Ishimura and Fujita, 1997). Thus, 
precursors of aldosterone are shuttled back and forth between 
mitochondria and SER. The actin cytoskeleton is thought to 
be  involved in this transport (Sewer and Li, 2008). Steroid 
acute regulatory protein (STAR) regulates the rate-limiting step, 
conversion of cholesterol into pregnenolone. STAR is a 30 kDa 
protein that exists on the outer membrane of mitochondria 
and is responsible for transporting cholesterol to P450scc 
(Artemenko et  al., 2001). STAR requires two phosphorylation 
events to reach its full activity (Fleury et  al., 2004; Castillo 
et  al., 2015). STAR plays a key role in aldosterone synthesis 
as mutations in STAR lead to deficiency in adrenal and gonadal 
aldosterone synthesis and are associated with lipoid congenital 
adrenal hyperplasia (Bose et  al., 2000; Hasegawa et  al., 2000).

Although the accepted notion is that aldosterone is produced 
solely by adrenal glands, some studies have shown that the 
heart can synthesize aldosterone in response to stress. RT-PCR 
analyses showed expression of CYP11A1 and CYP21, the genes 
encoding steroidogenic enzymes involved in aldosterone synthesis, 
in adult human tissues (atria, ventricles, aorta apex, and 

intraventricular septum), and expression of CYP11B2 in the 
aorta and fetal heart (Kayes-Wandover and White, 2000). 
Genetically hypertensive adrenalectomized and angiotensin 
II-treated rats had increased activity of ADS and produced 
aldosterone (Takeda et  al., 2000). Interestingly, expression of 
CYP11B2 was detectable by RT-PCR in failing human hearts, 
but not in normal hearts (Young et  al., 2001). Bose et  al. 
(2021) most recently reported a novel mitochondrial complex 
consisting of ADS, mitochondrial translocase receptor (Tom22), 
and STAR. This complex is responsible for the production of 
aldosterone in rat hearts upon stress. However, the ability of 
the heart to produce aldosterone is still controversial. More 
studies are needed to elucidate the mechanisms responsible 
for cardiac aldosterone synthesis.

Angiotensin II
ANG II triggers multiple signaling pathways (Figure  3) upon 
binding to its receptor angiotensin receptor type I  (AT1), a 
G protein-coupled receptor (GPCR; Steckelings et  al., 2010). 
The response of activated AT1 is similar to other GPCRs. 
ANG II binding leads to dissociation of GPCR subunits and 

FIGURE 3 | Cellular mechanisms leading to increased aldosterone production upon angiotensin II, ACTH, and K+ stimulation. Ang II binds to AT1R, leading to 
dissociation of the alpha subunit and activation of PLC. PLC hydrolyses PIP2 into DAG and IP3. IP3 binds to its receptor on the SER leading to the release of Ca2+ 
stores. Ca2+ activates CaMK, which causes an increase in ADS expression through CREB. DAG activates PKC to phosphorylate Src, which phosphorylates EGFR 
leading to activation of p42/p44 mitogen-activating protein kinase pathway. P42/p44 phosphorylates CEH to hydrolyze cholesterol esters located in the lipid 
droplets, making them available for transport to the inner mitochondrial membrane by STAR. PKC also phosphorylates and activates STAR. Cholesterol is used for 
aldosterone synthesis. ACTH binds its ACTHR leading to the activation of adenylate cyclase, which produces cAMP from ATP. cAMP triggers PKA-mediated 
phosphorylation and activation of STAR. PKA also phosphorylates L and T type Ca2+ channels causing Ca2+ influx. PKA increases the expression of ADS through 
relieving SF1-mediated inhibition of STAR. High extracellular K+ concentration depolarizes cells and leads to activation of L and T type Ca2+ channels, which allow 
calcium inflow from the extracellular space. ANG II, angiotensin II; AT1R, angiotensin II receptor type 1; GPCR, G protein-coupled receptor; PLC, phospholipase C; 
PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; IP3, inositol 1,4,5 triphosphate; SER, smooth endoplasmic reticulum; CaMK, Ca2+/calmodulin-
dependent protein kinase; ADS, aldosterone synthase; CREB, cAMP-response element binding protein; PKC, protein kinase C; EGFR, epidermal growth factor 
receptor; CEH, cholesterol ester hydrolase; STAR, steroid acute regulatory protein; ACTH, adrenocorticotropic hormone; ACTHR, adrenocorticotropic hormone 
receptor; SF1, steroidogenic factor 1.
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activation of phospholipase C beta (PLC), which hydrolyses 
phosphatidylinositol-4,5-bisphosphate (PIP2) to diacylglycerol 
(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 interacts with 
IP3 receptor on SER, opening Ca2+ channels and resulting in 
a transient increase in intracellular Ca2+ concentration (Taylor 
and Thorn, 2001). ANG II also causes the influx of calcium 
from the extracellular space (Spat et  al., 1991). Ca2+ is thought 
to increase aldosterone production through Ca2+/calmodulin-
dependent protein kinase (CaMK).

To date, multiple CaMK have been identified (Takemoto-
Kimura et  al., 2017). CaMK I  and II have been shown to 
play a role in aldosterone signaling in the adrenal gland. The 
role of CaMK in aldosterone production is crucial, as its 
inhibition abrogates the expression of ADS and aldosterone 
synthesis (Condon et al., 2002). IHC analysis shows that CaMK 
I  is expressed in the adrenal cortex and transfection of adrenal 
cells with CaMK I coding sequence leads to increased expression 
of ADS (Condon et  al., 2002). Compared to normal adrenal 
glands, aldosterone-producing adenomas (APA) have significantly 
higher mRNA and protein levels of CaMK I and ADS expression 
(Sackmann et  al., 2011). KN62, a potent CaMK II inhibitor, 
decreased production of aldosterone in an adrenocortical tumor 
cell line (Clyne et al., 1995). CaMK II activation almost doubled 
in the presence of elevated ANG II or K+ levels and diminished 
drastically upon KN62 treatment (Fern et  al., 1995). CaMK 
II increases Ca2+ entry into the cell by phosphorylating Ser1198 in 
the II-III loop of a α1H T-type Ca2+ channel (Yao et al., 2006). 
CaMK can be  phosphorylated by CaMK kinases (CaMKK). 
CaMKK are also crucial regulators of ADS expression (Nanba 
et  al., 2015). Treatment with STO-609, a specific inhibitor of 
CaMKK, results in decreased expression of ADS and STAR 
in HAC15 human adrenal cell line. To determine whether 
CaMKK I or II are responsible for this effect, shRNA-mediated 
knockdown was performed. Knockdown of CaMKK II resulted 
in decreased ADS expression and aldosterone production, but 
silencing CaMKK I  had no effect. Furthermore, IHC revealed 
expression of CaMKK II in GC (Nanba et  al., 2015). One 
way by which ANG II increases aldosterone synthesis is through 
regulating transcription of ADS. cAMP-response element binding 
protein (CREB), a downstream target of CaMK I and II, appears 
to play an important role in this process (Tokumitsu et  al., 
1995; Nogueira and Rainey, 2010). ANG II stimulation leads 
to CaMK I  nuclear localization, phosphorylation of CREB, 
and its association with ADS promoter, while mutations of 
CREB diminishes the effect of ANG II on ADS mRNA levels 
(Bassett et  al., 2000; Sackmann et  al., 2011).

Diacylglycerol seems to be a key second messenger of ANG 
II signaling as its inhibition dampens ANG II response in 
normal human adrenal GC (Natarajan et  al., 1988a,b, 1990). 
DAG appears to control aldosterone synthesis through its 
downstream target protein kinase C (PKC), inhibition of which 
reduces aldosterone production upon ANG II stimulation (Kapas 
et  al., 1995; Wang, 2006). PKC likely promotes steroidogenesis 
by increasing the expression and/or activity of STAR. Phorbol 
12-myristate 13-acetate (PMA) activates PKC pathway, leading 
to increased STAR phosphorylation and expression, and 
progesterone synthesis (Manna et  al., 2009). Protein kinase D 

(PKD) also promotes STAR expression since overexpression 
of constitutively active PKD mutant results in upregulated STAR 
mRNA expression (Olala et  al., 2014). Both PKC and PKD 
effects on STAR expression are dependent on CREB (Manna 
et  al., 2009; Olala et  al., 2014).

ANG II has also been shown to increase the local concentration 
of cholesterol by promoting the uptake of lipoprotein cholesterol 
ester, increasing local mitochondrial cholesterol concentration, 
and activating cholesterol ester hydrolase (CEH; Cherradi et al., 
2001, 2003). PKC is considered as an important factor in these 
effects because PMA-activated PKC pathway mimics ANG 
II-induced production of aldosterone, high-density lipoprotein 
receptor scavenger receptor class B type I, and the low-density 
lipoprotein receptor in the human NCI-H295R adrenocortical 
cell line (Pilon et al., 2003). PKC and Ca2+ activate nonreceptor 
Src kinase resulting in transactivation of epidermal growth 
factor receptor (EGFR) and activation of p42/p44 mitogen-
activating protein kinase (MAPK) pathway (Hodges et  al., 
2007). ANG II stimulation activates p42/p44 MAPK in GC 
(Cherradi et  al., 2003). P42/p44 likely phosphorylates CEH 
thereby increasing the concentration of cholesterol available 
for aldosterone synthesis. This process may be  crucial, as the 
phosphorylation of CEH and production of pregnenolone are 
reduced upon p42/p44 inhibition (Cherradi et  al., 2003).

Alteration in various aspects of ANG II signaling pathways 
has been implicated in APA. Patients with APA and idiopathic 
adrenal hyperplasia (IAH) have elevated serum AT1 
autoantibodies, levels of which correlate with mean arterial 
pressure of the patients (Rossitto et  al., 2013; Li et  al., 2015). 
High levels of aldosterone production in APA seem to be  the 
consequence of elevated serum autoantibodies. Human 
adrenocortical carcinoma cells incubated with IgG isolated from 
APA patient’s serum-stimulated aldosterone production and 
CYP11B2 expression (Piazza et  al., 2019). Somatic mutations 
in G protein are also associated with APA. The gain of function 
mutation in GNA11, a gene coding the α subunit of the G 
protein, and its close homologue GNAQ have been identified 
in patients with APA. However, these mutations seem to 
be  clinically silent without a codriver mutation in CTNNB1, 
a gene encoding catenin β1 (Zhou et al., 2021). The importance 
of aberrant activation of Wnt/β-catenin signaling pathways in 
APA is well characterized (Wang et  al., 2017). An Increase in 
Ca2+ signaling also seems to play an important role in APA. 
Compared to the normal adrenal glands, APAs express higher 
levels of CaMKI and show increased CREB phosphorylation 
(Sackmann et  al., 2011). Somatic mutations in CACNA1D, a 
gene encoding voltage-dependent, L type alpha 1D subunit, 
have been identified in APA (Azizan et  al., 2013; Scholl et  al., 
2013). One of T-type Ca2+ channels, CaV3.2, is upregulated 
in APA and correlated with plasma aldosterone levels and 
CYP11B2 expression (Felizola et al., 2014). Additionally, mutations 
in CACNA1H, a gene encoding the α subunit of CaV3.2 have 
been identified in APA and could be  the cause of early-onset 
hypertension with primary aldosteronism (Scholl et  al., 2015; 
Nanba et  al., 2020). These mutations are thought to cause 
elevated Ca2+ influx, resulting in increased aldosterone synthesis 
(Reimer et  al., 2016).
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K+

It is well known that extracellular K+ concentration regulates 
ADS expression and aldosterone synthesis (Tremblay and 
LeHoux, 1993). Adrenal cortex and GC express potassium 
channel subfamily K members 3 and 9 (KCNSK3/9, also 
called TASK 1/3), which play a pivotal role in this process. 
These “leak” channels maintain a negative resting membrane 
potential by producing a background K+ conductance (Quinn 
et al., 1987). However, increase in extracellular K+ concentration 
or activation of GPCR inhibits these channels causing 
depolarization of the membrane leading to an influx of 
extracellular Ca2+ through L and T type Ca2+ channels 
(Lymangrover et  al., 1982; Kanazirska et  al., 1992; Varnai 
et al., 1995, 1998; Horvath et al., 1998; Bandulik et al., 2010). 
Consistently, inhibition of calcium in GC abolishes not only 
the effect of potassium but also the effect of ANG II (Rossier 
et  al., 1998; Uebele et  al., 2004). Interestingly, knockout of 
TASK 1 disrupted the functional zonation in the adrenal 
cortex suggesting that K+ is a crucial factor in this process 
(Heitzmann et  al., 2008). Effects of K+ are independent of 
ANG II as high K+ concentration was able to increase 
expression of ADS and the production of aldosterone in 
angiotensinogen knockout mice (Okubo et  al., 1997). Thus, 
similar to ANG II, K+ increases aldosterone synthesis through 
Ca2+ mediated pathways described above.

Disruption in K+ transport in GC is implicated in multiple 
aldosterone-related diseases. The deletion of TASK 1 and 3 
causes primary hyperaldosteronism (PH) and low-renin essential 
hypertension, respectively, due to constant depolarization of 
GC membrane in mice (Davies et  al., 2008; Guagliardo et  al., 
2012). Mutations in another K+ channel, a homotetrameric 
inward rectifier potassium channel (KCNJ5), are associated 
with (APA) and PH (Ishihara et  al., 2009; Choi et  al., 2011; 
Monticone et  al., 2012; Mulatero et  al., 2012; Williams et  al., 
2015). These mutations increase aldosterone production due 
to altered channel selectivity leading to depolarization of the 
membrane (Scholl et  al., 2012; Oki et  al., 2012b). In fact, 
ANG II-mediated regulation of aldosterone synthesis can occur 
by downregulating the expression of KCNJ5 (Kanazirska et  al., 
1992). Overexpression of KCNJ5 blunts ANG II stimulatory 
effects on membrane potential, intracellular Ca2+, and expression 
of STAR and ADS (Oki et  al., 2012a).

Adrenocorticotropic Hormone
ACTH is released by the anterior pituitary gland and binds 
ACTH receptor (ACTHR), a G protein-coupled receptor, on 
GC. Upon ligand binding ACTHR activates adenylate cyclase 
and cAMP, leading to activation of protein kinase A (PKA; 
Fridmanis et al., 2017). ACTH induces both acute and chronic 
stimulatory effects on aldosterone production. In vitro studies 
show that the acute effect occurs by the action of PKA, 
which phosphorylates STAR and increases its expression (Jo 
et al., 2005). Similarly to K+ and ANG II, ACTH also elevates 
intracellular Ca2+ levels through PKA-mediated 
phosphorylation of L-type Ca2+ channels (Sculptoreanu 
et  al., 1993).

The chronic response is mediated through steroidogenic 
factor-1 (SF1), which negatively regulates the transcription of 
CYP11B2 and STAR in H295R and mouse Y1 cells (Gyles 
et  al., 2001; Bassett et  al., 2002). siRNA and shRNA-mediated 
silencing of SF1 drastically increased ADS expression and 
aldosterone production, while its overexpression elicited an 
opposite effect. Interestingly, these effects were observed in 
ANG II stimulated cells as well, suggesting that ANG II acts 
partially through regulating SF1 (Bassett et  al., 2002; Ouyang 
et  al., 2011). Moreover, SF1 deficient mice died shortly after 
birth and exhibited incomplete or absent development of adrenal 
glands and gonads, but showed normal expression of ADS in 
the placenta, which expressed both SF1 and ADS (Sadovsky 
et al., 1995) is phosphorylated on serine 203 by Erk1/2, resulting 
in its full activation (Hammer et  al., 1999). The mechanism 
by which ACTH inhibits SF1 is not well understood. ACTH 
seems to have a biphasic effect on the activation of Erk1/2 
and phosphorylation of SF1. Some reports show that ACTH 
induces Erk1/2 phosphorylation, which in turn phosphorylates 
SF1 abrogating its inhibitory effect on steroidogenesis (Hammer 
et al., 1999; Gyles et al., 2001; Le and Schimmer, 2001; Winnay 
and Hammer, 2006). On the other hand, ACTH-induced PKA 
activation led to de novo synthesis and activation of mitogen-
activated protein kinase phosphatase 1 (MKP1), which 
dephosphorylated both SF1 and Erk1/2 (Bey et al., 2003; Sewer 
and Waterman, 2003; Winnay and Hammer, 2006). Both of 
these pathways seem to be  important for aldosterone synthesis, 
as silencing of either Erk1/2 or MKP1 reduces steroidogenesis 
(Gyles et  al., 2001; Sewer and Waterman, 2003).

While it is clear that ACTH induces aldosterone synthesis, 
this effect seems to be  transient. At first ACTH increases 
aldosterone synthesis of GC cells; however, after continuous 
induction by ACTH, GC phenotype changes to that of zona 
fasciculata leading to a decrease in aldosterone synthesis (Crivello 
and Gill, 1983). In vivo findings are consistent with these 
results. Since ACTH is released in a pulsatile fashion in humans, 
Seely et  al. (1989) investigated the effect of pulsatile and 
prolonged infusion of ACTH on aldosterone levels (Seely et al., 
1989). Pulsatile infusion resulted in an increase and maintenance 
of aldosterone, while prolonged infusion led to sharp increase 
followed by a continuous decrease in aldosterone levels (Seely 
et  al., 1989). These effects cannot be  explained by sodium, 
potassium, angiotensin-II, or cortisol as their levels were the 
same in both groups, thus the mechanisms that govern these 
effects remain unknown. GC ADS mRNA levels were significantly 
increased and then dramatically decreased at 3 and 24 h after 
ACTH treatment in rats, respectively (Holland and Carr, 1993). 
Chronic infusion of ACTH for 2–3 weeks resulted in 
disappearance of GC and consequently a decrease in aldosterone 
production (Mitani et  al., 1996). Similar transient effects of 
ACTH on aldosterone levels are seen in human male subjects 
(Fuchs-Hammoser et  al., 1980).

Plasma renin and aldosterone follow a circadian rhythm 
because their levels fluctuated throughout the day, with their 
levels being highest in the mornings and lowest in the evenings 
in normal men (Cugini et al., 1981; Thosar et al., 2019). Similar 
results have been found in PA and essentially hypertensive 
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patients (Kem et  al., 1973; Lamarre-Cliche et  al., 2005). 
Interestingly, plasma aldosterone circadian rhythm (PACR) may 
be  under androgenic rather than renin control, as aldosterone 
acrophase precedes renin and is associated with cortisol (Stern 
et  al., 1986). Early studies in rats and human males found 
that dexamethasone treatment, a drug that suppresses ACTH, 
abolishes normal PACR, suggesting that it is under ACTH 
control (Hilfenhaus, 1976; Takeda et al., 1984). Multiple regression 
analysis of aldosterone-stimulating factors at 3 hourly intervals 
confirmed PACR dependence on ACTH rather than renin or 
ANG II (Takeda et  al., 1984). The role of ACTH in PACR 
has also been implicated in PA (Sonoyama et  al., 2014).

Klotho, Leptin, Natriuretic Peptides, and 
Circadian Rhythm
Although ANG II, K+, and ACTH are thought to be  the main 
stimulators of aldosterone production, there are other factors 
that can regulate this process, some of which are prominent 
in hypertensive conditions. Klotho protein (KL) is a single-pass 
transmembrane type 1 glycoprotein which has been regarded 
as an anti-aging molecule because as age increases serum KL 
levels decrease (Zhou et  al., 2016). Low serum KL levels are 
associated with age-related disorders, such as coronary artery 
disease, atherosclerosis, myocardial infarction, and hypertension 
(Olejnik et  al., 2018). Fischer et  al. (2010) demonstrated the 
negative correlation between serum KL and aldosterone levels 
in mice. Hypomorphic KL (KL+/−) mice showed increased 
ACTH, antidiuretic hormone (ADH), and aldosterone levels 
compared to WT. Interestingly, Ca2+ deficient diet alleviated 
the symptoms of hyperaldosteronism in KL+/− (Fischer et  al., 
2010). Overexpression of KL reduces aldosterone production 
while impaired expression of KL increases aldosterone production 
(Zhou et  al., 2016). KL half deficiency seems to produce these 
effects by increasing the expression of ADS (Zhou et al., 2016). 
Similarly, there was a positive correlation between serum 
aldosterone level and CKD stage and a negative correlation 
between serum KL and aldosterone levels in human CKD 
patients, suggesting that the effect of KL on aldosterone in 
humans is similar to mice (Qian et  al., 2018). Nevertheless, 
it remains unclear how a decrease in KL abundance results 
in an increase in aldosterone synthesis. One possibility is that 
KL acts as a negative regulator of aldosterone biosynthesis. 
This hypothesis can be  tested in vitro. Reduced expression of 
key genes involved in aldosterone synthesis (such as ADS and 
STAR) as well as aldosterone levels in GC lines treated with 
KL would support this hypothesis.

Obesity is a well-known cause of hypertension and is 
characterized by high aldosterone levels (Goodfriend et  al., 
1998; Kurukulasuriya et  al., 2011). One possibility is that 
adipocytes affect aldosterone production since they are active 
endocrine tissues (Ronti et al., 2006). Indeed, Ehrhart-Bornstein 
et  al. (2003) showed that isolated adipocyte secretory products 
could dramatically increase aldosterone production independent 
of ANG II in adrenocortical cells (NCI-H295R; Ehrhart-Bornstein 
et  al., 2003). 2,13-epoxy-9-keto-10 (trans)-octadecenoic acid 
(EKODE) has also been shown to increase aldosterone production 

in a GC line. EKODE is produced by the oxidation of linoleic 
acid by hepatocytes. Incubation of adrenal cells with EKODE 
increased aldosterone production independently of ANG II. 
Interestingly, adult humans have a positive correlation with 
blood EKODE and aldosterone levels (Goodfriend et al., 2004). 
However, EKODE is unlikely the molecule responsible for the 
effect seen by Ehrhart-Bornstein et  al. (2003), as adipocyte 
secretory products were not oxidized by hepatocytes. A 
subsequent study showed that adipocyte-derived factors from 
SHR/cp rats (model of metabolic syndrome with hypertension) 
stimulate aldosterone production by increasing ADS expression 
and STAR activation despite ANG II receptor inhibition. 
Adipocyte-derived factors from normal rats failed to replicate 
these results (Nagase et al., 2006). These effects might be mediated 
by leptin, which is a protein hormone secreted by adipocytes 
and is abnormally high in obese individuals (Martinez-Rumayor 
et  al., 2008; Huby et  al., 2015). These in vitro studies have 
been validated and extended by in vivo investigations. For 
example, leptin infusion increased expression of ADS and serum 
aldosterone in a dose-dependent manner in mice with no effect 
on ANG II, K+, and corticosterone levels (Belin de Chantemele 
et  al., 2011; Huby et  al., 2015). Huby et  al. (2015) concluded 
that “leptin is a new regulatory factor of aldosterone secretion 
that acts directly in the adrenal cortex to promote ADS expression 
and aldosterone production” (Huby et  al., 2015). The leptin 
stimulatory effect on ADS and aldosterone was not abolished 
upon administration of ANG II or β adrenergic receptor 
inhibitors in mice, further supporting the notion of leptin as 
a novel effector of aldosterone production (Huby et  al., 2015). 
Leptin achieves these effects possibly through CaMK II, as 
leptin increased intracellular Ca2+ concentration and elevated 
expression calmodulin and CaMK II (Huby et  al., 2015). 
Agreeably administration of leptin receptor antagonism abrogated 
leptin-mediated aldosterone secretion and lowered blood pressure 
in mice (Huby et al., 2016). These studies carry crucial importance 
as hypertension in the obese population is a devastating health 
issue (Kurukulasuriya et  al., 2011).

Natriuretic peptides (NPs), cardiovascular peptides mostly 
secreted by the heart, play a role in vasodilation and fluid 
homeostasis. NPs have autocrine and paracrine signaling abilities 
and can function as endocrine components (Martinez-Rumayor 
et  al., 2008). Due to their role in blood pressure, they have 
been hypothesized to regulate aldosterone secretion. Indeed, 
peptides in heart’s crude extracts were able to inhibit aldosterone 
production by GC even upon ANG II and ACTH stimulation 
(Atarashi et  al., 1984). Consequent studies confirmed these 
results in vivo and showed that atrial NPs dampen aldosterone 
response to ANG II in rats (Chartier et  al., 1984; Atarashi 
et  al., 1985). Similar effects were seen in human males. 
Administration of ANG II or ACTH alone raised blood pressure 
and plasma aldosterone levels. Simultaneous infusion of low 
levels of atrial NPs along with either ACTH or ANG II produced 
no significant change in blood pressure or aldosterone levels 
(Anderson et  al., 1986; Weidmann et  al., 1986; Cuneo et  al., 
1987). Another way by which NPs regulate blood pressure is 
by affecting renal filtration and renin release. Isolated rabbit 
afferent arterioles and suspended JGC exposed to NPs showed 
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drastic decrease in renin secretion (Itoh et  al., 1987; Takagi 
et  al., 1988). In vivo studies in dogs are consistent with these 
results as atrial NP infusion increased renal flow, glomerular 
filtration rate, sodium and potassium excretion and reduced 
blood pressure and renin production (Burnett et  al., 1984; 
Maack et  al., 1984). These results suggest that RAS and NPs 
may act as endogenous antagonists.

Circadian clock controls many physiological functions, such 
as blood pressure, immune response, and metabolism, potentially 
through four “circadian clock” proteins: period 1–3 (Per 1–3), 
Bmal1, Clock cryptochrome 1–2, and Clock (Eckel-Mahan and 
Sassone-Corsi, 2009; Agarwal, 2010; Bollinger et  al., 2010; 
Dibner et  al., 2010). Per1 regulates expression of αENaC in 
both aldosterone-dependent and-independent manners (Gumz 
et  al., 2009, 2010a; Richards et  al., 2013). It also coordinately 
regulates the expression of other genes involved in renal Na+ 
reabsorption. These include Per1-mediated upregulation of Na+-
K+-ATPase through Fxyd5 and downregulation of endothelin 
1, which is a potential inhibitor of ENaC (Lubarski et  al., 
2005; Bugaj et  al., 2008). Per-1 not only controls downstream 
targets of aldosterone, but also the plasma levels of aldosterone 
itself. This is supported by the findings in Per-1 knockout 
mice. Ablation of Per1  in mice led to decreased aldosterone 
and 3β-dehydrogenase isomerase levels (Richards et  al., 2013). 
Interestingly, male mice appear to be more susceptible to adverse 
phenotypes of Per-1 KO than female mice. Treatment of Per-1 
KO mice maintained on high salt diet with desoxycorticosterone 
pivalate (DOCP), an aldosterone analog, lead to increased mean 
arterial pressure and loss of normal circadian blood pressure 
(Solocinski et  al., 2017). These effects are not observed in 
female Per-1 KO mice with similar treatments (Douma et  al., 
2019). This difference can be  explained by endothelin 1. Male 
mice under high salt diet and DOCP treatment had decreased 
night/day ratio of urinary ET-1 and different ET-1 and ET-1 
receptor gene expression compared to female mice (Douma 
et  al., 2020).

MECHANISMS OF ALDOSTERONE 
ACTION

Upon binding to aldosterone, MR undergoes conformational 
changes, leading to dissociation from chaperone proteins, 
dimerization, and translocation to the nucleus, where it binds 
to the responsive elements in the promoter regions of target 
genes to regulate transcription. These changes in gene expression 
play a major role in the regulation of blood pressure, which 
is accomplished through the control of sodium reabsorption 
by regulating either transcription or the activity of the ENaC.

Epithelial Sodium Channel
Epithelial sodium channel is a highly selective Na+ channel 
that is expressed on the apical membrane of various epithelial 
tissues, such as ASDN, colon, lungs, and sweat glands. ENaC 
is specific to Na+ over other ions, such as K+ and highly 
sensitive to diuretic amiloride. In the kidney, ENaC is exclusively 

expressed by principal cells where it reabsorbs Na+ from the 
filtrate. Na+ is then transported into the bloodstream by Na+/
K+ ATPase located on the basolateral side leading to an increase 
in extracellular fluid volume and subsequently an increase in 
blood pressure (Pan and Young, 1982; Garty and Palmer, 1997).

Epithelial sodium channel is comprised of three subunits: 
α, β, and ϒ (Canessa et  al., 1994). Although all three subunits 
are required for full functionality, the stoichiometric ratio of 
the subunits is still unclear. Originally it was thought that 
ENaC forms a tetramer with 2α, 1β, and 1ϒ subunits (Firsov 
et  al., 1998; Dijkink et  al., 2002; Anantharam and Palmer, 
2007), but recent evidence suggests a 1:1:1 stoichiometric ratio 
(Staruschenko et al., 2005; Kashlan and Kleyman, 2011; Noreng 
et  al., 2018). Each subunit spans the PM twice with both the 
COOH and NH2 termini oriented toward the cytoplasm (Noreng 
et  al., 2018). The COOH terminus of each subunit contains 
a PY domain that plays a crucial role in ENaC regulation. 
Deletions or mutations of this domain causes Liddle syndrome, 
a hereditary disease characterized by abnormally high ENaC 
activity and expression to the PM leading to hypertension 
(Firsov et al., 1996; Staub et al., 1996). For example, truncation 
or frameshift mutations in the COOH terminus of the βENaC 
were identified in subjects with Liddle syndrome (Shimkets 
et  al., 1994) In contrast, mutations of the conserved glycine 
residues in the NH2 terminus result in pseudohypoaldosteronism 
type 1 (PHA I), a life-threatening disease characterized by salt 
wasting, hyperkalemia, and metabolic acidosis (Chang 
et  al., 1996).

Since ENaC dysfunction can be fatal, ENaC activity is tightly 
regulated. ENaC is primarily regulated by controlling its presence 
in the PM. ENaC is delivered to the PM through clathrin-
mediated exocytosis and is removed from the PM through 
ubiquitylation. However, Na+ transport is also regulated through 
proteolytic cleavage of ENaC (Rossier and Stutts, 2009). Multiple 
proteases have been shown to increase activity of ENaC including 
serine, cysteine, furin, and alkaline proteases (Chraibi et  al., 
1998; Hughey et  al., 2004; Butterworth et  al., 2012; Haerteis 
et al., 2012). Increase in activity of ENaC by proteolytic cleavage 
is achieved by releasing a 43-amino acid inhibitory domain 
of γ-subunit (Zachar et  al., 2015). For a more comprehensive 
review please refer to (Kleyman and Eaton, 2020).

Serum Glucocorticoid-Induced Kinase 1
One of the keyways by which aldosterone regulates ENaC is 
through a serine/threonine serum glucocorticoid-induced kinase 
1 (SGK1). SGK1 expression was increased 60 min post-injection 
of physiological dose of aldosterone (Chen et al., 1999; Bhargava 
et  al., 2001). Although the levels of SGK1 rise in the presence 
of aldosterone, it must be phosphorylated at Thr256 and Ser422 
by pyruvate dehydrogenase kinase 1 (PDK1) to be  fully active 
(Park et al., 1999). Phosphorylation of a third highly conserved 
residue (Ser397) also increased SGK1 activity (Chen et  al., 
2009). mTORC2 was also identified as a kinase for SGK1 and 
is required for ENaC activation (Lu et  al., 2010).

Neural precursor cell expressed developmentally 
downregulated gene 4 (Nedd4-2) is a ubiquitin ligase that plays 
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a crucial role in regulating ENaC (Figure  4). As mentioned 
above, the main mechanism by which the cell regulates Na+ 
transport is by controlling the number of channels in the PM. 
In the absence of aldosterone, Nedd4-2 decreases this number 
by ubiquitinylating the PY motif of all three ENaC subunits 
and signaling the complex for degradation (Zhou et  al., 2007). 
This mechanism is thought to be responsible for the development 
of Liddle syndrome, as the mutations of the PY motif prevent 
ubiquitination and lead to an increased number of ENaC in 
the PM (Rotin, 2008). In the presence of aldosterone, SGK1 
phosphorylates Nedd4-2, impairing Nedd4-2 binding to ENaC, 
and instead increasing its affinity for 14–3–3 (Debonneville 
et  al., 2001; Bhalla et  al., 2005). Alongside SGK1, a 
deubiquitylating enzyme Usp2-45 also seems to be an important 
regulator of ENaC. Usp2-45 is upregulated upon aldosterone 
induction and de-ubiquitinates ENaC leading to higher cell 
surface expression of the channel (Fakitsas et  al., 2007; Verrey 
et  al., 2008).

WNK4 is a serine/threonine kinase, mutations of which 
have been identified as a potential cause for PHA II (Wilson 
et  al., 2001; Lopez-Cayuqueo et  al., 2018). The underlying 
mechanism behind this disease may be explained by a negative 
regulation of ENaC through WNK4 (Figure  4). Both in vivo 
and in vitro studies have shown a significant reduction of 
ENaC surface expression upon interacting with WNK4 (Ring 
et  al., 2007a). ENaC-WNK4 interaction requires an intact 

COOH terminus of β and ϒ subunits but not the PY motif, 
differing from ENaC-Nedd4-2 interaction requiring the PY 
motif. In the presence of aldosterone, SGK1 phosphorylates 
WNK4 and abrogates its negative regulation of ENaC (Ring 
et al., 2007a,b; Yu et al., 2013). The clinical relevance of ENaC-
WNK4 interaction is illustrated by PHA II-associated R1185C 
mutation of WNK4, which decreases WNK4’s inhibitory effect 
on ENaC by enhancing SGK1-mediated phosphorylation of 
WNK4 at S1217 (Na et  al., 2013). Aldosterone also increases 
the expression of kidney-specific WNK1 (kinase-deficient 
variant), which consequently increases transepithelial Na+ 
transport in cortical collecting duct cells potentially through 
regulation of ENaC (Naray-Fejes-Toth et  al., 2004). WNK1 
appears to increase ENaC surface expression by activating SGK1 
through a non-catalytic mechanism (Xu et  al., 2005a,b). This 
appears to be  dependent on phosphatidylinositol 3-kinase, as 
its inhibition abrogates this effect (Xu et  al., 2005b). Both 
WNK4 and WNK1 are implicated in PHA II (Wilson et  al., 
2001). Two other genes, KLHL3 and CUL3, encoding kelch-
like 3 (Kelch) and cullin 3 (cul3) proteins, respectively, may 
explain the mechanism by which WNK4 and WNK1 cause 
PHA II. Cul3 is an integral member of cul3-RING ubiquitin 
ligase, an E3 ubiquitin ligase. It forms a scaffold for the RING 
finger protein and ubiquitin conjugating enzyme E2 (Genschik 
et  al., 2013). Kelch is an adaptor protein that connects cul3-
RING ubiquitin ligase to its targets (Ji and Prive, 2013). 

FIGURE 4 | Aldosterone regulates epithelial sodium channel (ENaC) activity and degradation. Aldosterone-bound MR translocates to the nucleus and induces 
transcription of USP 2-45, SGK1, and GILZ. SGK1 phosphorylates WNK4 and dampens its inhibitory action on ENaC activity. Nedd4-2 ubiquitinates ENaC and 
signals it for proteasomal degradation. Wnk4 is targeted to proteasomal degradation by KLHL3-Cul3 ubiquitin ligase. SGK1 inhibits this process by phosphorylating 
Nedd4-2 reducing its affinity to ENaC. USP2-45 removes UB from ENaC preventing its degradation. SGK1 requires phosphorylation events in order to achieve full 
activity, which is accomplished by PDK1, Wnk1, and mTORC. In the absence of aldosterone, SGK1 is subject to ERAD. However, in the presence of aldosterone 
GILZ inhibits this process increasing the stability of SGK1. MR, mineralocorticoid receptor; SGK1, serum glucocorticoid-induced kinase 1; GILZ, glucocorticoid-
induced leucine zipper 1; Nedd4-2, Neural precursor cell expressed developmentally downregulated gene 4; ENaC, epithelial sodium channel; UB, ubiquitin; PDK1, 
pyruvate dehydrogenase kinase; ERAD, endoplasmic reticulum-associated degradation.
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Mutations in KLHL3 and CUL3 have been implicated in PHA 
II and appear to cause hypertension and electrolyte disbalance 
(Boyden et  al., 2012; Louis-Dit-Picard et  al., 2012). One 
mechanism by which these mutations cause PHA II is through 
Wnk1 and Wnk4, as both of these proteins are targets of 
Cul3-RING ubiquitin ligase (Ohta et  al., 2013; Shibata et  al., 
2013b). PHA II causing mutations in KLHL3 decreases Wnk4 
binding to Cul3-RING ubiquitin ligase, decreasing WNK4 
degradation and increasing its levels resulting in hypertension 
(Mori et  al., 2013; Wakabayashi et  al., 2013; Wu and Peng, 
2013; Susa et  al., 2014).

SGK1 is expressed in many tissues, but it has a short half-
life under basal conditions (Brickley et  al., 2002). Upon 
aldosterone stimulation, A6 cells dramatically increased SGK1 
expression (Chen et al., 1999). SGK1 contains a short hydrophobic 
motif that targets the protein to the ER where it is degraded 
by ER-associated degradation (ERAD). The deletion of this 
motif redistributes the protein into the cytoplasm and increases 
its half-life (Brickley et  al., 2002; Arteaga et  al., 2006; Belova 
et al., 2006; Bogusz et al., 2006). In the presence of aldosterone, 
this negative regulation of SGK1 is abrogated due to the action 
of glucocorticoid-induced leucine zipper 1 (GILZ1), the levels 
of which rise in the presence of the steroid hormone 
(Soundararajan et  al., 2005). GILZ1 reduces ER localization 
of SGK1 and recruits it to ENaC leading to significantly lower 
ERAD of SGK1 and higher levels of Na+ transport (Soundararajan 
et  al., 2010; Rashmi et  al., 2017).

Dot1a
In addition to controls of proteolytic cleavage and subcellular 
localization, ENaC is also regulated at the transcriptional level 
via the disruptor of telomeric silencing 1 (Dot1), a histone 
H3 K79 methyltransferase. Dot1 can mono, di or tri- methylate 
H3 K79 leading to a wide range of epigenetic control of gene 
expression. Dot1 is implicated in complex cellular processes, 
such as cell cycle regulation, cell proliferation, DNA replication, 
apoptosis, telomeric silencing, and blood pressure control. Dot1 
has at least five isoforms (a–e) created by alternative splicing, 
out of which Dot1a is the most prominent in mouse kidneys 
(Nguyen and Zhang, 2011). Deletion of Dot1 specifically in 
the connecting tubules and collecting ducts facilitated 
development of kidney fibrosis and reduced kidney function 
under three experimental settings (streptozotocin-induced 
diabetes, during normal aging, and after unilateral ureteral 
obstruction) in mice (Zhang et  al., 2020).

Dot1a interacts with Af9, a putative transcription factor. 
Under basal conditions, Dot1a-Af9 complex binds to the specific 
regions of αENaC, where it promotes H3 K79 methylation 
associated with promoter and represses αENaC transcription 
(Zhang et  al., 2007). Aldosterone downregulates Dot1a and 
Af9 expression and impairs Dot1a-Af9 interaction by SGK1-
mediated Af9 phosphorylation. Consequently, the abundance 
of Dot1a-Af9 complex at the αENaC is reduced, leading to 
histone H3 K79 hypomethylation and derepression of αENaC 
(Zhang et  al., 2007). Dot1a-Af9 complex is also negatively 
regulated under the basal condition through Af17, another 
Dot1a binding partner. Af17 competes with Af9 for binding 

Dot1a and facilitates Dot1a nuclear export into the cytoplasm 
for possible degradation, resulting in relief of Dot1a-Af9-mediated 
repression and an increase in αENaC expression (Figure  5; 
Reisenauer et  al., 2009; Wu et  al., 2011). Analyses of Af17−/− 
mice illustrated the significance of Dot1a-Af9-Af17 complexes 
in Na+ and blood pressure handing (Chen et al., 2011). Af17−/− 
vs. WT mice had elevated histone H3 K79 methylation at the 
αENaC promoter and reduced ENaC function. The impaired 
ENaC function stemmed from reduced ENaC expression at 
both mRNA and protein levels, fewer active channels, lower 
open probability, and decreased effective activity. As a result, 
Af17−/− vs. WT mice displayed lower blood pressure, higher 
urine volume, and more sodium excretion in spite of mildly 
increased plasma concentrations of aldosterone. Af17 deficiency 
with respect to sodium handling and blood pressure, however, 
was completely compensated by high levels of plasma aldosterone 
induced by multiple methods (Chen et  al., 2011). Hence, Af17 
is considered as a potential locus for the maintenance of sodium 
and BP homeostasis and H3K79 methylation is directly linked 
to these processes. The potential genetic–epigenetic interplay 
of DOT1-AF9-AF17  in human blood pressure control was 
well-reviewed (Zhang et  al., 2013).

DISCUSSION

Aldosterone is a vital steroid hormone produced by the adrenal 
glands that regulates blood pressure by affecting electrolyte 
and fluid balance. Aldosterone is synthesized from cholesterol 
in the mitochondria and SER of GC upon decreased blood 
pressure, although some reports suggest that heart tissue is 
also capable of aldosterone secretion. Lowered blood pressure 
results in activation of ANG II. ANG II binds its receptor on 
GC, resulting in the production of IP3 and DAG. IP3 and 
DAG raise intracellular Ca2+ concentration and activate PKC 
and p42/p44 MAPK pathway, respectively. Ca2+ activates CaMK, 
which stimulates the expression of ADS. PKC and p42/p44 
are involved in the activation of STAR and CEH increasing 
the rate of aldosterone production. High extracellular K+ 
concentration also stimulates aldosterone synthesis. At 
physiological serum K+ levels, K+ moves out of the GC through 
TASK 1 and three maintaining negative membrane potential. 
However, in the presence of ANG II or high extracellular K+ 
concentration, TASK 1 and 3 are inhibited which causes 
depolarization of the cell leading to the entry of extracellular 
Ca2+. These initiate similar signaling pathways as ANG II leading 
to aldosterone synthesis. ACTH has both acute and chronic 
effects on aldosterone synthesis. It activates PKA, which 
phosphorylates STAR and activates it. ACTH transiently 
stimulates aldosterone production by increasing intracellular 
Ca2+ levels. ACTH is thought to mediate ADS expression by 
affecting the activity of SF1; however, the mechanism is not 
fully understood. Aldosterone secretion is regulated by other, 
nontraditional factors, such as KL, leptin, natriuretic peptides, 
and circadian clock. KL is a protein that is associated with 
aging as its levels decrease with age and inversely correlates 
with age-related disorders. Studies in mice show that deficiency 
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in KL stimulates aldosterone production by the adrenal gland 
in an ANG II-independent manner. Clinical studies in CKD 
patients confirm the negative correlation between KL and ANG 
II serum levels. Leptin is a hormone produced by adipocytes 
and its plasma leptin levels are high in obese patients. Leptin 
binds to the leptin receptor on GC and stimulates the secretion 
of aldosterone by activating CaMK pathway. Hypertension in 
obese individuals is often independent of ANG II, K+, and 
ACTH concentrations. Since leptin increases aldosterone 
production despite inhibition of ANG II and ACTH receptors, 
it can explain the phenomenon seen in obese individuals. 
Natriuretic peptides are thought to be  endogenous antagonists 
to RAS as their administration decreases aldosterone production 
despite ANG II or ACTH stimulation. Aldosterone levels tend 
to rise in the morning and fall in the evening, suggesting the 
role of PACR. One of core circadian clock proteins, Per-1 has 
been shown to regulate not only Na+ transport in ASDN, but 
also plasma aldosterone levels.

Aldosterone stimulates Na+ transport by regulating the 
expression and activity of ENaC. Aldosterone stimulates the 
expression and stability of SGK1, which directly and indirectly 
increases the expression and activity of ENaC. SGK1 
phosphorylates Nedd4-2, a ubiquitin ligase that ubiquitinates 
a PY motif of ENaC and targets it for degradation. Upon 
phosphorylation by SGK1, Nedd4-2 loses its affinity to ENaC 
thereby increasing the number of channels in the PM.  

SGK1 also phosphorylates WNK4, a negative regulator of ENaC 
activity. Upon phosphorylation by SGK1, WNK4 weakens its 
interaction with ENaC. SGK1 itself is expressed in many tissues 
but is immediately targeted for degradation by ERAD. Aldosterone 
prevents its degradation by increasing the expression of GILZ, 
which reduces ER localization of SGK1 and directs it to ENaC. 
Dot1a-Af9-Af17-mediated epigenetic control of ENaC and Na+ 
handling is regulated in aldosterone-dependent and -independent 
manners. The former involves reduction of Dot1a-Af9 complex 
formation through aldosterone-induced downregulation of Dot1a 
and Af9 and SGK1-mediated Af9 phosphorylation. The latter 
is achieved by competitive protein–protein interactions between 
Dot1a-Af9 and Dot1a-Af17.
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A B

FIGURE 5 | Epigenetic control of αENaC transcription. Under basal conditions (A), Af9 recruits Dot1a to form a nuclear complex, which indirectly or directly 
through Af9 DNA-binding activity binds specific sites of the αENaC promoter, leading to hypermethylation of histone H3 K79 and repression of αENaC transcription. 
Af17 relieves the repression by competing with Af9 for binding Dot1a and promoting Dot1a redistribution from the nucleus to cytoplasm. In the presence of 
aldosterone (B), αENaC transcription is induced by a variety of mechanisms. Through the classical action, aldosterone binds and activates the mineralocorticoid 
receptor to bind the glucocorticoid response element in the αENaC promoter and transactivate αENaC. In parallel, aldosterone releases Dot1a–Af9-mediated 
repression by reducing the formation of the complex through three mechanisms: downregulating Dot1a and Af9 expression presumably via nuclear receptor-
dependent or -independent (not shown) mechanisms, decreasing the Dot1a–Af9 interaction via SGK1-mediated phosphorylation of Af9 at Ser435, and 
counterbalancing Dot1a–Af9 complex by activating MR to compete for binding Af9. These actions collectively result in histone H3 K79 hypomethylation at specific 
subregions of the αENaC promoter. In all cases, Af9-free Dot1a binds DNA nonspecifically and catalyzes histone H3 K79 methylation throughout the genome under 
basal conditions (not shown). Revised from Chen et al. (2015). Dot1a: disruptor of telomeric silencing 1a. Meth: methylation. αENaC: α epithelial sodium channel. 
NR: nuclear hormone receptor. SGK1: serum glucocorticoid-induced kinase 1.
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